11\'01(8 IBM Tivoli NetView for z/0S

Version 5 Release 4

Automation Guide

SC31-8853-05

LIV'(1TH [BM Tivoli NetView for z/0S

Version 5 Release 4

Automation Guide

SC31-8853-05

Note
FBefore using this information and the product it supports, read the information in|‘Notices” on page 617

This edition applies to version 5, release 4 of IBM Tivoli NetView for z/OS (product number 5697-ENV) and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC31-8853-04.

© Copyright International Business Machines Corporation 1997, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
Figures L e XX

About this publication L . L . . L. .. LXXV

Intended audience L L L L L L L Loy
Publications. . . D 4
IBM Tivoli NetV1ew for z / OS hbrary e v Y
Related publications . . . C oo xxvid
Accessing terminology onhne C e xxvid
Using NetView for z/OS online help. .xxvii
Using LookAt to look up message explanations . Xxxvii
Accessing publications online L ... oL L. xxviid
Ordering publications ... Loxxix
Accessibility 000 L oL L Lo L xxix
Tivoli technical training. L. Loxxix
Downloads . . . C e s xxix
Support for problem solvmg C e
Conventions used in this publication L L L L L L L XXX
Typeface conventions. . . Ce o
Operating system-dependent varlables and paths Ce s oxd
Syntax diagrams L L L L L oxxd

-
—

Part 1. Introducing Automation

Chapter 1. Introducing NetView Automation
What Does NetView Automation Mean? .
Benefits of Automation .

Improving System and Network Avallablhty

Removing Constraints to Growth

Increasing Operator Productivity

Ensuring Consistent Operating Procedures

Classes of Automation .

System and Network Automatlon
System Automation .

Network Automation .

Single-System or Multiple- System Automat1on .
Single-System Automation .

Multiple-System Automation .
Stages of Automation .
Single-System Automation Stages .
Suppressing or Revising Messages and Blocklng Alerts .
Consolidating Consoles. o
Reducing Consoles
Consolidating Consoles through Message Collectlon .
Dedicating a NetView Console

Consolidating Commands .

Scheduling Commands

OO0 O ®WWWWNITIAOO U U R RWWWwW

Responding Automatically to Messages and MSUs 10
Establishing Coordinated Automation .o 10
Consolidating Automation with RODM . .11
Improving Operator Interfaces . .1
Presenting Information in Messages 12
Presenting Information in Hardware Monitor Alerts 12
Deciding How to Use the Hardware Monitor . 13
Generating Alerts 13

© Copyright IBM Corp. 1997, 2009 iii

Presenting Information in Beeper/E-mail Actions.
Presenting Status Information .
Displaying Information on Full-Screen Panels .
Propagating Single-System Automation .
Centralizing Operations .
Use of Focal Points in Centralized Operatrons
Establishing Remote Operation .
Automating Non-NetView Systems and Non SNA Dev1ces
Example of a Staged Approach . .
Stage 1: Suppress Messages and Frlter Alerts
Stage 2: Consolidate Consoles .
Stage 3: Consolidate Commands
Stage 4: Schedule Commands
Stage 5: Create Automated Responses to Messages and MSUs
Stage 6: Coordinate Monitoring and Reactivating .
Stage 7: Improve Operator Interfaces . .
Stage 8: Implement Multiple-System Autornatlon
Stage 9: Centralize Operations . .
Stage 10: Extend Automation to Acld1t1onal Machlnes and Dev1ces .

Chapter 2. Overview of Automation Products .
NetView Automation Facilities . .
Command Lists and Command Processors .
Choosing a Language . .
Automating with Command Procedures

Obtaining Message and Management Services Un1t (MSU) Inforrnatlon

Using Global Variables
Accepting Parameters . .
Obtaining Environment Informat1on .
Interacting with the System and Network
Waiting . .
Timer Commands
Autotasks .
Automation Table
Message Revision Table
Resource Object Data Manager .
Installation Exits.
Using DSIEX02A
Using DSIEX16 or DSIEX16B
Using DSIEX17 . .
Using XITCI .
MYVS Command Revision. .
Automated Operations Network (AON)
Status Monitor .
Operating-System Automatron Fac1l1t1es and lnteract10ns w1th NetV1ew .
Automation on MVS Systems
Automating Responses to Messages

Setting Options for Automating with either the Message Processmg Facrhty (MPF) or the Message Rev1s10n

Table (MRT) .
Automating a Sysplex .
Automating Responses to MSUs .
Issuing NetView Commands from Multiple Support Consoles
Issuing NetView Commands with the MVS MODIFY Command
Issuing NetView Commands with the Designator Character .
Issuing MVS Commands from NetView .
Automating MVS Commands .
Issuing MVS System Messages and Delete Operator Messages (DOMs)
System Automation/390 Programs .
Examples of Using NetView Interfaces
NetView Service Points
Tivoli Networks .

iV Automation Guide

.13
.13
.13
.14
.15
.15
. 16
.18
. 18
. 18
. 18
.18
.19
.19
.19
.19
.19
.19
.19

.21
.21
.21
.22
.22
.22
.22
.22
.23
.23
. 23
.23
.23
.24
. 25
. 25
.25
. 26
. 26
. 26
. 26
. 26
. 26
.27
. 27
.27
.27

.31
.31
.32
.32
. 32
.32
. 33
. 33
. 33
. 33
. 33
. 34
. 34

IP Networks Using SNMP . 34
Non-IBM Networks. . . 35
Automation-Related Functions and Serv1ces . 35
Managing Workload . . 35
Managing Network Performance . . 35
Managing Input/Output . . 36
Managing Storage . . 36
Management Reporting . 37
Part 2. Achieving an Automated Environment . . 39
Chapter 3. Defining an Automation Project .4
Project Definition Tasks .41
Assembling an Automation Team . .42
Choosing an Approach .42
Involving Operation Groups. .42
Creating a Project Plan .43
Identifying the Goals of Your Organlzatlon . 43
Identifying Business Goals . . 43
Identifying Data-Processing Requlrements . . 43
Understanding Your Operating Environment . . 44
MVS System and Network Logs . 45
Operation Procedure Books . . 45
Problem-Management Reports . . 45
Help-Desk Logs . . . 46
Service-Level Agreements . 46
Users . 46
Other Data- Processmg Plans . 46
Interpreting the Information . . 46
Developing Goals and Objectives for Automatlon . 46
Developing Goals for Automation . .47
Developing Measurable Objectives. . 47
Quantifying Costs and Benefits . . 47
Securing Commitment. . 49
Chapter 4. Designing an Automation Project . 51
Project Design Tasks . . . 51
Identify Procedures and Functlons to Automate . . 51
Prioritize Procedures and Functions . . 51
Schedule Stages for Implementation . . 51
Establish Standards. . 51
Design Guidelines . . . 52
Designing for Expansion and Propagatlon . . 52
Designing for Auditability . 53
Designing Automation Security. . 53
Designing for Availability. . 54
Automating Close to the Source . . 54
Using Multiple NetView Programs on a Smgle System . . 54
Providing Operator Interfaces . . . 55
Educating Your Staff . 55
Anticipating Changing Staff Roles . 56
Providing for Testing . . . 56
Providing for Problem and Change Management . 56
Choosing Focal Points . . 57
Using a Backup Focal Point . . 58
Defining Operator Sphere-of- Control . 59
Chapter 5. Implementing an Automation Project . . 61
Implementation Tasks . . 61
Production Tasks . 61

Contents V

Part 3. Planning for Automation in Selected Environments .

Chapter 6. Automation Using MVS Extended Multlple Console Support Consoles

Using EMCS Consoles with NetView .
Advantages of Using EMCS Consoles with NetV1ew
Planning for Extended Multiple Console Support Consoles
Enabling Extended Multiple Console Support Consoles.
Developing Console Naming Conventions . .
Acquiring Extended Multiple Console Support Consoles
Defining Task Names for CNMCSSIR Tasks .o
Defining Consoles in Groups .
Using the MRT or the MPF Table to Dlrect Messages to NetVlew Automat1on .
Using Attribute Values for Extended Multiple Console Support Consoles.
Defaults for a Console Obtained by the CNMCSSIR Task . .
Defaults for a Console Obtained by an Operator .
Using Route Codes . .o e
Case 1 .
Case 2 .
Understanding Effects of Attrlbutes
Implementing Security Access . .
Avoiding Message Loss because of a Full MVS Message Data Space
Avoiding Message Loss because of an Exceeded Queue Limit
Balancing MVS Message Storage and Message Queue Limit .

Comparing Extended Multiple Console Support Consoles with Subsystem Allocatable Consoles .

Migrating from the Subsystem Interface to Extended Multiple Console Support Consoles
Establish Unique Names . e
Migrate to a Later Release NetVrew Program at Each Host
Continue Using the Subsystem Interface If Needed . .

Use the RMTCMD Command and LU 6.2 Sessions for Cross- Domam Communlcatlon
Restrict Operator Access to the MVS VARY Command .

Restrict AUTO Attribute of EMCS Consoles .

Define Each NetView Program to Use Extended Mult1ple Console Support Consoles

Chapter 7. Automation in an MVS Sysplex
MVS Sysplex .

Using NetView Automatlon ina Sysplex

Planning for Automation in a Sysplex

Stage 1. Become Familiar with EMCS Consoles and How The1r Attr1butes Affect Message Routmg ina Sysplex

Stage 2. Coordinate MPF Actions with the Definitions of EMCS Consoles.

Stage 3. Decide Whether to Centralize Your NetView Automation on One System of the Sysplex

How Foreign Messages are Processed.

Chapter 8. Automation with the Resource Object Data Manager .
Introducing the Resource Object Data Manager
Interactions with RODM . .
Using RODM in Automation
Advantages of Using RODM .
Planning for Using RODM in Automat1on . .
Determining the Types of Events to Produce Automated Responses from RODM .
Understanding RODM Automation Capabilities .

Chapter 9. NetView Information Routing for Automation
NetView Interfaces .

Interfaces to the Operatmg System

Interfaces to Other NetView Programs

Other Message and Command Facilities .

Interfaces for Hardware-Monitor Data and MSUs
NetView Message Routing

Solicited Messages .

Vi Automation Guide

. 63

. 65
. 65
. 65
. 66
. 66
. 66
. 67
. 67
. 68
. 68
. 68
. 68
. 69
. 69
. 69
. 70
. 70
.70
.70
. 70
.71
.71
.73
.73
.73
.73
.74
. 74
. 74
. 74

. 77
.77
.77

.78
78

.78
.79
.79

. 81
.81
.81
. 82
. 82
. 82
. 83
. 83

. 85
. 85
. 86
. 87
. 87
. 87
. 87
. 88

UnsolicitedMessages...............................88

The Authorized Receiver . . . e
Unsolicited Messages froma DST .8
Unsolicited Messages from MVS .08
Message Routing Facilities . . . B
Routing Messages with the ASSIGN Command e (0]
Assigning Messages to Operators .9
Assigning Operators to Groups. . .)
Using ASSIGN to Route Unsolicited Messages)
Using ASSIGN to Drop Unsolicited Messages .9
Using ASSIGN to Route Solicited Messages. .9
Using ASSIGN to Route Messages to Autotasks .9
Using ASSIGN with Automation Logic . . . I)
Using the REFRESH and ASSIGN Commands for Dynarmc Operator Control S
ASSIGN Command Versus Automation Table Routing A
Routing Messages with the MSGROUTE Command .9%
Routing Messages to EMCS Consoles Based on Route Codes.9%
Specifying the Route Codes Lo Y4
Eliminating Duplicate Automation of Messages e
Message Routing Flow9%
DSIEX17 Processing%
PIPE CORRWAIT . . . 1
ASSIGN PRI/SEC Processmg C e Yy
Authorized Receiver Processing ...
DSIEX02A Processingoy
Wait Processing . . . 74
Automation-Table Processmg]
Routing Messages . . el
Setting Message Attrlbutes X
DSIEX16 Processing9
ASSIGN COPY Processingo
Discard or Display Processing . . . (0]0]
NetView Hardware-Monitor Data and MSU Routmg e)
ALERT-NETOP Application .103
XITCI Processing . . e e
Initial Hardware- Momtor Processmg e (0]
Automation-Table Processing .103
DSIEX16B Processing. . .)
Continued Hardware Monitor Processmg e (02
NetView Command Routing . . e o
Compatibility of Commands w1th Tasks e (05)
Command Routing Facilities . . . e (03]
Automation-Table ROUTE Keyword . e, (02}
CNMSMSG Service Routine and DSIMQS Macro O 5}
EXCMD Command .06
RMTCMD Command. .1l06
Command Label Prefixes .106
Command Priority .1006

Part 4. NetView Automation Facilities109

Chapter 10. Command Lists and Command Processors 113

Available Languages . . . A N
Obtaining Messages and MSUs A I £
Message Functions L. . L L. 114
MSU Functions.o s s s 114
Saving Information 114
Global Variableso 114
Task Global Variables. .15
Common Global Variables .15

Contents Vil

Choosing a Type of Variable
MVS Data Sets . .
Waiting for a Specific Event
NetView Command List Language Waltlng
REXX Waitingo
PL/I and C Waiting . .
Additional Command-List Capab1ht1es for MVS .
Sending Messages to an MVS Console .
Allocating Disk, Tape, and Print Files
Loading Command Lists into Storage

Chapter 11. Timer Commands
Overview of Timer Commands
AFTER
AT . .
EVERY
TIMER
CHRON .
Choosing a Task .
Saving and Restoring Timer Commands
LIST TIMER and PURGE TIMER .
LIST TIMER.
PURGE TIMER.

Chapter 12. Autotasks.
Defining Autotasks
Activating Autotasks . .
Using the AUTOTASK Command
Associating Autotasks with Multiple Console Support Consoles
Deactivating Autotasks . e
Automating with Autotasks
Managing Subsystems .o
Processing Unsolicited Messages .
Processing Commands
Starting Tasks
Sending Commands to an Autotask Usmg the EXCMD Command

Chapter 13. The Message Revision Table

What Is the Message Revision Table? .
Elements of Message Revision Table Statements
Message Revision Table Processing .
Message Revision Table Searches .

Coding a Message Revision Table

Changing Route Codes and Descriptor Codes

DoForeignFrom Statement . S

END Statement.

EXIT Statement. .

NETVONLY Statement .

OTHERWISE Statement .

REVISE Statement .

SELECT Statement

UPON Statement .

WHEN Statement . .

Example of a Message Rev1s1on Table

Usage Reports for Message Revision Tables

Message Revision Table Testing

Chapter 14. The Command Revision Table .
What Is the Command Revision Table? .

Elements of Command Revision Table Statements .

vili Automation Guide

. 115
. 115
. 116
. 116
. 116
. 117
. 117
. 117
. 118
. 118

. 119
. 119
. 119
. 120
. 120
. 120
. 120
. 121
. 121
. 122
. 122
. 122

. 123
. 123
. 123
. 124
. 124
. 124
. 125
. 125
. 125
. 126
. 126
. 126

. 129
. 129
. 129
. 130
. 130
. 130
. 131
. 131
. 131
. 132
. 132
. 132
. 132
. 133
. 133
. 134
. 134
. 135
. 135

. 137
. 137
. 137

Command Revision Table Processing

Command Revision Table Searches .
Coding a Command Revision Table .
Command Revision Table Statements

TRACKING.ECHO Statement .

ISSUE.IEE2951 Statement

UPON Statement .

SELECT Statement

WHEN Statement . .

OTHERWISE Statement .

END Statement.

REVISE Statement . .

NETVONLY Statement .

WTO Statement

Edit Orders . .
Command Revision Table Example .
Usage Reports for Command Revision Tables
Command Revision Table Testing.

Chapter 15. The Automation Table

What Is the Automation Table? .
Elements of Automation-Table Statements
Automation-Table Processing .
Automation-Table Searches .

Types of Automation-Table Statements .
Determining the Type of Statement .
Statement Types and Processing .

Coding an Automation Table .

BEGIN-END Section .

IF-THEN Statement

Condition Items .

Bit Strings as Compare Items .
Parse Templates as Compare Items .
Literals
Variable Names
Variable Values.
Placeholders.
Nulls .

Actions

ALWAYS Statement

%INCLUDE Statement

SYN Statement . . .

Design Guidelines for Automatlon Tables .
Limit System Message Processing
Streamline the Automation Table .

Group Statements with BEGIN-END Sections.

Isolate Complex Compare Items .
Include Other Automation Tables.

Tailor Automation Tables for Your Operation .

Use Synonyms .

Place Statements Carefully

Use Automation-Table Listings

Use the ALWAYS Statement .
Use the CONTINUE Action Carefully .
Set Automation-Table Defaults.

Limit Automation of Command Responses

Automation as the NetView Program Closes .

Example of an Automation-Table Listing .
Automation-Table Usage Reports .
The AUTOCNT Command . .
Example of Usage Reports Output

. 138
. 138
. 138
. 138
. 139
. 139
. 140
. 141
. 141
. 142
. 142
. 142
. 143
. 143
. 144
. 145
. 146
. 147

. 149

Contents

. 149
. 149
. 150
. 150
. 150
. 151
. 151
. 151
. 152
. 154
. 158
. 206
. 207
. 207
. 208
. 209
. 210
. 210
. 211
. 229
. 230
. 231
. 232
. 233
. 233
. 233
. 235
. 235
. 236
. 236
. 236
. 237
. 237
. 237
. 238
. 238
. 238
. 238
. 240
. 240
. 241

ix

Assumptions of Message and MSU Processing for This Example . . 243
Detailed Automation-Table Usage Report . e . 244
Summary Automation-Table Usage Report . . . 247

General Reminders about Automation-Table Usage Reports . 250
Managing Multiple Automation Tables . . 250
Getting Started 250
Using Automation-Table Management . . 251
Using Commands for Selected Tables . 252
Inserting an Automation Table. . . . 253

Using the Display Options Pop-up w1ndow . . 255

Using Global Commands . . 256
Using the Global Display Panel . . 257
Enabling and Disabling Automation-Table Statements . 257
Displaying the Labels/Blocks/ Groups Panel . . 259

The Confirmation Panel 260
Chapter 16. Policy Services Overview . . 263
Using Policy Services. . 263
Customizing DSITBLO1 (optlonal) . 264
Defining Your Policy Files . . 264
Required NetView Tasks. . 264
Policy File Syntax . . 264
Policy File Management . . 266
Using the Policy API . . 267
POLICY Syntax. . . 267
Determining Which Pohcy Flles are Loaded . . 269
Syntax Testing the Policy Files. .o . 269
Loading Policy Files . . . 269
Querying a Policy Definition . . 270
Querying a Group of Policy Deflnltlons . 270
Modifying a Policy Definition . . . 271
Deleting a Policy Definition . 272
Adding a Policy Definition . . 272
REXX API Usage . . 273
Timer APIs . . 273
EZLETAPI . 273
EZLEQAPI . . 282
EZLEDAPI . . 284
EZLEQCAL . . 285
Chapter 17. Installation Exits. . 287
What Are Installation Exits? . 287
Installation Exit DSIEX02A . . . 287
Installation Exit XITCI for BNJDSERV . . 287
Installation Exits DSIEX16 and DSIEX16B . . 287
Installation Exit DSIEX17 . 288
Part 5. Single-System Automation . . 289
Chapter 18. Automation Setup Tasks . . 293
Establishing Communication between NetView and the Operat1ng Systern . . 293
Preparing MVS for System Automation. . 293
Defining NetView to MVS as a Subsystem. . 297
Ensuring That MVS Forwards System Messages to NetV1ew . 297
Using the Subsystem Interface. . o . 297

Using EMCS Consoles . . . 297
Dynamically Defining EMCS Consoles . . 298

The GETCONID Command . 298

The SETCONID Command . . 299

The RELCONID Command. . 299

X Automation Guide

Reviewing the NetView Start-up Procedures . . . Lo 299
Adding CMDDEEF Statements to Allow System Commands from NetVlew G 10 0]
Defining and Activating Autotasks .300

Chapter 19. Suppressing Messages and F|Iter|ng Alerts301

Suppressing System Messages. . . . < (0
Suppressing Network Messages ... 3;m
Filtering Alerts e 3
Recording Filters . . . e (1
Statistics, Events, and Alerts O 10
COLOR and OPER Filters .304
Other Recording Filter Information .305
Viewing Filters. .30
Bypassing Filters ... 306

Chapter 20. ConsolidatingConsoles307

How to Consolidate Consoles < (04
Differences between NetView and Multlple Console Support Consoles e (0
Screen Handling and Message Placement .307
Message Line Format. .308
Display Area Capability .308
Screen Refresh ..o .308
Prefix Command Name .308
Message Holding . . . N (1]
Color and Other nghhghtmg Attrlbutes e 0
Benefits of NetView Command Facility Screens . . . e
Using Multiple-Support-Console Consoles with Autotasks A i

Chapter 21. ConsolidatingCommands.313

Writing Simple Command Procedures .313
Anticipating Additional Automation. .34
Modifying Command Procedures. .34
Documenting Command Procedures. .35

Chapter 22. Automating Messages and Management Services Units (MSUs) 319

Deciding Which Messages and MSUs to Automate. .319
Writing Automation Table Statements to Automate Messages320
Checking by Message ID ... 30
Automating Action Messages . o.o.0.320
Checking Other Specific Criteria .32
Checking Messages by DomainID .31
Checking Messages with Tokens .31
Checking Messages by Position ...
Checking Messages by a Placeholder .32
Checking General Criteria . . Ce 32
Checking Criteria with Loglcal AND Loglc NG .2
Checking Criteria with Logical-OR Logic .32
Checking Criteria Using Placeholders .32
Comparing Text with Parse Templates .323
Using Placeholders in a Parse Template .323
Using Variables in a Parse Template. . . . G 1.4
Using Parse Templates with Multiline Messages G 1.
Writing Automation Table Statements to Automate MSUs32
Checking for Field Existence .32
Checking Subvectors32
Checking Subfields L L L L 327
Checking Field Contents. . . s v
Checking for RECMSs and RECFMSs G 14
RECMS 82o 328
Encapsulated RECMS .38

Contents X1

Example: Checking for a RECMS with a Recording Mode of X'82'.

MSU Actions

Hexadecimal, Character and B1t Notatlons
Using Hexadecimal Notation .

Using Character Notation
Using Bit Notation .

When a Field Occurs More than Once .

Using Header Information . .

Using Major Vectors Other than Alerts
Checking Resolution Major Vectors .
Checking R&TI GDS Variables.

Using the Resource Hierarchy .

Using the Domain ID.

Automating Other Data by Generatlng Messages
Automating Hardware Monitor Records
Automating Status Changes

Putting Your Automation Statements 1nto Effect

Correlating Messages and MSUs Using the Correlation Engme
Correlation Overview S
Storage Considerations .

Correlation Processing

Creating Correlation Events Us1ng COREVENT and CNMCRMSG

Message and MSU to Event Mapping
Filtering with State Correlation

Creating Rules .

Predicates

Actions .

Attributes common to all rules

Matching rules .

Duplicates rules

Threshold rules.

Collector rules .

Passthru rules .

Reset on match rules .
Cloning state machines .
Writing custom actions .

Event objects

Action structure

Working with events .

Chapter 23. Establishing Coordinated Automation
The State-Variable Technique .
Automating Initialization, Monitoring, Recovery, and Shutdown
Automating Initialization
Automating Monitoring .
Passive Monitoring
Proactive Monitoring . .
Combining Active and Pass1ve Mon1tor1ng
Automating Recovery
Automating Shutdown .

Chapter 24. Enhancing the Operator Interface
Displaying Messages . .
Displaying Status Information .
Tracking Status with the Status Monltor .
Tracking Status with the NetView Management Console Dlsplay .
Monitoring Alerts with the Hardware Monitor S
Sending Alerts with the Program-to-Program Interface
Sending Alerts with the GENALERT Command .
Sending Alerts with the MS Transport .

xil Automation Guide

. 329
. 329
. 330
. 330
. 330
. 330
. 331
. 331
. 332
. 332
. 332
. 333
. 334
. 334
. 334
. 335
. 335
. 336
. 336
. 337
. 338
. 338
. 339
. 341
. 342
. 344
. 345
. 345
. 345
. 345
. 346
. 348
. 349
. 351
. 352
. 353
. 353
. 354
. 355

. 357
. 357
. 359
. 360
. 360
. 360
. 360
. 361
. 361
. 361

. 363
. 363
. 363
. 364
. 364
. 364
. 365
. 365
. 366

Monitoring Alerts with the NMC. .366
Creating Full-Screen Panels. . . . e (10
Sending E-mail or Alphanumeric Pages e

Part 6. MultiSystem Automation.369

Chapter 25. Propagating Automation to Other NetView Systems 371

Automating Close to the Source . . . N
Distinguishing between Automation Procedures < e
Defining Responsibilities ...
Defining Autotasks Consistently v
Developing Generic Automation Command Procedures N 2
Developing a Portable Automation Table .372
Including Forwarding . . N VA
Installing and Testing Before Dlstrlbutlon N V4
Logging Intrasystem Automation. .373

Chapter 26. Centralized Operatlons e Y 65

Data Transports N V6
LU 6.2 Transports35
LUC oL e a7
OST-NNT . . . e 4

NetView Architected Focal Pomt Support < V4
The MS-CAPS Application . . . G 4+

MS-CAPS in the Advanced Peer—to—Peer Networkmg Envrronment N V£
Failure Processing e 0]
Focal Point Nesting . . e 1]
Sphere-of-Control with Archltected Focal Pomts e 1)
Sphere-of-Control Functions at the Focal Point .38
MS-CAPS Management of the Sphere-of-Control38
Operator Management of the Sphere-of-Control .38
Sphere-of-Control Types. .. 00038
Sphere-of-Control States. . . N 2
Setting Up the Sphere-of-Control Env1ror1mer1t . G ¢
Updating or Changing the Sphere-of-Control Env1ronment N 1o)
Restoring the Sphere-of-Control Environment .38
How to Define an Architected Focal Point (DEFFOCPT) G Yo 7t
The ALERT-NETOP Application . . . e 1o 2
Displaying Alerts Forwarded with LU 6 2 S G 1)
Specifying Architected Alert Forwarding with LU 6. 2 S8
Forwarding Alerts to a Non-NetView Focal Point .38
Non-NetView Focal Points and Architected Alerts386
Non-NetView Focal Points and Unarchitected Alerts386
Forwarding Alerts from User-Defined Applications.386
Defining a NetView Intermediate Node Focal Point38
Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts388
Queueing Alerts When the Focal Point Is Unavailable. . . . G 12
Distributed Database Retrieval for SNA-MDS/LU 6.2 Forwarded Alerts. G ML)
Secondary Recording for SNA-MDS/LU 6.2 Forwarded Alerts39
XITCI Exits and SNA-MDS/LU 6.2 Forwarded Alerts39
Services Provided by MS-CAPS and FOCALPT Command39
The LINK-SERVICES-NETOP Application. . . G 10
The OPS-MGMT-NETOP and EP-OPS-MGMT Apphcat1ons e Rl
User-Defined Categories and User-Defined Appllcatlons e) |

NetView-Unique Focal Point Support . . . G A
Alert Forwarding with LUC 0392
Command and Message Forwarding . . <

Forwarding with the RMTCMD Command G 1A
Flexibility in Communication .39
Nesting RMTCMD Commands .39

Contents Xiii

Forwarding with OST-NNT Sessions

. 394

Using an Intermediate Focal Point for Message Forwardmg . 394
Message/ Alert Forwarding with OST-NNT . 395
Full-Screen Functions and the Terminal Access Facility . 395
Using the SDOMAIN Command While Monitoring. . 395
Using a TAF Session to Shift Domains . . . 395
Logging on to a Distributed System Directly . . 395
Limitations . Lo . 395
Choosing a Forwardmg Method . 395
Choosing a Configuration . . 397
Leased and Switched Lines. . . 397
Persistent and Nonpersistent Sessmns . . 398
Using More Than One Focal Point . . 399
Changing, Dropping, and Listing Focal Points . 399
Part 7. Additional NetView Automation Topics . 401
Chapter 27. Automating Other Systems, Devices, and Networks . 405
Tivoli NetView for UNIX Service Point . . 405
Event/Automation Service . . 406
Forwarding Alerts. . 406
Forwarding Messages . . 407
NCP Frame Relay Switching Equrpment Support . 408
Chapter 28. Automation Using the Resource Object Data Manager . 409
Managing Multiple RODM Data Caches . . 409
Managing RODM Using the DSIQTSK Task . . . 409
Defining RODM Using the DSIQTSKI Initialization Member . 410
Managing RODM Using the ORCNTL Command . 411
Issuing Commands from RODM Methods . . 411
Verifying Commands Issued from RODM Methods . 412
Accessing RODM from NetView . o . 412
The ORCONV Command . 413
Accessing RODM from High- Level Language and Assembler Language Programs . 413

A RODM Automation Scenario . o . .o . 413
The Scenario Events . . 414
The Scenario Entities . . 414
Setting Up the Scenario . . 415
Running the Scenario. . 417
Key Sections of Change Method EKGCPPI . 421
Procedure Statement . Lo . 422
Local Variables . . 423
Constants . 425
Initialization. . 426
Changing a Subfreld . 427
Querying a Field . . . 427
Querying an Object Name . . 428
Triggering an Object-Independent Method . 429
Chapter 29. Automation Using the Terminal Access Facility . 431
Overview. . . 431
How TAF Works . 432
Setting Up TAF. . 432
Adding VTAMLST Defmrtrons . 432
Adding CICS Terminal Definitions . 433
Adding IMS Terminal Definitions . 434
NetView Commands Used for TAF . . 434
Automating Applications Using TAF . 435

XiV Automation Guide

Chapter 30. Automation Involving Common Base Events

Introducing Common Base Events

Creating Common Base Events . .
Creating Common Base Events by Automatrng Messages and MSUs
Creating Common Base Events by Setting Hardware Monitor Filters .

Using Common Base Events in Automation .

Correlating Common Base Events

Chapter 31. Using Automated Operations Network
Understanding AON Automation and Recovery .
Automation Table .
The Control File
Understanding Automated Operators
Understanding Notifications
Understanding Automation Tracking . .
Understanding Automation Notification Logglng in the Hardware Monltor
Resource Recovery and Thresholds .
AON/SNA Automation .
Understanding the AON/ SNA Optlons
Using the AON/SNA Tutorials
Using the AON/SNA Help Desk .
Using SNAMAP o
Managing VTAM Options .
Using NetStat .
Issuing VTAM Commands
Monitoring X.25 Switched Virtual Clrcults
Displaying NCP Recovery Definitions .
AON/SNA Subarea VTAM Resource Automatlon Support
Monitoring Advanced Peer-to-Peer Networking Resources
AON/SNA X.25 Monitoring Support
AON/TCP Automation .
Passive Monitoring in AON/ TCP for Trvoh NetVrew (AIX)
Proactive Monitoring . .o . .
Recovery Monitoring .
Threshold values for AON / TCP wrth Trvoh NetVrew (AIX)
MIB Polling and Thresholdlng (TCP /1P for z/OS only)
Operator Awareness .

Chapter 32. Running Multiple NetView Programs Per System

Installing Multiple NetView Programs .
NetView Interfaces and Functions
Program Operator Interface (POI) .
Communications Network Management Interface (CNMI)
Hardware Monitor Local-Device Interface .
MVS Subsystem Interface
GENALERT . .
Status Monitor and Log Browse .
Using the Interfaces .
Separating Network Functlons from System Functrons

Separating Problem Determination Functions from Automatron Functrons .

Migration .
Communication between Two NetVlew Programs .
LUC Alert Forwarding
Command and Message Forwardlng
LU 6.2 Transports . .
MVS Subsystem Interface
Automated Recovery of NetView.
Priorities .

Chapter 33. Automation Tuning.

. 437
. 437
. 437
. 437
. 438
. 438
. 439

. 443
. 443
. 443
. 443
. 444
. 444
. 445
. 445
. 445
. 447
. 448
. 448
. 448
. 449
. 449
. 449
. 449
. 449
. 449
. 450
. 450
. 450
. 451
. 452
. 453
. 453
. 453
. 454
. 454

. 457
. 458
. 458
. 458
. 459
. 459
. 460
. 461
. 461
. 461
. 462
. 462
. 463
. 463
. 463
. 463
. 463
. 464
. 464
. 464

. 465

Contents XV

Log Analysis Program
Resource Controls, Task Prlorrtles and Multltaskmg
Resource Controls .
CPU Usage .
Storage Usage .
Message Queuing .
Input/Output Usage .
Task Priority. .
Multiple Autotasks .
Multiple NetView Programs
Automation-Table Processing .
Hardware Monitor Alerts

Chapter 34. Automation Table Testlng
Automation Table Testing

Starting Parallel Testing . .

Testing an Automation Table Usmg Recorded AIFRs

Sample Report for the AUTOTEST Command
Using a Test Environment . o

Using Applications

Using a Simulator .

Message Simulation .
MSU Simulation .

Implementing Automation Incrementally

Verifying Automation Table Matches

Verifying Automated Action Parameters

Verifying Scheduled Commands .

Checking the Effect of Automation .

Ensuring That Autotasks Process Command Procedures Correctly
Using Debugging Tools .

Using Logs .

Evaluating Unautomated Messages and MSUs

Using NetView Automation Table Listings.

Using NetView Automation Table Tracing .

Chapter 35. Logging

Logging Considerations .

MVS System Log (SYSLOG)

Network Log

User-Provided Logs .

NetView Logging Capabrhtles

MVS System Log and NetView Network Log Records

Chapter 36. Job Entry Subsystem 3 (JESS) Automation

Message Flow in a JES3 Complex.

Messages That Originate on the Global Processor

Messages That Originate on the Local Processor .
Commands in a JES3 Environment .

Issuing JES3 Commands from NetView. .

Issuing MVS Commands from NetView in a]ESS Complex .

Issuing NetView Commands from Operating System Consoles in a]ES3 Complex
NetView in a JES3 Environment .

Chapter 37. SNMP Trap Automation.
The SNMP trap automation task . .
Configuring an SNMP trap automation task
SNMP trap automation task configuration file
SNMP Trap Automation CP-MSU
Example of SNMP trap automation .

XVl Automation Guide

. 465
. 468
. 468
. 468
. 468
. 468
. 469
. 469
. 469
. 469
. 470
. 470

. 473
. 473
. 473
. 474
. 475
. 479
. 479
. 479
. 479
. 480
. 480
. 481
. 481
. 482
. 482
. 483
. 484
. 484
. 485
. 485
. 486

. 489
. 489
. 490
. 490
. 491
. 491
. 492

. 493
. 493
. 493
. 494
. 495
. 495
. 496
. 496
. 496

. 499
. 499
. 499
. 500
. 502
. 506

Part 8. Appendixes .

Appendix A. Planning for Migration to New Automation Capabilities in the NetView

Program .
NetView for z/0S V5R4 Program
NetView for OS/390 V1R4 Program .

Appendix B. Sample Prolect Plan.
Project Definition .

Design .

Implementation

Production .

Planning Charts

Appendix C. Sample Progress Measurements

Appendix D. MVS Message and Command Processing
Message Flow in MVS
Message Processing Facility
Subsystems in Message Processing .
Multiple Console Support .
Command Flow
Processing Determmatlon
Commands Issued from a Console
NetView Interfaces with MVS . .
Messages Issued as WTOs to Be D1sp1ayed or Processed by NetV1ew.
WTO Processing with the Subsystem Interface o
WTO Processing with EMCS Consoles .
MYVS Commands Issued by NetView .
NetView Commands Issued as Subsystem Commands from an MVS Console
NetView Commands Issued with MODIFY (F) Command from an MVS Console.
Messages and Commands through VTAM Interfaces e
Terminal Access Facility . .
Interfaces.
Communication Network Management Interface
Filters .
Communrcatlon Network Management
Console Operations .
Using MVS Operator Consoles to Issue Commands and Command Llsts as Subsystem Commands

Using MVS Operator Consoles to Issue Commands and Command Lists as MODIFY (F) Commands .

Multiple Console Support Operator Use of Command Lists .
Issuing an MVS Command from a NetView Operator ID .
Using EMCS Consoles

Appendix E. VTAM Message and Command Processmg
Message and Command Flow in VTAM
Message Flooding Prevention Table .
VTAM Message Suppression Criteria
Identifying Events with the Automation Table
Understanding Suppression Levels .
Identifying Unsuppressable Messages .

Appendix F. Detailed NetView Message and Command Flows.
Flow Diagrams.
Flow Descriptions . .

1. NetView Command Entry (VTAM Termmal) .

2. Cross-Domain Commands (OST to NNT) .

3. VTAM (POI) Command Entry .

4. Solicited System Messages .

Contents

. 511

. 513
. 513
. 513

. 515
. 516
. 518
. 518
. 519
. 520

. 523

. 525
. 525
. 525
. 526
. 527
. 527
. 527
. 528
. 528

. 529
. 529

. 529
. 529

. 529
. 530

. 530
. 530
. 530
. 530
. 530
. 530
. 531

. 531
. 532
. 532
. 533

. 533

. 535
. 535
. 535
. 536

. 536

. 536
. 537

. 539
. 539
. 548
. 548
. 549
. 549
. 549

xvii

5. NetView Command Entry (MVS System Console)
6. Replies to NetView WTOR . . .

7. Unsolicited VTAM (POI) Messages

8. Unsolicited MVS System Messages .

9. Cross-Domain Messages and Commands (NNT to OST)

10. PPT as the MVS, ISCF, or TAF OPCTL Operator

11. OST or NNT as MVS, ISCF, or TAF OPCTL Operator .

12. Solicited VTAM (POI) Messages . Lo

13. PPT Message Queue Processing .

14. DSIPSS for PPT or NetView Authorlzed Recerver Messages

15. OST or NNT Message Queue Processing .

16. NetView Console Output or SYSOP Message Queue Processmg
17. OST or NNT DSIPSS.

18 Solicited and Unsolicited System MVS Extended Console Messages for an OST NNT or Autotask
19 Solicited and Unsolicited System MVS Extended Console Messages for the PPT .

Appendix G. NetView Message Type (HDRMTYPE) Descriptions

Appendix H. MVS Command Management (Deprecated) .
Enabling MVS Command Management in the NetView Environment.
Enabling the MVS Command Exit on MVS
Suppressing additional command echoes and IEE2951 messages
Exclusion or Inclusion Lists
Logical PARMLIB Member - CNMCAUaa
Syntax for CNMCAUaa Statements . .
Console Exclusion List and Console Inclusion L1st
Command Exclusion List and Command Inclusion List
CMDTEXT Exclusion List and CMDTEXT Inclusion List .
Order of matching.
Starting MVS Command Management
Activating the MVS Command Exit .
Starting MVS Command Processing . .
Displaying the MVS Command Management Settmg
Stopping MVS Command Management

Stopping MVS Command Management and Keepmg the CNMCAUaa Member .
Stopping MVS Command Management and Deleting the CNMCAUaa Member .

Stopping the MVS Command Exit from Being Invoked
Deactivating the MVS Command Exit . .o

Testing MVS Command Management .

Starting the Exclusion or Inclusion List.

Changing the Exclusion or Inclusion List .

General Processing of CONSOLE and COMMAND Inclus1on and Exclusmn Lrsts
Commands Excluded by NetView Command Exit . e
Restrictions . .

MVS Command Management Processmg on NetVlew

Protecting MVS Command Management Processing

Appendix I. The Sample Set for Automation
Using the Sample Set for Automation .
Locating and Renaming the Sample Set for Automatlon .
Using the Message Suppression Sample Set
Using the Log Analysis Program .
Setting Up Communication between NetVlew and MVS
Using the Basic Automation Sample Set
Functions Performed by the Basic Automation Sample Set
Automation Table Used in the Basic Automation Sample Set
Issuing Commands .
Assigning a Value to a Variable
Invoking Command Lists and Command Processors
Activating the Basic Automation Sample Set .

xviil Automation Guide

. 550
. 550
. 550
. 551
. 552
. 553
. 553
. 554
. 554
. 554
. 556
. 556
. 557
. 558
. 558

. 559

. 563
. 564
. 565
. 565
. 567
. 568
. 568
. 568
. 569
. 570
. 571
. 571
. 571
. 572
. 572
. 572
. 572
. 572
. 572
. 573
. 573
. 574
. 574
. 574
. 574
. 575
. 576
. 578

. 579
. 579
. 580
. 581
. 581
. 581
. 581
. 581
. 582
. 583
. 583
. 584
. 585

Defining Command List Synonyms . .
Preparing and Activating the Sample Automatlon Table .
Activating the Autotask AUTO1 .
Testing the Basic Automation Sample Set .
Using the Advanced Automation Sample Set .

Functions Performed by the Advanced Automation Sample Set
Initialization.
Monitoring .
Recovery .
Shutdown .
Enhancing the Operator Interface .

Command Lists Used in the Advanced Automatlon Sample Set

Advanced Automation Sample Set Functions .

Naming Conventions for Advanced Automation Sample Set Command LlStS .

Initialization and Active-Monitoring Command Lists .
Recovery Command Lists
Shutdown Command Lists . .
Operator-Interface Command List and Panels
Automation Display Command List .
Automation Display Panels.
Miscellaneous Samples . .
Preparing to Use the Advanced Automatlon Sample Set .
Preparing for NetView Initialization .
Starting NetView before JES
Starting NetView before VTAM .
Starting NetView before a System Authorlzatlon Fac1hty Product .
Modifying the Advanced Automation Sample Set
Defining Autotasks . S
Defining Command Definition Statements
Modifying the Automation Table .
Customizing the Advanced Automation Sample Set
Customizing with Global Variables .

Building and Naming Complex Global Varlables
Example of Using a Complex Global Variable
Fine-Tuning the Advanced Automation Sample Set.
Adding a Product . .
Handling a New Message w1th Automatlon .

Changing Timer-Command Intervals
Preloading Command Lists.
Testing Added or Changed Automatlon .
Cross-Reference Listing of Command Lists and Samples .
Basic Automation Sample Set .
Samples .
Command Lists.
Advanced Automation Sample Set
Samples .
Command Lists Sorted by Shlpped Name .
Command Lists Sorted by Command Synonym Name.
Message Suppression Samples.
Log Analysis Samples
Setup Samples .

Notices . .
Programming Interfaces .
Trademarks .

Index .

. 585
. 586
. 586
. 587
. 587
. 587
. 588
. 588
. 591
. 591
. 592
. 592
. 592
. 594
. 594
. 596
. 598
. 600
. 600
. 600
. 601
. 602
. 602
. 602
. 603
. 603
. 603
. 604
. 605
. 605
. 606
. 606
. 607
. 608
. 609
. 609
. 610
. 610
. 611
. 611
. 611
. 611
. 611
. 611
. 612
. 612
. 612
. 614
. 615
. 615
. 615

. 617
. 618
. 618

. 621

Contents XiX

XX Automation Guide

Figures

1.

11.

12.

13.
14.
15.

16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.

27.
28.

29.
30.

31.
32.

33.

34.
35.

36.
37.
38.
39.

Adding Automation, with NetView on a Single
System

Propagating Automatlon to Addrtronal Systems
Forwarding Exceptions that Local Automation
Cannot Handle .
Remotely Initializing Target Systems .
Message Flow between the z/OS System and
NetView through the Subsystem Interface
Message Flow between the z/OS System and
NetView through EMCS Consoles .
Command Flow between the z/OS System and
NetView .
Example of a Multrsrte Conflguratlon
NetView Interfaces Used in Automation
Using the ASSIGN Command to Route
Unsolicited Messages

Using the ASSIGN Command to Drop
Unsolicited Messages

Using the ASSIGN Command to Route
Solicited Messages . .

General and Specific Message Routmg
MSGID Statement in Automation Table

Flow of Data to the Hardware Monitor and
MSUs to Automation .

EXCMD Command Example

Sample AFTER Command

Sample AT Command. .

Sample EVERY Command .

Sample CHRON Command . .

Message Resulting from a Skipped TIMER
Command . .o
LIST TIMER Command Examples

PURGE TIMER Command Examples
Definition Statements for AUTO1 .

Example of Using the Logical-AND Operator
Additional Example of Using the
Logical-AND Operator .

Example of Using the Logical-OR Operator
Example of Using the Logical-OR and
Logical-AND Operator

Example of Grouping Logical Operators
Example of Using LABEL and ENDLABEL
Keywords. . .
Example of Using the GROUP Keyword
Example of Using THEN Keyword Without
Actions

Statement Evaluated by the THRESHOLD
Keyword . . oo
Example of Comparmg B1ts

Example of Comparing Bits of Unequal
Length. .

Example of Comparrng Null B1t Strlngs
Example of a Multiline Literal Compare Item
Example of Comparing Character Literals
Example of Using Single quotation marks in a
Character Literal

© Copyright IBM Corp. 1997, 2009

.7
14

.15
.17

. 28

. 29

. 30
. 58

86

.91

.92

.92
. 93

99

. 102
. 106
. 119
. 120
. 120
. 121

. 121
. 122

122

. 123

156

. 156

157

. 157

157

. 158

158

. 158

. 204
. 206

. 206

207
207
208

. 208

40.

41.
42.

43.

44.

45.
46.

47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.
63.

64.

65.

66.
67.

68.
69.
70.
71.
72.
73.

74.
75.

Example of Using System Symbolics as a
Character Literal

Example of Using a Character Varrable Name
Example of Using Character Variable Name
DOMID . .
Example of Using a Hexadecrmal Varrable
Name . .

Example of Us1ng the Value of Var1able
DOML1 . . .
Example of Using a Placeholder .
Example of Using a Placeholder to Select a
Single Character

Example of Using Nulls as a Varlable
Example of Specifying a CMD in an EXEC
Example of Using the CMD and ROUTE
Keywords. .

Example of Using EXEC Actlon w1th the
ROUTE Keyword . S
Example of Using A Parse Token .

Example of Ignoring Parse Delimiters
Example of Unbalanced Parse Tokens
Example of Using NETLOG Keyword
Example of Using NETLOG with a List of
Operators .

Example of Performmg Multlple EXECs for a
Message or MSU .

Example of Specifying an Act1on More than
Once

Example of Confhctmg Actron for a Message
Using CONTINUE . . .
Example of Using a SYN Statement .
Example of Incorrect Synonym Substitution
Example of Correctly Using Synonym
Substitution .

Example of Grouping Statements .
Example of Occurrence-Detection Condition
Items .

Example of Isolatmg a Complex Compare
Item .

Example of Includmg Other Automatlon
Tables .

Example of Us1ng the CONTINUE Keyword
Example of Using the CONTINUE Keyword
on an ALWAYS Statement . .
Example of Automation-Table Synonym
Statements .

Example of a Main Automatron Table
Member

Example of an Automatlon—Table L1st1ng
Automation-Table Member .
Automation-Table Llstmg for the Sample
Member . o

MSG Detail Report

MSU Detail Report. . .
Statements Evaluated with Usage Statrstrcs

. 208

209

. 209

. 209

. 209
. 210

. 210

211
218

. 218

. 220
. 220

220
221
223

. 223

. 226

. 227

. 227
. 232

232

. 232
. 234

. 235

. 235

. 236

237

. 238

. 238

. 239

240

. 242

. 243
. 246
. 247

247

xxi

76.
77.
78.
79.

80.
81.

82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

113.

xxii

MSG Summary Report for Message
Automation .

MSU Summary Report for MSU Automatron
Automation-Table Structure.
Automation-Table Management Commands
Popup . .

Automatlon—Table Management Insert Optlon
Automation-Table Management D1splay
Options Pop-up Window .
Automation-Table Management Global
Commands Popup .

Automation-Table Management Global
Display Options Popup .

Automation-Table Management
ENABLE/DISABLE Panel

Automation-Table Management
Label/Block/Group Panel

Message Flow between the z/0OS System and
NetView through the Subsystem Interface .
Message Flow between the z/OS System and
NetView through EMCS Consoles. .
Command Flow between z/OS and NetView
Filter Hierarchy . .

Alert Received on the Alerts Dynamrc Panel
Messages Generated for Alerts by NetView
Activating an NCP with a Command

Sample Command List for Activating an NCP
Sample Command Procedure . .
Example of Checking a Message by Message
ID .
Example of Checkmg an MVS WTOR
Message Using the Message ID .
Example of Checking a Message by Domam
ID .
Example of Logging A Message Using a
Token .

Example of Loggmg a Message Usmg a Text
Position .
Example of Loggmg a Message Usmg a
Placeholder . .
Example of Routing Messages Usmg
Logical-AND Logic

Example of Routing Messages Usmg
Logical-OR Logic .
Example of Routing Messages Usmg a
Placeholder . . .
Example of Using a Placeholder ina Parse
Template .

Example of Using Var1ables ina Parse
Template .

Conceptual View of a CP MSU

Conceptual View of an NMVT .

Hardware Monitor’s Hexadecimal Display of
Data Record .

Example of Selectmg an MSU

Example of Selecting a Subvector .

Example of Selecting a Subfield

Example of Checking the Contents of a MSU
Subvector .

Example of Checkmg the Contents of a
Position in an MSU Subvector .

Automation Guide

. 249

249

. 251

. 253
254

. 255

. 256

. 257

. 258

. 259

. 294

. 295
296

. 304

305
305
313
314

. 316
. 320
. 320
. 321
. 321
. 321
. 322
. 322
. 322
. 322
. 323
. 323
. 324
. 325
. 326
. 326
. 327
. 327
. 327

. 327

114.
115.
116.
117.
118.
119.
120.
121.
122.

123.
124.

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.

136.
137.

138.

139.

140.

141.
142.

143.

144.
145.

146.
147.
148.
149.
150.

151.

Example of Using a Placeholder to Check the
Contents of a Position in an MSU Subvector
RECMS 82 .

RECMS Encapsulated in X 1044'

Example of Using Hexadecimal Notation
Example of Using Character Notation
Example of Using Bit Notation.

Example of Checking Multiple Occurrences of
a Field . . .
Example of Checkmg All Occurrences of a
Field .

Example of Detalled Checkmg of an MSU
Field . .
Example of Checkmg an MDS Header
Example of Checking for Alert Major Vectors
in an MDS-MU .

Example of Automating a Resolutlon Ma]0r
Vector .

Example of Automatmg a Routmg and
Targeting Instruction GDS

Example of Checking a Resource in the
Resource Hierarchy .

Example of Checking Mult1ple Resources in
the Resource Hierarchy . .

Example of Checking All Resources in the
Resource Hierarchy .

Example of Using the DOMAINID Keyword
Format for a CNM094I Message

Example of Verifying an Automation Table
State transitions for the duplicate rule

State transitions for the basic threshold rule
State transitions for the threshold rule using
forwardEvents .

State transitions for the collector rule

State transitions for the passthrough rule
(randomOrder=no).

State transitions for the passthrough rule
(randomOrder=yes)

State transitions for the reset on match rule
(randomOrder=no).

State transitions for the reset on match rule
(randomOrder=yes)

Structure of an action .

Coordinated Automation Usmg State
Variables . .

Sample Output From the REGISTER QUERY
Command .
VTAM APPL Statement .

Typical Focal Point and Entry Pomt Def1n1t1on
. 384

Statements in DSI6INIT .

NetView Intermediate Node Focal Pomt
Forwards Alerts with LU 6.2

RMTCMD Example

Switched Line Support .

Using the SAVECMD Command L1st in the
Automation Table . .

Sample DSIQTSKI In1t1ahzat10n Member for
the DSIQTSK Task .

Automation Table Statement to Trap IST105I
and Issue ORCONV Command

. 328
. 328
. 328

330
330
. 330

. 331

. 331

. 331

332

. 332

. 332

. 333

. 333

. 333

. 333

334

. 335

335
346
347

. 347

348

. 349

. 350

. 351

. 352
. 355

. 359

. 376

. 376

. 387
. 393
. 397
. 412
. 416

. 416

152.

153.
154.
155.
156.
157.
158.
159.

160.

161.

162.

163.
164.
165.
166.

167.

168.

169.

170.

171.
172.
173.
174.
175.
176.
177.
178.
179.

180.

181.
182.

183.
184.
185.
186.

187.
188.

189.
190.

Sample Automation Table Statement to Trap
DWO670I .

Input File for RODM Loader

Changing the Default RODM .

Activating the Automation Table . .
Setting the DEFAULT SENDMSG Parameter
Example of Inactivating Resource A01A704
Example Screen for the ASSISCMD Command
Example Screen for the ASSISCMD
Command--Enter M for More Detail .
Example Screen for the ASSISCMD
Command--More Detail About Command .
Example Screen for the ASSISCMD
Command--Enter E to Execute Command .
Procedure Statement for Change Method
EKGCPPI.

Local Variables for Change Method EKGCPPI
Constants for Change Method EKGCPPI
Initialization of Change Method EKGCPPI
Changing a Subfield with Change Method
EKGCPPI . .
Querying a Field w1th Change Method
EKGCPPTI .

Querying an Object Name w1th Change
Method EKGCPPI .

Triggering an Object- Independent Method
with Change Method EKGCPPI

A Sample VTAMLST Definition for a TAF
Source LU . o
Defining TAF to CICS

Defining TAF to IMS .

Automation Failure Logic

Resources Automated by AON/ SNA

Tivoli NetView (AIX) monitors resources
Log Analysis Program Output .

Messages to be Filtered .

Log Analysis Program Output w1th Fllterlng
Preventing the Automation Table from
Processing Commands .
Automation Statement with Actions
Commented Out

$HASP098 Command List

DSI013I Message Written by the
&CONTROL CMD Statement . .
Statement that Passes Messages to LOGSEQ
Message CNM4931 Format . . .o
Statement to Start the AUTH= CNM
Application . .

Statement to Start Other NetVlew Apphcatlon
Programs . . .
Commands Used to Brmg DASD Onhne
Flow Diagram for NetView Command Entry
(VTAM Terminal) . .o

Flow Diagram for Cross- Domam Commands
Flow Diagram for VTAM (POI) Command
Entry

. 417
. 417
. 418
. 418

419
419
419

. 420

. 421

. 421

. 422
423
425
426

. 427
. 427
. 428
. 429
. 433
. 433

. 434
. 446

447
452

. 466
. 467

467

. 470

. 481
. 483

. 485

485

. 489

. 531

. 531

533

. 539

540

. 541

191.

192.

193.
194.

195.

196.

197.
198.

199.

200.

201.

202.
203.

204.
205.
206.
207.
208.
209.
210.
211.

212.
213.

214.
215.
216.
217.
218.
219.
220.
221.

222.

Flow Diagram for Solicited System
(Subsystem Interface) Messages .
Flow Diagram for NetView Command Entry
(MVS) . .

Flow Diagram for Rephes to NetVrew WTOR
Flow Diagram for Unsolicited VTAM (POI)
Messages . .

Flow Diagram for Unsohclted System (SSI or
MVS Extended Console) Messages
(CNMCSSIR). .
Flow Diagram for Cross- Domaln Messages
(NNT to OST)

Flow Diagram for Messages (Operator is PPT)
Flow Diagram for Messages (Operator is

. 542

. 542
543

. 544

. 545

. 545
546

OST/NNT) . . 546
Flow Diagram for Sohc1ted and Unsohated
System MVS Extended Console Messages for
OST, NNT, or Autotask . .o . 547
Flow Diagram for Solicited and Unsohc1ted
System MVS Extended Console Messages for
PPT. . 548
Commands to Assoc1ate an Autotask w1th a
System Console . . . 550
MVS Command Management Flow . . 564
Basic Automation Sample Set Automation
Table Entries . . 582
Messages Automated by the Bas1c
Automation Sample Set Automation Table . . 583
Specifying Multiple Autotasks and Operators
on the ROUTE Command . . .58
Testing Your Automation Table. . 586
Activating Your Automation Table . 586
Activating Autotask AUTO1 . 587
CICS Abend Message . . . 589
Passive Monitoring in the Advanced
Automation Sample Set . . 589
Proactive Monitoring for the AUTO]ES
Autotask . . . 590
Proactive Monltorlng for Message DSIO39I 591
Automation Table EXCMD Command in
Response to DSI039] Message . . 591
Sample CNMS64P0 Display . . 600
Sample CNMS64P1 Display . . . 601
CNMS6408 Excerpt (AUTOMGR Operator
Definition) . 604
CNMS6409 Excerpt (DSIPROFM Operator
Profile). . . 605
Defining Variables for the Start TSO Var1ab1e 608
Building a Start TSO Variable . . 608
Statement Defining &START as a Common
Global Variable . . . 608
Updating a Common Global Varlable
Indirectly . . . 609
Substituting a Common Global Varlable in an
Assignment . . 609
Figures xxiii

XXiV Automation Guide

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that
you can use to maintain the highest degree of availability of your complex,
multi-platform, multi-vendor networks and systems from a single point of control.
This publication, the IBM Tivoli NetView for z/OS Automation Guide, provides
information about planning for automated operations. You can use the automation
capabilities of the NetView program to improve system and network efficiency,
and operator productivity. NetView automation can eliminate or simplify much of
the routine work that operators perform.

Intended audience

This publication is for data processing managers and their technical staff who are
interested in using the NetView program to perform system automation, network
automation, or both. The publication is both for those who are new to automation
and for those who have existing automation projects that they want to update or
expand.

Publications

This section lists publications in the IBM Tivoli NetView for z/OS library and
related documents. It also describes how to access Tivoli publications online and
how to order Tivoli publications.

IBM Tivoli NetView for z/OS library

© Copyright IBM Corp. 1997, 2009

The following documents are available in the IBM Tivoli NetView for z/OS library:

* Administration Reference, SC31-8854, describes the NetView program definition
statements required for system administration.

 Application Programmer’s Guide, SC31-8855, describes the NetView
program-to-program interface (PPI) and how to use the NetView application
programming interfaces (APIs).

* Automation Guide, SC31-8853, describes how to use automated operations to
improve system and network efficiency and operator productivity.

* Command Reference Volume 1 (A-N), SC31-8857, and Command Reference Volume 2
(O-Z), SC31-8858, describe the NetView commands, which can be used for
network and system operation and in command lists and command procedures.

* Customization Guide, SC31-8859, describes how to customize the NetView product
and points to sources of related information.

* Data Model Reference, SC31-8864, provides information about the Graphic
Monitor Facility host subsystem (GMFHS), SNA topology manager, and
MultiSystem Manager data models.

e Installation: Configuring Additional Components, SC31-8874, describes how to
configure NetView functions beyond the base functions.

e Installation: Configuring Graphical Components, SC31-8875, describes how to install
and configure the NetView graphics components.

s Installation: Configuring the Tivoli NetView for z/OS Enterprise Management Agent,
SC31-6969, describes how to install and configure the NetView for z/OS
Enterprise Management Agent.

XXV

XXV1

Automation Guide

Installation: Getting Started, SC31-8872, describes how to install and configure the
base NetView functions.

Installation: Migration Guide, SC31-8873, describes the new functions provided by
the current release of the NetView product and the migration of the base
functions from a previous release.

IP Management, SC27-2506, describes how to use the NetView product to manage
IP networks.

Messages and Codes Volume 1 (AAU-DSI), SC31-6965, and Messages and Codes
Volume 2 (DUI-IHS), SC31-6966, describe the messages for the NetView product,
the NetView abend codes, the sense codes that are included in NetView
messages, and generic alert code points.

Programming: Assembler, SC31-8860, describes how to write exit routines,
command processors, and subtasks for the NetView product using assembler
language.

Programming: Pipes, SC31-8863, describes how to use the NetView pipelines to
customize a NetView installation.

Programming: PL/l and C, SC31-8861, describes how to write command processors
and installation exit routines for the NetView product using PL/I or C.

Programming: REXX and the NetView Command List Language, SC31-8862, describes
how to write command lists for the NetView product using the Restructured
Extended Executor language (REXX) or the NetView command list language.

Resource Object Data Manager and GMFHS Programmer’s Guide, SC31-8865,
describes the NetView Resource Object Data Manager (RODM), including how
to define your non-SNA network to RODM and use RODM for network
automation and for application programming.

Security Reference, SC31-8870, describes how to implement authorization checking
for the NetView environment.

SNA Topology Manager Implementation Guide, SC31-8868, describes planning for
and implementing the NetView SNA topology manager, which can be used to
manage subarea, Advanced Peer-to-Peer Networking, and TN3270 resources.

Troubleshooting Guide, GC27-2507, provides information about documenting,
diagnosing, and solving problems that might occur in using the NetView
product.

Tuning Guide, SC31-8869, provides tuning information to help achieve certain
performance goals for the NetView product and the network environment.

User’s Guide: Automated Operations Network, GC31-8851, describes how to use the
NetView Automated Operations Network (AON) component, which provides
event-driven network automation, to improve system and network efficiency. It
also describes how to tailor and extend the automated operations capabilities of
the AON component.

User’s Guide: NetView, GC31-8849, describes how to use the NetView product to
manage complex, multivendor networks and systems from a single point.
User’s Guide: NetView Management Console, GC31-8852, provides information
about the NetView management console interface of the NetView product.

User’s Guide: Web Application, SC32-9381, describes how to use the NetView Web
application to manage complex, multivendor networks and systems from a
single point.

Licensed Program Specifications, GC31-8848, provides the license information for
the NetView product.

* Program Directory for IBM Tivoli NetView for z/OS US English, GI110-3194, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

* Program Directory for IBM Tivoli NetView for z/OS Japanese, GI10-3210, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

* IBM Tivoli NetView for z/OS V5R4 Online Library, SK2T-6175, contains the
publications that are in the NetView for z/OS library. The publications are
available in PDF, HTML, and BookManager® formats.

Related publications

You can find additional product information on the NetView for z/OS Web site:

Ihttp: / /www.ibm.com /software/tivoli/products/netview-zos/ |

For information about the NetView Bridge function, see Tivoli NetView for OS/390
Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms
related to Tivoli software. The Tivoli Software Glossary is available at the following
Tivoli software library Web site:

[http: / /publib.boulder.ibm.com /tividd / glossary / tivoliglossarymst.htm|

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

[http:/ /www.ibm.com /software/globalization /terminology /|

For a list of NetView for z/OS terms and definitions, refer to the IBM Terminology
Web site. The following terms are used in this library:

NetView
For the following products:
* Tivoli NetView for z/OS version 5 release 4
» Tivoli NetView for z/OS version 5 release 3
» Tivoli NetView for z/OS version 5 release 2
* Tivoli NetView for z/OS version 5 release 1
+ Tivoli NetView for OS/390® version 1 release 4

MVS For z/0OS operating systems

MYVS element
For the BCP element of the z/OS operating system

CNMCMD
For the CNMCMD member and the members that are included in it using
the %INCLUDE statement

CNMSTYLE
For the CNMSTYLE member and the members that are included in it using
the %INCLUDE statement

PARMLIB
For SYS1.PARMLIB and other data sets in the concatenation sequence

About this publication xxvii

http://www.ibm.com/software/tivoli/products/netview-zos/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology/

Unless otherwise indicated, references to programs indicate the latest version and
release of the programs. If only a version is indicated, the reference is to all
releases within that version.

When a reference is made about using a personal computer or workstation, any
programmable workstation can be used.

Using NetView for z/OS online help

The following types of NetView for z/OS mainframe online help are available,
depending on your installation and configuration:

* General help and component information

e Command help

* Message help

* Sense code information

* Recommended actions

Using LookAt to look up message explanations

LookAt is an online facility that you can use to look up explanations for most of
the IBM messages you encounter, and for some system abends and codes. Using
LookAt to find information is faster than a conventional search because, in most
cases, LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message
explanations for z/OS elements and features, z/ VM®, VSE/ESA, and Clusters for
AIX® and Linux® systems:

* The Internet. You can access IBM message explanations directly from the LookAt
Web site at |ttp:/ /www.ibm.com /systems/z/0s/zos /bkserv/lookat /| .

* Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e
system to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System
Services running OMVS).

* Your Microsoft® Windows® workstation. You can install LookAt directly from the
z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

* Your wireless handheld device. You can use the LookAt Mobile Edition from
[http:/ /www.ibm.com /systems/z/0s/zos/bkserv /lookat/lookatm.html| with a
handheld device that has wireless access and an Internet browser.

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from the following locations:

* A CD in the z/OS Collection (SK3T-4269).
e The z/OS and Software Products DVD Collection (SK3T-4271).

* The LookAt Web site. Click Download and then select the platform, release,
collection, and location that you want. More information is available in the
LOOKAT.ME files that is available during the download process.

Accessing publications online

The documentation DVD, IBM Tivoli NetView for z/OS V5R4 Online Library,
SK2T-6175, contains the publications that are in the product library. The

XXviil Automation Guide

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

publications are available in PDF, HTML, and BookManager formats. Refer to the
readme file on the DVD for instructions on how to access the documentation.

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at |http:/ /publib.boulder.ibm.com/infocenter /tivihelp /v3r1/index.jsp}

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File » Print window that enables Adobe® Reader to print letter-sized
pages on your local paper.

Ordering publications

You can order many Tivoli publications online at
[http:/ /www.elink.ibmlink.ibm.com /publications /servlet/pbi.wss|

You can also order by telephone by calling one of these numbers:
* In the United States: 800-879-2755
¢ In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:

1. Go to |http:/ /www.elink.ibmlink.ibm.com /publications/servlet /pbi.wss}

2. Select your country from the list and click Go.

3. Click About this site to see an information page that includes the telephone
number of your local representative.

Accessibility

Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. Standard shortcut
and accelerator keys are used by the product and are documented by the operating
system. Refer to the documentation provided by your operating system for more
information.

For additional information, see the Accessibility appendix in the User’s Guide:
NetView.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at Ihtt‘p: / /www.ibm.com/software/tivoli/ educationl

Downloads

Clients and agents, NetView product demonstrations, and several free NetView
applications can be downloaded from the NetView for z/OS support Web site:

http: / / www.ibm.com /software /sysmgmt/products /support/|

IBMTivoliNetViewforzOS.html|

In the "IBM Tivoli for NetView for z/OS support” pane, click Download to go to a
page where you can search for or select downloads.

About this publication XXix

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html

These applications can help with the following tasks:

* Migrating customization parameters and initialization statements from earlier
releases to the CNMSTUSR member and command definitions from earlier
releases to the CNMCMDU member.

* Getting statistics for your automation table and merging the statistics with a
listing of the automation table

* Displaying the status of a job entry subsystem (JES) job or canceling a specified
JES job

* Sending alerts to the NetView program using the program-to-program interface
(PPI)

* Sending and receiving MVS commands using the PPI

* Sending Time Sharing Option (TSO) commands and receiving responses

Support for problem solving

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at
[http:/ /www.ibm.com /software /support/probsub.html| and follow the
instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to |http://www.ibm.com/software/support/isa/|

Troubleshooting information
For more information about resolving problems with the NetView for z/OS
product, see the [IBM Tivoli NetView for z/OS Troubleshooting Guide,
Additional support for the NetView for z/OS product is available through
the NetView user group on Yahoo at
lhttp:/ / groups.yahoo.com/group/NetView /| This support is for NetView
for z/OS customers only, and registration is required. This forum is
monitored by NetView developers who answer questions and provide
guidance. When a problem with the code is found, you are asked to open
an official problem management record (PMR) to obtain resolution.

Conventions used in this publication

This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and command syntax.

Typeface conventions

This publication uses the following typeface conventions:

Bold

* Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

* Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,

XXX Automation Guide

http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa/
http://groups.yahoo.com/group/NetView/

multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

* Keywords and parameters in text

Italic
* Citations (examples: titles of publications, diskettes, and CDs
* Words defined in text (example: a nonswitched line is called a
point-to-point line)
* Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

* New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

* Variables and values you must provide: ... where myname represents...

Monospace
* Examples and code examples

¢ File names, programming keywords, and other elements that are difficult
to distinguish from surrounding text

* Message text and prompts addressed to the user
* Text that the user must type

* Values for arguments or command options

Operating system-dependent variables and paths

For workstation components, this publication uses the UNIX convention for
specifying environment variables and for directory notation.

When using the Windows command line, replace $variable with %uvariable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Syntax diagrams

Read syntax diagrams from left-to-right, top-to-bottom, following the horizontal
line (the main path). This section describes how syntax elements are shown in
syntax diagrams.

Symbols

The following symbols are used in syntax diagrams:

>> Marks the beginning of the command syntax.

> Indicates that the command syntax is continued.

I Marks the beginning and end of a fragment or part of the command

syntax.
>< Marks the end of the command syntax.
Parameters

The following types of parameters are used in syntax diagrams:

About this publication xxx1i

xxxii

Required Required parameters are shown on the main path.
Optional Optional parameters are shown below the main path.

Default Default parameters are shown above the main path. In parameter
descriptions, default parameters are underlined.

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax
diagrams, the position of the elements relative to the main syntax line indicates
whether an element is required, optional, or the default value.

Parameters are classified as keywords or variables. Keywords are shown in
uppercase letters. Variables, which represent names or values that you supply, are
shown in lowercase letters and are either italicized or, in NetView help and
BookManager publications, displayed in a differentiating color.

In the following example, the USER command is a required keyword parameter,
user_id is a required variable parameter, and password is an optional variable
parameter.

v
A

»»— USER — user_id
l— password —|

Punctuation and parentheses

You must include all punctuation that is shown in the syntax diagram, such as
colons, semicolons, commas, minus signs, and both single and double quotation
marks.

When an operand can have more than one value, the values typically are enclosed
in parentheses and separated by commas. For a single value, the parentheses

typically can be omitted. For more information, see [“Multiple operands or values”)

If a command requires positional commas to separate keywords and variables, the
commas are shown before the keywords or variables.

When examples of commands are shown, commas are also used to indicate the
absence of a positional operand. For example, the second comma indicates that an
optional operand is not being used:

COMMAND_NAME opt_variable_1,,opt_variable 3

You do not need to specify the trailing positional commas. Trailing positional and
non-positional commas either are ignored or cause a command to be rejected.
Restrictions for each command state whether trailing commas cause the command
to be rejected.

Abbreviations
Command and keyword abbreviations are listed in synonym tables after each
command description.

Syntax examples
This section show examples for the different uses of syntax elements.

Required syntax elements: Required keywords and variables are shown on the
main syntax line. You must code required keywords and variables.

Automation Guide

»>— REQUIRED_KEYWORD — required_variable

A\
A

If multiple mutually exclusive required keywords or variables are available to
choose from, they are stacked vertically in alphanumeric order.

> REQUIRED_OPERAND_OR_VALUE_1 : >
REQUIRED_OPERAND_OR_VALUE_2

Optional syntax elements: Optional keywords and variables are shown below the
main syntax line. You can choose not to code optional keywords and variables.

| 2 2

I— OPTIONAL_OPERAND —|

If multiple mutually exclusive optional keywords or variables are available to
choose from, they are stacked vertically in alphanumeric order below the main
syntax line.

i: OPTIONAL_OPERAND_OR_VALUE_1 :‘
OPTIONAL_OPERAND_OR_VALUE_2

Default keywords and values: Default keywords and values are shown above the
main syntax line in one of the following ways:

* A default keyword is shown only above the main syntax line. You can specify
this keyword or allow it to default. The following syntax example shows the
default keyword KEYWORD1 above the main syntax line and the rest of the
optional keywords below the main syntax line.

 If an operand has a default value, the operand is shown both above and below
the main syntax line. A value below the main syntax line indicates that if you
specify the operand, you must also specify either the default value or another
value shown. If you do not specify the operand, the default value above the
main syntax line is used. The following syntax example shows the default values
for operand OPTION=* above and below the main syntax line.

l— ,KEYWORD1 —| l— ,OPTION=*
» KEYWORD2 l— ,OPTION= *
»KEYWORD3 —E VALUEL }
»KEYWORD4 VALUE2

Multiple operands or values: An arrow returning to the left above a group of
operands or values indicates that more than one can be selected or that a single
one can be repeated.

\4
A

»»>— COMMAND_NAME

About this publication xxxiii

y
Yy

KEYWORD=(—— value n)——><

Y REPEATABLE_OPERAND OR_VALUE_1
E REPEATABLE_OPERAND_OR _VALUE 2 :‘
REPEATABLE_OPERAND_OR_VALUE_3

Syntax that is longer than one line: If a diagram is longer than one line, each line
that is to be continued ends with a single arrowhead and the following line begins
with a single arrowhead.

»»— OPERAND 1 — OPERAND 2 — OPERAND 3 — OPERAND 4 — OPERAND_5 >

Y
A

»— OPERAND_6 — OPERAND_7 — OPERAND_8

Syntax fragments: Some syntax diagrams contain syntax fragments, which are
used for lengthy, complex, or repeated sections of syntax. Syntax fragments follow
the main diagram. Each syntax fragment name is mixed case and is shown in the
main diagram and in the heading of the fragment. The following syntax example
shows a syntax diagram with two fragments that are identified as Fragmentl and
Fragment2.

Y
A

»>— COMMAND_NAME ~|:l Fragmentl |
Fragment?2

Fragment1

|— KEYWORD_A=valueA — KEYWORD_B — KEYWORD_C |

Fragment2

|— KEYWORD_D — KEYWORD_E=valueE — KEYWORD_F |

XXX1V Automation Guide

Part 1. Introducing Automation

Chapter 1. Introducing NetView Automation .
What Does NetView Automation Mean? .
Benefits of Automation .

Improving System and Network Ava1lab1llty

Removing Constraints to Growth

Increasing Operator Productivity

Ensuring Consistent Operating Procedures
Classes of Automation .

System and Network Automatlon

System Automation .

Network Automation .
Single-System or Multiple- System Automatlon .
Single-System Automation.

Multiple-System Automation .

Stages of Automation

Single-System Automation Stages .
Suppressing or Revising Messages and Blocklng Alerts .
Consolidating Consoles . o
Reducing Consoles
Consolidating Consoles through Message Collectlon .
Dedicating a NetView Console
Consolidating Commands .
Scheduling Commands
Responding Automatically to Messages and MSUs
Establishing Coordinated Automation .
Consolidating Automation with RODM .

Improving Operator Interfaces .

Presenting Information in Messages .

Presenting Information in Hardware Monitor Alerts
Deciding How to Use the Hardware Monitor .
Generating Alerts

Presenting Information in Beeper / E rnall Actlons

Presenting Status Information . .

Displaying Information on Full-Screen Panels .

Propagating Single-System Automation .

Centralizing Operations .

Use of Focal Points in Centralized Operatlons

Establishing Remote Operation .

Automating Non-NetView Systems and Non-SNA Dev1ces
Example of a Staged Approach .

Stage 1: Suppress Messages and Fllter Alerts
Stage 2: Consolidate Consoles .

Stage 3: Consolidate Commands

Stage 4: Schedule Commands

Stage 5: Create Automated Responses to Messages and MSUs
Stage 6: Coordinate Monitoring and Reactivating .

Stage 7: Improve Operator Interfaces .

Stage 8: Implement Multiple-System Automat1on

Stage 9: Centralize Operations .

Stage 10: Extend Automation to Addltlonal Machmes and DeVlces .

Chapter 2. Overview of Automation Products .
NetView Automation Facilities .

Command Lists and Command Processors .
Choosing a Language .
Automating with Command Procedures

© Copyright IBM Corp. 1997, 2009

O O O WWRXNNITIAANOT TR WWWwW

o S S S o T o S G G T T e e Gy S GGt Gy o W GG U i G Qe
O O O O \OOVWWOWXWPRWANUIUTE WWWWWDNNRERERPR,OOO

.21
.21
.21
.22
.22

Obtaining Message and Management Services Unit (MSU) Information
Using Global Variables S
Accepting Parameters . .
Obtaining Environment Informatlon .
Interacting with the System and Network
Waiting . .

Timer Commands

Autotasks .

Automation Table

Message Revision Table
Resource Object Data Manager .
Installation Exits.

Using DSIEX02A

Using DSIEX16 or DSIEX16B

Using DSIEX17 . .

Using XITCI .

MYVS Command Revision. .
Automated Operations Network (AON)
Status Monitor .

Operating-System Automatlon Fac111t1es and Interactlons w1th NetVlew .

Automation on MVS Systems

Automating Responses to Messages

Setting Options for Automating with either the Message Processmg Fac111ty (MPF) or the Message Rev151on

Table (MRT) . .o

Automating a Sysplex . .

Automating Responses to MSUs

Issuing NetView Commands from Multlple Support Consoles

Issuing NetView Commands with the MVS MODIFY Command
Issuing NetView Commands with the Designator Character .

Issuing MVS Commands from NetView .

Automating MVS Commands .

Issuing MVS System Messages and Delete Operator Messages (DOMs)
System Automation/390 Programs .o . .o
Examples of Using NetView Interfaces

NetView Service Points

Tivoli Networks . .

IP Networks Using SNMP

Non-IBM Networks. .
Automation-Related Functions and Seerces

Managing Workload .

Managing Network Performance

Managing Input/Output .

Managing Storage .

Management Reporting

2 Automation Guide

.22
.22
.22
.23
.23
.23
.23
.23
.24
. 25
. 25
.25
. 26
. 26
. 26
. 26
. 26
. 26
.27
. 27
.27
.27

.31
. 31
.32
. 32
.32
.32
. 33
. 33
. 33
. 33
. 33
. 34
. 34
. 34
. 35
. 35
. 35
. 35
. 36
. 36
. 37

Chapter 1. Introducing NetView Automation

This chapter introduces NetView automation by describing:
* What the term NetView automation means

* Benefits of automation

* Classes of automation

* Stages of automation

What Does NetView Automation Mean?

NetView automation means using NetView (and some associated products) to
automate many of the information-system and network operations that usually
require human intervention. NetView provides specialized services to assist in
system and network automation. Through these services, NetView can perform
many routine operator tasks.

For an overview of specific functions and facilities of NetView and other products
that contribute to NetView automation, see [Chapter 2, “Overview of Automation|
[Products,” on page 21|

Benefits of Automation

NetView automation offers system-wide and network-wide benefits by simplifying
your operating environment. You can reduce the amount of manual intervention
required to manage operating systems, subsystems, application programs, network
devices, and many other products.

The need to simplify operations increases as you add hardware and software
products to your data center, data centers to your network, and personnel to your
data-processing staff. By simplifying your operations, NetView automation can
help you meet required service levels, contain costs, and make efficient use of your
operation staff.

NetView automation helps you:

* Improve system and network availability

* Remove constraints to growth

* Increase operator productivity

* Ensure more consistent operating procedures

Improving System and Network Availability

Automation can improve the availability of your system and network. Automated
operations can quickly and accurately respond to unexpected events. When
outages do occur, whether planned or unplanned, automation can reduce your
recovery time.

Automation decreases the chances for operator errors. Some operator errors can
cause failures and lengthen recovery times. For example, an operator might fail to
see a message or might type a command incorrectly. Also, an operator might have
to type long sequences of commands, remembering the command syntaxes of
several programs or components (or take the time to look them up). There are
many opportunities for operator error.

© Copyright IBM Corp. 1997, 2009 3

With automation, you substitute automatic responses for operator-typed
commands. If operator intervention is required, automation procedures can
simplify the tasks, reduce the chances of mistakes, and ensure similar responses to
similar events. Automation also expedites shutdown, initialization, and recovery
procedures, reducing downtime.

Removing Constraints to Growth

Automation can help you remove constraints on system and network growth. For
example, ever-increasing data rates might constrain your growth.

As you add faster systems and larger networks to the environment, your operators
can receive more messages and alerts. Under normal operating conditions, most
operators can read and comprehend each message but might have difficulty
reacting to all of them. Automation can reduce the number of messages and alerts
that are displayed by:

* Suppressing routine messages
* Blocking routine alerts
* Responding to messages and alerts automatically

Increasing the number of consoles also constrains growth. New products can add
consoles that you need to manage. Regardless of your operating system, having
many systems requires many consoles. Automation consolidates consoles on
individual systems and helps you operate many systems from one centralized
point.

Another constraint is the increasing complexity of networks. Interconnected
networks often include large numbers of resources, many product types, and
combinations of TCP/IP and Systems Network Architecture (SNA) resources.
Finding experienced operators to manage all of them can be difficult and costly.

Automation reduces the complexity of the operator’s task by managing complex
networks according to rules that you specify. Therefore, automation can help you
to manage system and network growth.

Increasing Operator Productivity

With automation, operator productivity can increase because the operators spend
less time reading messages and alerts and performing repetitive tasks. The
operators have more time to concentrate on the tasks that require operator
intervention, such as resolution of a new problem.

Ensuring Consistent Operating Procedures

By writing automation procedures and documenting them, you can structure your
operations and enable effective reviews. Automation provides a basis for ensuring
consistent operating procedures across your organization. Using automation, you
can implement new operating procedures quickly and consistently, and you can
manage changes more easily and efficiently.

Classes of Automation

4 Automation Guide

With NetView, you can establish a wide variety of automated environments. This
section describes several classes of automated operations and the terminology used
in this book to describe each one. These classes include:

* |“System Automation” on page 5|

+ [“Network Automation” on page 6|

+ |“Single-System Automation” on page 6|

+ [“Multiple-System Automation” on page 6|

System and Network Automation

Besides automating its own internal processing, NetView can accomplish both
system and network automation. System automation is the automated operation of
the operating system, subsystems, and application programs. Network automation is
the automated operation of network resources through a communication program,
such as VTAM®.

You can use NetView to implement system automation, network automation, or
both. If you combine system and network automation in a single design, you can
develop integrated, comprehensive automation. You can also give operators a
unified view of information to help them perform problem determination on all
system hardware, system software, and network devices that might contribute to a
problem.

The content of messages, management services units (MSUs), and system
commands are examined by the automation table. Based on that content, the
automation table issues appropriate commands to control your system and
network. MSUs are data structures that carry alert major vectors and other
management-services data.

For more information about MSUs in NetView, see [Chapter 9, “NetView|
[[nformation Routing for Automation,” on page 85, For more information about
MSUs in SNA, refer to the SNA Management Services Reference and Systems Network
Architecture Formats.

System Automation

System automation means automatically responding to system messages and
MSUs, and automatically issuing system commands. The system commands can be
issued either at scheduled times or in response to a system message or MSU.

For information about how NetView accomplishes system automation with the
help of operating-system facilities, see [“Operating-System Automation Facilities|
fand Interactions with NetView” on page 27

From a NetView perspective, system messages and MSUs are the messages and
MSUs that an operating system, subsystem, or application program issues. The
operating system message types include:

* Write-to-operator (WTO)

* Write-to-operator-with-reply (WTOR)

NetView can alter or redirect these before they are presented to consoles or system
logging.

System MSUs are MSUs that come across the NetView program-to-program
interface or through LU 6.2 sessions from other programs on the system. NetView

automation can suppress or automatically respond to system messages and MSUs.

System commands are the commands that operators can issue to systems,
subsystems, and application programs. In an automated environment, NetView

Chapter 1. Introducing NetView Automation 5

operators and automation routines can use all system commands. For example,
you might issue a system command automatically at specified intervals or in
response to a particular system message.

Network Automation

Network automation means automatically responding to network messages and
MSUs, and automatically issuing network commands. The network commands can
be issued either at scheduled times or in response to a network message or MSU.

NetView provides you with extensive, policy-based automation for your network
resources. AON provides automation of the following network resources:

* VTAM SNA
e TCP/IP

NetView accomplishes network automation through interaction with other
communication software, typically VTAM. If you are already using NetView for
network management, you can progress to network automation by having the
program do much of the work that operators now do. Network automation, unlike
system automation, does not use the operating system’s message-processing
facilities.

Network messages and network MSUs are those messages and MSUs that come from
or go through the VTAM program, directly or indirectly. They include:

* VTAM messages sent to NetView across the program operator interface

* MSUs sent to NetView to report hardware and software problems in the
network

NetView can suppress or automatically respond to network messages and MSUs.

Network commands are any commands that operators can issue to VTAM or through
it to network devices. NetView automation facilities use many of these commands.

Single-System or Multiple-System Automation

6 Automation Guide

You can also choose between single-system and multiple-system automation. When
beginning new automation, start with single-system automation. That is, automate
as many operations locally (at each system) as possible before moving to
multiple-system automation. You thereby reduce the number of interactions needed
with other systems to achieve full multiple-system automation. You also avoid
overtaxing the communication facilities, focal-point systems, and
telecommunication lines.

For descriptions of the stages of single-system and multiple-system automation, see
[‘Stages of Automation” on page 7|

Single-System Automation

In single-system automation, the automation of each host system is self-contained.
You can automate the system, its subsystems and application programs, and the
network devices in the domain of that system’s VTAM program. However, in
single-system automation, NetView cannot automate any devices outside its own
VTAM domain. Operators handle those tasks that cannot be automated locally,
such as recovery of an operating system or an initial program load.

Multiple-System Automation
In multiple-system automation, you coordinate automation across two or more host
systems. The coordination enables you to automate the operation of resources that

you cannot automate locally on a single system. Multiple-system automation is
either single-site or multi-site, depending on whether the coordination unites a
single data center or spans several data centers at remote locations.

With multiple-system automation, you can establish remote operations, called
centralized operations, in which many of your systems have no operators present
and do not need full operator interfaces. You operate the unattended systems
remotely. You forward information about the conditions of the unattended systems
to the central system, along with any problem reports that you cannot automate
locally.

Stages of Automation

NetView automation encompasses a broad selection of techniques. These
techniques can be divided into those used:

* On a single system

* In a multiple-system environment

* Specifically for non-NetView systems or non-SNA devices

For an example of the stages of automation, see [“Example of a Staged Approach”]

Single-System Automation Stages

This section introduces the primary techniques of automating system and network
management on a single system. These techniques are grouped into seven stages,
according to the approximate order that you might implement them.

is the first of several illustrations in this chapter that show the staged
introduction of automation to your system or systems. Later illustrations show the
expansion of automation to multiple systems.

e Suppressing messages and
blocking alerts

¢ Consolidating consoles

® Consolidating commands

¢ Scheduling commands Automation

* Responding automatically to Applications
messages and MSUs

¢ Establishing coordinated
automation

e Improving operator interfaces

NetView

V

Figure 1. Adding Automation, with NetView on a Single System

The first three stages of automating a single system use NetView automation to
increase the speed and accuracy with which operators process information as
follows:

* Suppressing messages and blocking alerts

* Consolidating consoles

* Consolidating commands

The next three stages further reduce the workload of operators by having NetView
automatically perform the following management tasks:

¢ Schedule commands

* Respond to messages and MSUs

* Establish coordinated automation

Chapter 1. Introducing NetView Automation 7

8 Automation Guide

The final stage, improving operator interfaces, adapts your operator interfaces to
the new environment and the reduced workload.

Suppressing or Revising Messages and Blocking Alerts

Even in a small data processing center, you probably receive many informational
messages and alerts that operators simply ignore. In a larger center, you might
receive hundreds of messages and alerts per second, only a small fraction of which
contain data that operators use to make decisions.

A first step toward automated operations is to suppress or block routine messages
and alerts. In this way, you can decrease the unneeded information your operators
receive. They can then concentrate on important information.

Decreasing the number of messages can also decrease the load on the system. The
system can then process important messages efficiently. You can continue to log the
messages you suppress, keeping them available for debugging applications,
auditing your automation, and similar activities.

You can suppress or revise messages by using the combined capabilities of
NetView.

Use of the z/OS message processing facility (MPF) is still supported but many of
its functions are superseded by the NetView revision table or the NetView
automation table facilities. Use the revision table to suppress or revise most system
messages. Only messages that require more complex actions, such as initiating an
automation command list, must be passed to the NetView address space for
automation table processing. You can also use the automation table to suppress
unneeded NetView messages and VTAM messages received directly by NetView.

You can block unneeded alerts by first determining which problem records become
events and which events become alerts. You can then set recording filters for the
hardware monitor with the SRFILTER command. For more information about
filtering commands with the SRFILTER command, refer to the NetView online
help.

You can also add filtering statements to the NetView automation table. The
NetView automation table contains processing options and automatic responses for
incoming messages and MSUs. Automation-table statements can override recording
filters for the hardware monitor.

Consolidating Consoles

After you reduce the flow of messages, you might be able to combine some
consoles. For more information, see |“Improving Operator Interfaces” on page 11|
and [Chapter 26, “Centralized Operations,” on page 375]

After suppressing unneeded messages, you can route the remaining messages to
one or two consoles. You can display messages to operators in several ways.

Reducing Consoles: You can decrease the number of NetView consoles your
operators monitor by moving information from the hardware monitor to another
interface. You can decrease or eliminate use of the hardware monitor by displaying
alert information in other forms. For example, alerts that cannot be handled with
an automatic response might be converted into messages or displayed on a
full-screen panel. The automation table can initiate this process.

You can decrease the number of NetView consoles your operators monitor by
decreasing or eliminating messages to operators and by increasing your reliance on
the hardware monitor. When problems occur that automation cannot handle, you
can generate hardware monitor alerts to inform your operators. You can then use
the hardware monitor to display information that helps operators solve problems.

Consolidating Consoles through Message Collection: You can consolidate
consoles by having NetView collect messages from a variety of sources such as:

* The operating system

* Master operator consoles of the Information Management System (IMS)
program or the Customer Information Control System (CICS®) program through
the NetView terminal access facility

¢ Other subsystems and application programs

* Processor hardware consoles, through the Processor Operations component of
the Tivoli System Automation for z/OS product

* VTAM application programs
* VTIAM

After consolidation, you might have a few consoles close together in a central
operating area or you might have just a single console. Then, a few operators or
one operator can receive all of the messages that are essential for controlling the
system and network. If you have more than one operator, you can display all of
the messages that a specific operator needs, and no others, on one console for that
operator. An operator does not have to watch several consoles at once or sift
through another operator’s messages.

Dedicating a NetView Console: You can consolidate the consoles used to manage
the system and the network.

You can dedicate one NetView console to manage the system (using the command
facility) and another console to manage the network (using the hardware monitor).

You can customize the NetView console, enabling operators who use other
consoles to easily adapt to using NetView. In some cases, this ability to customize
the NetView console depends upon the facilities of the operating system. Examples
of console customization include coloring messages and changing message
prefixes. (You can also use the revision table to perform console customization).

For information about console customization, refer to the [BM Tivoli NetView for]
[z/0S Customization Guide

Consolidating Commands

You can use simple command procedures to improve operations. Learn the
sequence of commands your operators most commonly issue and write short
programs (called command procedures) to issue those sequences automatically. An
operator can enter the name of the command procedure, and NetView issues all of
the commands in the sequence.

For example, you might create a simple command procedure to perform any of the
following actions:

* Bringing a bank of direct access storage devices (DASD) online and mounting
each volume with the correct attributes

* Re-establishing a set of telecommunication lines after repair

* Initializing a simple application, including verification of required DASD

Chapter 1. Introducing NetView Automation 9

10 Automation Guide

* Dumping a filled system management facilities (SMF) data set or a dump data
set

* Monitoring an operation checklist

Writing command procedures for your operators decreases the typing each
operator must do. Operator productivity rises, and the chance of an error because
of typing a command incorrectly decreases. The command procedures also provide
a base for later automation, because you can use the NetView automation table or
a timer command to automatically invoke some of the same procedures.

Scheduling Commands

If you want to issue a command at a particular time or issue a given command
periodically, you can use command scheduling and the NetView timer commands.
For example, you might need to shut down your applications at 5:00 p.m. to free
processor capacity for a special activity, such as tape transfer, or you might want to
check the status of certain tasks every 3 minutes.

The command that is issued can be a command procedure. Suppose you have
written a simple command procedure that initializes an application program. If
you want to initialize the program every day at 6:00 a.m., you can run your
command procedure daily at that time.

By scheduling commands, you relieve your operators of the need to issue the
commands manually. You can also perform actions when your operators are
unavailable or repeat certain commands at a frequency that is impractical for
human operators.

Responding Automatically to Messages and MSUs

Responding to event notifications, such as messages and MSUs, often consumes
much of an operator’s time. In many cases, NetView can automatically issue the
operator’s responses.

NetView provides an automation table that examines incoming messages and
MSUs and responds to them with various actions. The NetView automation table
can initiate any reaction you specify to a message or MSU, such as issuing a
command. For example, NetView can automatically respond to all IOS1501
messages, which indicate that a failed device is now available. The NetView
automation table can issue an MVS VARY ONLINE command to bring the device
back online.

When you have programmed NetView to reply automatically to the most common
messages and alerts, you can suppress those messages and alerts from being
displayed, eliminating the need for operators to view notifications for problems
that automation is solving.

Establishing Coordinated Automation

Coordinated automation represents an advanced stage of automated operations. In
coordinated automation, NetView continually tracks the preferred state of each
data-processing resource and the actual state. If the actual state differs from the
preferred state, automation takes corrective action.

Programmers or operators set the preferred state of each resource. Resources
include hardware components, such as channels, and software components, such
as data sets or the address space for the MVS time sharing option (TSO). You can
write command procedures to help operators examine and change the preferred
state of a resource.

To determine the actual state of each resource, your automation can employ
passive and active monitoring. Passive monitoring means waiting for messages and
alerts that indicate status changes. Active monitoring means issuing commands to
solicit status information. For example, you might set up a command procedure to
run every 10 minutes and issue commands to check the states of important
resources. By combining passive and active monitoring, you can ensure that
automation has reliable, up-to-date information.

When your automation application program receives information about the state of
a resource, it records that information, perhaps by updating a global variable. For
example, if the IMS program fails, the value of a global variable that represents the
state of the IMS program can be changed to DOWN.

When a preferred state or actual state of a resource changes, automation
determines whether corrective action is needed. If so, automation can issue a
command or command procedure to remedy the situation. It can also notify
operators of the change of state.

Besides tracking preferred and actual states, you can track other information. For
example, you might use a variable to indicate the automated action being taken for
each resource. You can also specify the resources for which automation is
responsible. Automation still monitors all resources, but attempts problem
resolution only for those that you specify. With this technique, you can return to
the manual control of any resource by changing a variable to stop part of your
automation.

Automation samples are included with NetView. These samples demonstrate
coordinated automation using NetView global variables. Before implementing
coordinated automation, study the samples.

For information about the sample set, see [Appendix I, “The Sample Set for]
[Automation,” on page 579

Consolidating Automation with RODM

In addition to the techniques previously mentioned, you can consolidate
automation using some of the capabilities provided by the Resource Object Data
Manager (RODM) component of NetView. These RODM capabilities can help track
resource information and help automate the resolution of problems. RODM can
retain various types of information about resources, events, and the relationships
among them. Because you specify complex relationships among pieces of
information in RODM, NetView can determine interactions between multiple
events and use them in analyzing and resolving problems.

Improving Operator Interfaces

Automated operations reduce the amount of human involvement needed to run a
data-processing environment. Nevertheless, operators still need to be able to
monitor the environment, examine the status of resources, and verify that
automation is functioning correctly.

Furthermore, you need a mechanism for exception notification. Exception notification
is the process of informing operators when automation routines encounter an event

you have not yet automated or when the routines fail to resolve a problem.

Therefore, plan interfaces that give operators the information they need. You can
present information to operators in the following forms:

Chapter 1. Introducing NetView Automation 11

12 Automation Guide

* Messages from the command facility
* Alerts from the hardware monitor

* Status information from the status monitor and the NetView management
console (NMC)

* Full-screen displays and help panels displayed with the VIEW command
processor

Presenting Information in Messages

Messages are displayed on the NetView console to provide information about
NetView and the products that the program is managing. The command facility,
operated from the NetView console, displays messages. NetView operators monitor
this facility most often in many unautomated environments.

Automated operations can improve your use of the command facility. Message
suppression decreases the number of messages displayed, making it easier to read
the remaining messages. You can use the command facility for exception
notification by creating a message whenever automation routines encounter a
problem.

Console consolidation enables an operator to monitor more than one product, such
as your operating system and NetView, from a single screen. In addition, you can
use the automation table to hold important messages on the screen or to reissue
messages with modified text.

Automation can also control the way messages are displayed to help the operator
quickly recognize the importance of specific types of messages. For example, the
system can present different classes of messages with different colors or
highlighting. Also, different groups of messages can be formatted with different
arrangements of information. You can make these and other changes in the
appearance of the display by using a screen format member.

For information about the screen format member, refer to the [BM Tivoli NetVieul
[for z/OS Customization Guidel

NetView can store a specified limit of messages for display. If this number is
exceeded, some of the oldest messages are discarded, but automation based on
messages still continues, and all messages are logged.

Presenting Information in Hardware Monitor Alerts

The hardware monitor receives information in the form of events and alerts, and
displays the information. The events and alerts are MSUs and other data structures
that flow into NetView. Alerts primarily indicate that network hardware is
experiencing problems.

Note: The hardware monitor submits only unsolicited MSUs to the automation
table.

You can continue to use the hardware monitor in conjunction with other facilities
that provide resource information for display, just as you would in an
unautomated environment. To do so, you can have one or more consoles present
alerts to operators from the hardware monitor. The operators can use the alerts to
manage network problems. You can display automation status and other
information on a separate console, in another form, such as messages or full-screen
panels.

Deciding How to Use the Hardware Monitor: Operators can display problem
descriptions, lists of probable causes, and lists of suggested actions. The hardware
monitor also:

* Maintains a history of reported problems
* Provides viewing filters that determine which operators see which alerts

¢ Enables you to send information to the Information/Management program, to a
user-defined external log, or to a system management facilities (SMF) external
log

Generating Alerts: To generate your own alerts, use the GENALERT command,
the program-to-program interface, or the management services (MS) transport of
NetView. After suppressing or automating the majority of the messages you
receive, use alerts to notify operators of the remaining messages and of any
problems that your automation encounters.

You can issue the GENALERT command from the automation table, when certain
messages are received, or from command procedures. You control the contents of
the alerts you generate, including descriptions, suggested actions, telephone
numbers of people to contact, and other information that fits your environment.

You can also write a REXX command that formats the alert and sends it by way of
the program-to-program interface (PPI) PIPE stage.

Presenting Information in Beeper/E-mail Actions

Using the INFORM command and its associated policy definitions, you can
generate beeper or e-mail actions to notify appropriate personnel of key events or
actions. For example, you can use beeper or e-mail actions for off-shift hours or for
support of remote locations.

For more information, see the [BM Tivoli NetView for z/0S Command Reference]
Volume 1 (A-N)

Presenting Status Information

The status monitor and the NetView management console (NMC) can track
network status. You can determine status without remembering past sequences of
messages or issuing query commands. The status monitor provides status
information for display in text form on the status monitor panel. The NetView
management console (NMC) provides status information in graphic displays of
your network on the screen of a workstation. While your automation is responding
to events and keeping resources active, operators can efficiently monitor the
network with status displays.

The NetView management console (NMC) can display information on a
workstation attached to an MVS system. You can run the facility on a single
system, but it is most useful in a multiple-system environment. To display
information about other systems graphically, you can forward status information to
an MVS system.

For a description of forwarding status information, see [Chapter 26, “Centralized]
[Operations,” on page 375|

Displaying Information on Full-Screen Panels

For greater flexibility in designing interfaces, you can create full-screen panels that
are displayed from a command procedure. Full-screen panels provide many color
and highlighting options, which can be used for displaying status information,
exception notification, or both.

Chapter 1. Introducing NetView Automation 13

14 Automation Guide

NetView automatically defers displaying messages during the display of full-screen
panels. However, automation and message logging continue while the panels are
displayed.

You can create full-screen panels with a standard editor, such as the Interactive
System Productivity Facility (ISPF).

After you have created a panel, you can use the VIEW command to display it from
a command procedure. In addition to displaying data with the color and
highlighting options you specified, the VIEW command can accept input in fields
you have designated. This input is passed back to the command procedure,
enabling your automation routines to communicate with the operator, interactively.

For examples of how to display full-screen panels, use a standard editor to review
NetView command lists that are using the VIEW command. Such command lists
include BROWSE, TUTOR, and DISG.

The HELP command also uses the VIEW command; therefore, you can create help
panels or modify existing NetView help panels. You can display information that
documents the automation you create, assists operators in using your command
procedures, and presents customized information that reflects your network
environment.

Propagating Single-System Automation

The first stage of multiple-system, network-wide automation is to propagate
single-system automation to all of your NetView systems (see . You might
need to design new automation for each system because different applications or
devices can be installed on each system in the network. However, if you have
implemented single-system automation on one system, you might be able to
propagate much of that automation onto other systems.

NetView

,\> Auto_mat_ion
—1'| Applications

NetView

Automation [———
Applications < —

NetView

~N._| Automation
Applications

|

Figure 2. Propagating Automation to Additional Systems

If you customize the copied automation for the new systems, the number of
changes needed depends on how different the new environment is from the one on
which you developed the automation.

Use a flexible design for propagation. See [“Designing for Expansion and|
[Propagation” on page 52| for information about how you can design portable
automation.

Centralizing Operations

In a centralized operation that results from single-system consolidation, you can
route information from many systems, spread across the network, to a single
console or set of consoles. Operators no longer need to run each system from
separate consoles.

To avoid overburdening the communication between systems, do not send
problems to another system until you have locally automated responses to as many
problems as possible. Forward only two types of information:

* Information about the condition of the individual systems (for display to
operators)

* Information about problems that the individual systems cannot automatically
resolve without assistance from another system

These problems include those that require operator attention and those that require
restarting the processor, the operating system, or NetView.

As shown in you can designate one system as the focal point for
receiving forwarded exceptions from distributed data systems. By logging on to
NetView at the focal-point system, operators can manage a group of systems, an
entire data center, or several data centers.

Distributed System

NetView
Automation
Applications
Focal Point

NetView

Automation

Applications

Focal-Point Distributed System

Applications
NetView
Automation
Applications

Figure 3. Forwarding Exceptions that Local Automation Cannot Handle

Use of Focal Points in Centralized Operations
Whether you perform single-site or multi-site automation, the focal-point system
performs two sets of actions:

Chapter 1. Introducing NetView Automation 15

16 Automation Guide

* The focal-point system automates its own system and network management. For
this, implement the same types of single-system automation that you are using
on other systems.

* The focal-point system automates information that comes from the systems that
report to it, which are known as distributed, target, or entry point systems.

Information that cannot be automated by either the target systems or their focal
point is presented to operators at the focal point system.

With an arrangement of focal-point and distributed data systems, you might not
staff certain data centers during off shifts and remotely operate the data centers.
During those shifts, you can forward information from the distributed systems at
unattended data centers to a focal-point system at an attended data center.
However, running an automated data center unattended might still require some
manual intervention for such tasks as mounting tapes and handling printers.

See [Automation-Related Functions and Services” on page 35| for ways to reduce
the need for manual intervention.

You can use NetView to forward messages, alerts, and the status information used
by the NetView management console (NMC). By tracking the focal points of the
application programs NetView can also assist in information forwarding for
application programs that use the management services transport.

Because an outage in the focal-point system can interrupt the management of
many other systems, select a reliable system for your focal point. You can also
designate a backup focal point to take control in the event of a planned or
unplanned outage.

See |[“Choosing Focal Points” on page 57 for criteria to use in selecting a reliable
system for your focal point. For information about selecting a backup focal point,
see [“Using a Backup Focal Point” on page 58

Establishing Remote Operation

When you implement the stages previously described, your distributed systems
can automate most operations. Information about the remaining operating activities
is forwarded to a focal point, where automation and your centralized operations
staff handle situations that do not require manual intervention at a remote location.

You can complete multiple-system automation by automating actions that involve
the hardware and system consoles of the target processors. Actions that involve
these consoles include initialization, configuration, and shutdown of target
processors. You can use IBM System Automation for z/OS to accomplish these
actions for most IBM processors. Use of System Automation for z/OS to remotely
initialize target systems is shown in [Figure 4 on page 17

See |“System Automation/390 Programs” on page 33| for an overview of System
Automation for z/OS capabilities.

Distributed System

(L

NetView
i o Automation
workstation & Applications
Focal Point
NetView
Automation
Applications
Focal-Point Distributed System
Applications
NetView
TSCF
Automation
Applications
(A
3x74 == 8

workstation

Figure 4. Remotely Initializing Target Systems

System Automation for z/OS can control Enterprise System/4381, Enterprise
System /3080, Enterprise System/3090, and most Enterprise System /9000 (ES/9000)
processors, but cannot remotely initialize 9370 processors.

However, the Automated Power Control (APC) feature of the 9370 enables you to
automate initial program loads (IPLs). You can set a timer to turn on power to the
9370, which then performs an IPL and starts the operating system.

The operating system can start NetView, which then establishes your system and
network automation. APC also enables you to turn on power remotely through a
modem or other RS-232 device for initialization in recovery situations.

The 9370 system also offers a Remote Operator Facility (ROF). This facility gives
you a remote-console capability and enables you to control distributed 9370s from
your central site. ROF runs on a workstation and enables operators at the central
site to control the hardware and operating system of the remote 9370 service
processor through a dialed connection.

Note: System Automation for z/OS does not support the rack-mounted ES/9000
processors (models 120, 130, 150, and 170). You can initialize these
processors remotely with the NetView RUNCMD command by sending
initialization commands to the processor console of the ES/9000. By writing
command procedures to send these initialization commands, you can ensure
correct entry of the RUNCMD command.

For information about ES/9000 processors, refer to Enterprise System/9000 Models
120, 130, 150, and 170: Managing Your Distributed Processors.

Chapter 1. Introducing NetView Automation 17

Automating Non-NetView Systems and Non-SNA Devices

You can use NetView to automate many target systems, even though the target
systems are not running NetView. You can also use NetView to automate many
network devices, even though the devices do not use SNA protocols or report to
VTAM.

NetView automation capabilities for a non-NetView system or non-SNA device
depend on the capabilities of the system or device. The system or device must be
able to send problem reports and other information in a form that NetView can
interpret (such as messages or MSUs), and the system or device must be able to
receive commands from NetView.

You can directly automate some products using NetView and indirectly automate
other products by using an existing NetView interface or by writing your own
interface. NetView interfaces with the AIX NetView Service Point program and
with Tivoli NetView, which is used with the AIX NetView Service Point program.
See [“Examples of Using NetView Interfaces” on page 33| for descriptions of AIX
and other NetView interfaces.

Example of a Staged Approach

18 Automation Guide

In a typical environment in which operators manage systems by monitoring a
steady stream of event notifications such as messages and alerts, operators observe
each event and respond if the event indicates a problem. This operating technique
can be described as an event-monitoring environment.

In this example, the following sequence describes a staged approach for
automating the systems in your enterprise. This approach moves from an
event-monitoring environment to an exception-monitoring environment, and from
there to a centralized-operations environment. In the centralized-operations
environment, automation responds to the majority of events and problems.

For the few that remain, notifications are sent to a single focal-point system.
NetView as the focal point, describes the problems using efficient interfaces,
enabling operators to understand the situation quickly and to take appropriate
action.

To teach your operators about the new environment, document the way your
network is automated; then update your procedures or run books.

Stage 1: Suppress Messages and Filter Alerts

Block out unneeded notifications. Allow time after setting up this stage for
operators to become accustomed to monitoring the environment with limited
notifications. Notify your operators before this procedure takes place.

Stage 2: Consolidate Consoles

Fewer consoles are needed for monitoring messages, and the message rate for each
console diminishes. Forward unsuppressed messages from your operating system
to NetView.

Stage 3: Consolidate Commands

Consult operators and other sources of information to identify the procedures and
sets of commands that operators most commonly use to perform their tasks. Then,
write simple command procedures that enable operators to efficiently perform
their tasks.

Stage 4: Schedule Commands
Using command scheduling, issue timer commands to perform repetitive operator
tasks.

Stage 5: Create Automated Responses to Messages and MSUs
Use the NetView automation table to issue automated responses to common
messages and MSUs. This can reduce the rate of messages and alerts displayed to
operators and diminish the role of the operators in minute-by-minute system and
network operations.

Stage 6: Coordinate Monitoring and Reactivating
Create a coordinated system to monitor and reactivate the products that your
operators have been managing. In this stage:

1. Track the state of each program or resource using, for example, global variables
or RODM.

2. Monitor messages and alerts to determine in what state each resource is.

3. Issue command procedures to resolve any differences.

Because this stage eliminates the last of the repetitive, mechanical tasks that
operators were performing, you have now moved from event monitoring to
exception monitoring. Operators no longer view a continuous stream of messages
and alerts. Instead, they view only summarized status information and
notifications of exceptional problems that automation cannot handle.

Stage 7: Improve Operator Interfaces

Operators no longer continuously monitor the command facility and the hardware
monitor for messages and alerts. Instead, employ alternative interfaces that are
more suited to status display and exception notification, such as full-screen panels
displayed with the VIEW command.

Stage 8: Implement Multiple-System Automation

Go from single-system automation to multiple-system automation. To automate a
multiple-system enterprise, first ensure that you propagate single-system
automation to every NetView system.

Stage 9: Centralize Operations

Choose one system to be the focal point. Then, forward exception notifications
from other systems to your focal point. Begin operating all of your systems from
the single focal point, eliminating the need for operators at the other systems. If
your enterprise is spread across several data centers or several sites, you also
perform remote initialization.

Stage 10: Extend Automation to Additional Machines and
Devices

With the Automated Operations Network (AON) component of NetView, you can
manage almost any data-processing equipment, including non-IBM systems and
non-SNA devices. See [Chapter 31, “Using Automated Operations Network,” on|
for specific information.

Chapter 1. Introducing NetView Automation 19

20 Automation Guide

Chapter 2. Overview of Automation Products

This chapter describes the major products used in NetView automation, their roles
in an automated environment, and how they relate to one another. Specifically, this
chapter includes overview information about:

+ [“NetView Automation Facilities”|

* |“Operating-System Automation Facilities and Interactions with NetView” on|

page 22|

Other IBM programs that provide automation

[“Examples of Using NetView Interfaces” on page 33|

+ [“Automation-Related Functions and Services” on page 35|

NetView Automation Facilities

NetView is central to automated operations. It can receive information from the
other products in your enterprise, process that information in ways you specify,
and issue automatic responses.

Several NetView facilities are important to automation, whether you are
automating a system, a network, or multiple enterprises. These facilities enable you
to customize and use NetView to perform the types of automation described in
[Chapter 1, “Introducing NetView Automation,” on page 3| NetView provides the
following major facilities for creating your own automation applications:

+ “Command Lists and Command Processors”|

* [“Timer Commands” on page 23|

+ Automated tasks (“Autotasks” on page 23)

* [“Automation Table” on page 24|

+ [“Message Revision Table” on page 25|

* |“Resource Object Data Manager” on page 25((RODM)

+ |“Installation Exits” on page 25 for automation

+ ["'MVS Command Revision” on page 26|

* |[“Automated Operations Network (AON)” on page 26|

+ [“Status Monitor” on page 27|

Command Lists and Command Processors

With NetView, you can write programs and use them as if they were NetView
commands. These programs are classified according to the language in which you
write them.

Command lists are sets of commands and special instructions that you write in the
Restructured Extended Executor (REXX) language or the NetView command list
language.

Command processors are assembled or compiled modules that you write in
assembler, PL/I, or C language. Command lists and command processors are used
extensively in automation.

A command list or command processor can either assist an operator with a task or
perform a procedure without operator intervention. When you write a command
list that performs the tasks of several NetView commands, operators can
accomplish a complex task with a single command.

© Copyright IBM Corp. 1997, 2009 21

22 Automation Guide

To perform a procedure without operator intervention, use the NetView
automation facilities to start a command list or command processor. For example,
the automation table or a timer command can start a command.

Choosing a Language

In planning for automated operations, choose a language or set of languages for
writing your command procedures. For a description of the capabilities of each
language, refer to the [[BM Tivoli NetView for z/OS Customization Guide,

Because only assembler language gives you access to NetView control blocks, you
must use assembler language for any intricate automation that examines or
modifies control-block information. However, most other automation routines are
easier to write in the other four languages. The other four languages provide
several functions that are of special value to automation, as described in
[“Automating with Command Procedures.”|

Automating with Command Procedures

A command procedure is a command list, or a command processor written in PL/I or
C language. This section summarizes automation functions available to command
procedures.

Obtaining Message and Management Services Unit (MSU) Information: The
automation table can respond to a message MSU by calling a command procedure.
The automation table can extract information about the message or MSU to be
passed to the command procedure in the form of parameters. For example, the
automation table might capture the MVS system ID or job name of a message and
pass it to a command procedure for use in the response.

Alternatively, the command procedure itself can extract information about the
message or MSU. A command procedure issued from the automation table (or a
command procedure issued because an MSU was received on the management
services transport) can obtain the contents of the message or MSU that caused it to
be issued.

Using Global Variables: Automation often requires cooperation among many
command procedures and coordination with the automation table. Global variables
provide a convenient way to transmit information from one command procedure
to another and to the automation table.

Global variables are variables that retain their values between uses of command
procedures. You can use them to share information between command procedures
running on one task (fask global variables) or on different tasks (common global
variables). The automation table also can read global-variable values. To change a
value, the table must call a command procedure.

NetView gives you the option of saving global variables to an external database.
Saving variables can help recovery from any outage because you can restore the
variables when you restart NetView.

Accepting Parameters: Command procedures can also accept parameters. For
example, operators can enter parameter information after the name of the
command procedure when using a command procedure from a terminal.

Automation facilities, such as other command procedures or the automation table,
can also specify parameters when using your command procedure. For example,
you can write a recovery command list that uses parameter variables to accept the

name of the application program to restart, the start command for the product, and
the amount of time to wait for the application program to initialize.

Obtaining Environment Information: Your command procedures can get
information about the system and the operating environment. For example, a
command procedure can obtain such data as:

* Operating system in use

* Domain ID

¢ Current date and time

* Type of task that is running the procedure

Interacting with the System and Network: Command procedures can pass
commands and messages to the operating system, enabling you to perform system
automation. For information about how command procedures pass commands and
messages to the operating system, see [“Operating-System Automation Facilities|
fand Interactions with NetView” on page 27

Command procedures can also pass commands to the VTAM program to control
the network.

Waiting: Command procedures can issue commands to solicit information and
wait for the responses before taking further action. For example, an automation
procedure that restarts a failed application program might issue a query command
afterward and wait for verification that application-program cleanup is complete.

Timer Commands

You can use timer commands to initiate automated actions. Both operators and
automation procedures can issue timer commands to schedule other commands,
command lists, and command processors. NetView provides the following timer
commands:

* The AT command schedules another command for execution at a specified time.

¢ The AFTER command schedules a command for execution after a specified
delay.

¢ The EVERY command schedules a command to be issued repeatedly after
specified intervals.

* The CHRON command enables you to perform complex timer automation
functions.

e The LIST TIMER and PURGE TIMER commands enable you to examine or
cancel commands that you have scheduled.

¢ The TIMER command enables you to add, change, and delete timers using full
screen panels.

For information about the using the timer commands, see [Chapter 11, “Timer|
[Commands,” on page 119| or the NetView online help.

Autotasks

An aqutotask is an operator station task (OST) that does not require a terminal or an
operator. Like other OSTs, autotasks can receive messages and issue commands.
Autotasks are limited only by the fact that they cannot run full-screen applications.
Unlike other OSTs, autotasks can run without the VTAM program being active.
This ability, along with the fact that autotasks can do most of the tasks you can do
from an operator’s OST, makes autotasks useful for automation.

Chapter 2. Overview of Automation Products 23

You can define one or more autotasks for automation and have them started
during NetView initialization. Then the automation table, command lists,
command processors, and timer commands can all issue commands under your
autotasks. The autotasks can receive messages and present them to the automation
table or to installation-exit routines. Thus, many of the other facilities for
automation can use autotasks.

Autotasks are the preferred task for a wide variety of automation purposes. When
you route work to an autotask, you can avoid problems that might occur if you
used an operator’s OST. For example, the operator might be logged off or using the
OST for other work.

Automation Table

24 Automation Guide

The NetView automation table enables you to specify processing options, for
incoming messages and MSUs, and to issue automatic responses. The table
contains a sequence of statements that define the actions that NetView can take in
various circumstances.

To determine the automated actions that the program can take, your automation
statements can examine any field in an MSU and any part of message text. (In
multiline messages, only the ACQUIRE condition can examine lines after the first
line.) Statements can also examine IDs of messages, resource hierarchies of MSUs,
domain IDs of either messages or MSUs, and many other attributes, such as
occurrence thresholds. Operands for AND and OR are recognized, so you can
specify several comparisons in any combination.

You can specify any number of actions for NetView to take when an incoming
message or MSU matches your conditions. Actions can be commands, command
lists, and command processors. For simple responses, a single command might be
sufficient, such as a NetView command, a VTAM command, or a system or
subsystem command. For more complex responses, you can write command lists
or command processors. The automation table specifies the task under which the
action is performed, enabling you to run automation procedures under an
autotask.

Actions also include setting message-processing and MSU-processing options. For
any particular message, you can use message-processing options to specify such
things as whether:

* The message should be suppressed (and if not, to which operator it should be
displayed)

* A message should be held on the operator’s display (messages requiring
operator attention)

* Automation should process the deletion request for a specific action message

* The message should be logged in the system, network, or hardcopy log

* An audible alarm should sound to call attention to the message

MSU processing options apply to MSUs that are directed to the hardware monitor.
These options enable you to override recording filters. For any particular MSU,
you can use MSU processing options to specify such things as whether

¢ The hardware monitor records the MSU in the event database

¢ The hardware monitor records the event in the alert database

* NetView forwards the alert to a focal point

You can also specify highlighting options, such as color and underlining, to help
focus operator attention.

Use the AUTOCNT command to generate automation table usage reports for your
system. You can use the reports to analyze automation table statements to see the
matching frequency. You can move frequently matched statements toward the top
of the table so that less checking of unmatched criteria takes place.

You can also determine whether unmatched statements must be deleted from the
table or changed because of logic errors. Automation table usage reports enable
you to determine the level of automation taking place on your system. These
statistics can be useful in reports for management purposes.

You can use the AUTOTEST command to test an automation table. You can
perform this test using either current messages and MSUs or prerecorded messages
and MSUs. For more information, see |Chapter 15, “The Automation Table,” on|
page 149.

You can use the AUTOMAN command to manage your automation tables. Using
this function, you can enable or disable automation table statements, load and
unload automation tables, and display their status. For more information, see
[“Managing Multiple Automation Tables” on page 250

Message Revision Table

You can use the message revision table (MRT) to examine messages flowing in the
system and make changes to certain aspects of the messages. The MRT is active as
long as the SSI address space is active, even when NetView is not active. See
[Chapter 13, “The Message Revision Table,” on page 129|for more information about
using this function.

Resource Object Data Manager

NetView can use the Resource Object Data Manager (RODM) to hold many types
of information about network and system resources. RODM keeps this information
in high-speed storage so the information can be retrieved and updated quickly. For
automation, you can use the information in RODM in conjunction with other
automation facilities to assist in determining the appropriate responses to
messages, MSUs, and status changes.

RODM uses small programs, called method procedures (or methods), to perform many
functions that retrieve, update, and manipulate information within RODM. An
application program interface (API) is also provided by RODM so that application
programs can gain access to the information in RODM. Through this API and the
method procedures, NetView can retrieve and update the resource information in
RODM, as needed.

For information about how RODM can be used in automation, see thapter 8,|
[“Automation with the Resource Object Data Manager,” on page 81|

Installation Exits

In NetView, you can write routines that take control of processing at certain points.
These points, called installation exits, enable you to alter the normal course of
NetView processing. Installation exits that are important to automation are:

+ DSIEX02A

+ DSIEX16

« DSIEX16B

+ DSIEX17

+ XITCI

Chapter 2. Overview of Automation Products 25

For details about writing installation-exit routines in assembler language, refer to
[IBM Tivoli NetView for z/OS Programming: Assembler} For details about writing

installation-exit routines in PL/T and C languages, refer to [[BM Tivoli NetView for]
[z/OS Programming: PL/I and C|

Using DSIEX02A

If you write a routine for DSIEX02A, the routine receives control just before a
message goes to the automation table. The routine can alter, replace, or delete the
message. If you alter or replace the message, the new version of the message goes
to the automation table. To increase processing speed, write this installation-exit
routine in assembler language. You can also use PL/I or C language.

Using DSIEX16 or DSIEX16B

You can use the exits to modify message processing options, reformat messages,
and alter information in MSUs. Both of these installation-exit routines must be
written in assembler language.

Using DSIEX17

A routine written by you for DSIEX17 that receives control as soon as a message or
delete operator message (DOM) is received from the MVS system. Your routine
also receives control when a message or DOM is received from user calls to
assembler-language service DSIMMDB or to PL/I and C language service
CNMPMDB.

Refer to [[BM Tivoli NetView for z/OS Programming: Assembler] for information about
DSIMMDB. Refer to |IBM Tivoli NetView for z/OS Programming: PL/I and C| for
information about CNMPMDB.

Your routine can delete a message or DOM, or can modify the text and attributes
of a message. If you write a routine for this installation exit, use only assembler
language.

Your routine can also be used to mark messages that were issued as action
messages from MVS for which no DOM is expected.

Using XITCI

If you write a routine for exit XITCI for the hardware monitor, your routine
receives control when the BNJDSERV task receives data. With XITCI, you can
modify any data entering the hardware monitor. The XITCI exit routine can be
written in PL/I, C, or assembler language.

MVS Command Revision

The NetView MVS Command Revision function enables you to examine, modify,
or reject an MVS command. For more information see |Chapter 14, “The Command|
[Revision Table,” on page 137/

Automated Operations Network (AON)

26 Automation Guide

You can use the Automated Operations Network (AON) component of NetView to
provide policy-based network automation for VTAM SNA, and TCP/IP resources.

AON components intercept alerts and messages that indicate problems with
network resources. AON can recover failed resources and monitor resources until
they recover. AON can keep a record of resource failures to track recurring
network problems.

AON uses most of the functions described in this manual to provide drop-in,
policy based automation.

For more information, see [Chapter 31, “Using Automated Operations Network,” on|
-ae 443

Status Monitor

You can use the NetView status monitor to automatically reactivate failing network
nodes. The MONON and MONOFF commands start and stop this form of
automation. You can enter MONON and MONOFF from a terminal or have your
automation application program issue them. Use statements in the VTAMLST data
set members to control which resources the status monitor automates.

If you want to do your own automation when a node changes status, you can add
a SENDMSG statement to DSICNM (CNMS5001). Thereafter, a change in the node
status generates a CNM094I message, which you can process with the automation
table. For details about SENDMSG, refer to the |[BM Tivoli NetView for]

[z/0S Administration Reference

Operating-System Automation Facilities and Interactions with NetView

In system automation, the operating system provides some automation facilities
and can interact with NetView for additional automation. NetView receives
information from the operating system, processes that information with the
NetView automation facilities, and sends responses to the operating system as
commands. Also, in some interactions not directly related to automation, operator
commands can be sent between the operating system and NetView.

Automation on MVS Systems

NetView can automate responses to messages and MSUs from the operating
system and from MVS application programs. The operating system performs its
automation tasks before it sends messages to NetView for further automation.
Also, NetView commands can be sent from system operators to NetView, and MVS
commands can be sent from NetView to the operating system.

System messages that you can direct to NetView (either through the subsystem
interface or to NetView’s extended multiple console support consoles) include
write-to-operator (WTO) and write-to-operator-with-reply (WTOR) messages. Some
messages issued by application programs (such as CICS and IMS programs) to
their consoles are not available through the subsystem interface or extended
multiple console support (EMCS) consoles. To automate responses to such
messages, you can use NetView’s terminal access facility.

Automating Responses to Messages
To suppress or revise system messages, use the NetView message revision table. To
automate responses to messages, you can mark the messages in the NetView

message revision table for delivery to NetView or for "NetView only”
(NETVONLY).

Messages marked for automation are sent to NetView through the subsystem
interface (SSI) if you are using the MSGIFAC=SSIEXT (default value) or
MSGIFAC=CMDONLY statements.

Messages marked for automation are sent to NetView through extended MCS
consoles if you are using the MSGIFAC=SYSTEM statement.

Chapter 2. Overview of Automation Products 27

Message marked as NETVONLY are always sent to NetView through the SSI.

Figure 5|shows message flow between the z/OS system and NetView when the
subsystem interface is used. [Figure 6 on page 29| shows the message flow when
EMCS consoles are used. [Figure 7 on page 30[shows the command flow.

Message

Processing X

Subsystem Interface (loop) (MPF)

< JES

Local
MCS
Consoles

NetView Subsystem

Extended -
Revision MCS NetView

Table consoles application

i

NetView
Operators

Automation/
ASSIGN

Figure 5. Message Flow between the z/OS System and NetView through the Subsystem Interface

28 Automation Guide

Subsystem Interface (loop)

JES

NetView Subsystem

Revision

Table

Message
Processing
Facility
(MPF)

Extended
MCS
consoles

NetView
application

i

NetView
Operators

Automation/
ASSIGN

Figure 6. Message Flow between the z/OS System and NetView through EMCS Consoles

Chapter 2. Overview of Automation Products

29

Subsystem Interface (loop)

< JES

NetView Subsystem

NetView
application

"C"VS § MVS
omman Stop/Modify

Processors %

Autotasks

Figure 7. Command Flow between the z/OS System and NetView

As indicated in [Figure 5 on page 28|and [Figure 6 on page 29} messages first flow to
the Message Processing Facility (MPF), which you can use to set several processing
options. Next, the messages are sent through multiple console support. Messages
destined for most subsystems are broadcast to the subsystems through the
subsystem interface.

Messages are processed by the Message Revision Table even if they are not
destined for NetView. Other subsystem interface (SSI) programs can also examine
and alter messages as well.

Messages destined for NetView can flow through either of two paths, depending
on whether the subsystem interface or the EMCS consoles are used for transferring

30 Automation Guide

messages to NetView. (Selection of the transfer method is made before NetView
start-up.) When you use the subsystem interface for transferring the messages (see
[Figure 5 on page 28), the messages flow from multiple console support to NetView
through the subsystem interface and the NetView subsystem. When you use
extended multiple console support consoles (see [Figure 6 on page 29), the messages
flow to NetView through EMCS consoles. In either case, NetView compares each
message that it receives to entries in its automation table and issues any automated
response that you have specified.

Note: You can use the endcmd.close.leeway statement in the CNMSTYLE member
to specify how long commands can run after a CLOSE IMMED, CLOSE
STOP, or an MVS STOP (P) command is entered for the NetView program.
During the leeway period, message automation remains active; no new
commands are queued. If a CLOSE STOP command is issued and if
MSGIFAC=SSIEXT and message queuing are enabled for the SSI, then
message queuing begins as soon as the CLOSE STOP command is
recognized. There is no message queuing option for MSGIFAC=SYSTEM.

Setting Options for Automating with either the Message
Processing Facility (MPF) or the Message Revision Table (MRT)
To automate responses to messages, MPF can be used to set options, such as
whether a given message is displayed to operators, suppressed, or marked as
eligible for automation. In NetView for z/OS Version 5, Release 2, the message
revision table can also be used to provide these functions and more.

By default, NetView receives each message that you mark eligible for automation
and sends it through the automation table. You can save processing time by
marking as eligible only those messages that you want to be automated.

Messages leaving MPF or the message revision table can flow to NetView either
through the subsystem interface or to EMCS consoles. You choose the path by
selecting appropriate initialization options.

After passing through MPF and the NetView MRT, messages can travel to NetView
by several paths. First, a NETVONLY action in the MRT directs the message to
NetView directly, regardless of and MSGIFAC options; in such case, there is no
further system action on message, whether by route codes or consname nor
broadcast or any other means. Otherwise, if automation was requested in either the
MPF or the MRT, then the message is routed to NetView according to the
MSGIFAC setting.

When a message flows to EMCS through its EMCS console, additional information
is available, usually in a Message Data Block (MDB) which is attached to a system
message at IFRAUVPT. For example, the originating SYSPLEX name can be found
in this MDB. NetView preserves any color information that was set by an MPF or
Message Revision in system messages, regardless of how the messages are
delivered.

See [Chapter 6, “Automation Using MVS Extended Multiple Console Support]
[Consoles,” on page 65| for information about extended multiple console support
consoles.

Automating a Sysplex
In addition to providing automation for a single MVS system, NetView can
provide automation for MVS systems that are interconnected in a sysplex

Chapter 2. Overview of Automation Products 31

32 Automation Guide

configuration. An MVS sysplex configuration consists of multiple MVS systems
working as a single system by sharing functions and programs.

If NetView is operating in a sysplex environment and if you use the subsystem
interface for message delivery, NetView automates only those messages that are
directed to it by console name or route code.

If NetView is in a sysplex environment and if you use EMCS consoles, NetView
can process messages issued from other systems in the sysplex.

See |[Chapter 7, “Automation in an MVS Sysplex,” on page 77| for more information
about sysplex automation.

Automating Responses to MSUs

To automate responses to MSUs from another MVS application program, you can
send the MSUs to NetView through the NetView-to-program interface and the
management services (MS) LU 6.2 transport. The program-to-program interface can
receive both network management vector transports (NMVTs) and control point
management services units (CP-MSUs). The NetView automation table can
automate responses to both types of MSUs.

Issuing NetView Commands from Multiple Support Consoles
There are two ways to issue NetView commands from MVS. One way is to use the
MVS MODIFY command. The other way is to use the NetView subsystem
designator character.

For more information, see [‘Issuing NetView Commands with the MVS MODIFY]|
[Command”| and [“Issuing NetView Commands with the Designator Character.”|

Issuing NetView Commands with the MVS MODIFY Command: If you have an
autotask associated with the system console, you can enter NetView commands
from the console using the MVS MODIFY command. To do this, enter:

f procname, command

Where procname is the name that your system programmer assigned to the
cataloged procedure for NetView such as CNMCNETV, and command is the
NetView command you want to issue. For example, to display the MVS console
names and IDs used by NetView, enter:

f procname,disconid

Issuing NetView Commands with the Designator Character: To enable system
operators to issue commands to NetView, you can associate multiple console
support consoles with NetView autotasks. Refer to the AUTOTASK command in
NetView online help for information about associating multiple console support
consoles with autotasks.

As indicated in [Figure 5 on page 28| and [Figure 6 on page 29| operator commands
issued from multiple console support consoles flow to subsystems through
multiple console support and the subsystem interface. A subsystem processes only
those commands that are preceded by its assigned character. For example, JES2
typically processes all commands that are preceded by a dollar ($) symbol.

NetView processes all commands that are preceded by a designator character
string. If you are allowing NetView style processing to start your SSI, use the
SSL.DSIG parameter to set this. You can also see sample CNMSJ010 for other
methods. If you are using more than one NetView program on a system, and these

NetView programs are to process NetView commands entered at a multiple
console support console, assign a different designator character string for each
NetView program on the system. The sample uses the subsystem name as the
designator character string. The default is the percent (%) character.

If a NetView autotask is associated with a multiple console support console and a
NetView command is issued from that console, the command is invoked by the
NetView autotask associated with the console. You can invoke NetView command
procedures and commands from the multiple console support console.

Issuing MVS Commands from NetView

You can issue MVS commands from NetView to the MVS system by preceding
each MVS command with the NetView command MVS. Either a NetView operator
or an autotask can issue the NetView MVS command.

In addition to preceding an MVS command with the NetView command MVS, you
can define command definitions for individual command verbs. For more
information about defining command definition statements for MVS, see the
CNMS6401 sample.

To protect against the unauthorized use of MVS commands you can use the
command authorization function of NetView. Also, you can use the OPERCMDS
class of the IBM Resource Access Control Facility (RACF®) or a compatible security
product to protect system commands. For more information about system
command security, refer to the [BM Tivoli NetView for z/OS Security Referencel

Automating MVS Commands

You can automate MVS and subsystem commands entered from any MVS console
or console interface. To do this, you must install a load module as an MVS
command exit, add a .CMD statement in one of the MPFLSTxx members, and issue a
SET MPF=xx command to activate the exit. Refer to IBM Tivoli NetView for

z/OS Installation: Getting Started for more information.

Issuing MVS System Messages and Delete Operator Messages
(DOMSs)

You can use the NetView WTO and WTOR commands to issue MVS system
messages and the NetView DOM command to issue MVS DOMs.

For more information about the DOM, WTO, and WTOR commands, refer to |1BZ_/I|
[Tivoli NetView for z/OS Programming: REXX and the NetView Command List Languagel

System Automation/390 Programs

You can speed up the automation process by incorporating System Automation for
0S/390 into your design. The System Automation for OS/390 licensed program is
a NetView-based application which runs on z/OS and MVS/ESA Version 5. It is
designed to provide a single point of control for a full range of system
management functions.

Examples of Using NetView Interfaces

You can use NetView to automate the management of any product that sends
messages or MSUs to NetView and receives commands from NetView. For some of
these products, you need to use an interconnecting product as an interface to
NetView.

Chapter 2. Overview of Automation Products 33

By using interconnecting products, you can manage non-SNA networks and
devices. The majority of these non-SNA networks and devices use a NetView
service point, such as the UNIX NetView Service Point program, as an interface to
NetView.

This section describes a few examples of interconnecting products that can be used
as interface programs.

NetView Service Points

The UNIX NetView Service Point licensed program enables you to add to the list
of products managed by NetView. You can obtain or write service point application
programs that enable management and automation of many non-SNA networks
and devices. A service point application program for the UNIX NetView Service
Point program can monitor a non-SNA network, report network-management data
to NetView, and pass commands from NetView to devices in the non-SNA
network. Therefore, you can use the service point application program to expand
the scope of NetView automation. The UNIX NetView Service Point program runs
under the UNIX operating system.

You need the UNIX NetView Service Point program as an interface for
communication between Tivoli NetView and IBM Tivoli NetView for z/OS.
However, Tivoli NetView program can operate as a standalone program that
provides network management services without communicating with the IBM
Tivoli NetView for z/OS.

For information about the UNIX NetView Service Point program, refer to the AIX
NetView Service Point Installation, Operation, and Programming Guide.

Tivoli Networks

You can automate Tivoli distributed networks by using NetView with the
Event/Automation Service. The Event/Automation Service provides a gateway
between NetView and the Tivoli distributed networks for network events that
originate in either environment. The Event/Automation Service communicates
with NetView using the NetView subsystem PPI interface, and communicates with
the IBM Tivoli Enterprise Console® using the TCP/IP protocol.

The Event/Automation Service can translate and forward either NetView alerts or
messages into Tivoli Enterprise Console events and can also translate and forward
these events into NetView alerts. These alerts can then be used with automation to
start automatic responses.

For more information about Tivoli Enterprise Console events, see
[“Event/Automation Service” on page 406

IP Networks Using SNMP

34 Automation Guide

The Event/Automation Service can manage event data between NetView and
SNMP agents and SNMP managers. NetView alerts can be converted into SNMP
traps before being forwarded to an SNMP manager. Traps that arrive from an
SNMP agent can be converted into SNA alerts which can then be forwarded to the
NetView hardware monitor. There, these alerts are filtered and routed to the
NetView automation table.

For more information about SNMP traps, see [“Event/Automation Service” on page|

Non-IBM Networks

NetView can manage other types of networks (for example, DECnet).

Automation-Related Functions and Services

This entire book describes automation primarily from the perspective of system
and network console automation. The book also explains how you can use
automation facilities to assist or replace operator action in responding to messages
and MSUs and issuing commands on the consoles of system and network software.

Other functions and services closely related to automation are also available for
systems and networks. For more information, investigate the following
automation-related topics:

* [“Managing Workload”]
* [“Managing Network Performance”]

+ [“Managing Input/Output” on page 36|

* ["“Managing Storage” on page 36|

+ ["Management Reporting” on page 37|

Managing Workload

Automating the management of production batch jobs offers advantages in
availability, improved control, and reduced operator involvement.

IBM offers the Operations Planning and Control/Enterprise Systems Architecture
(OPC/ESA) licensed program for workload management. The OPC/ESA program
can plan, control, and automate your MVS batch production workload. This
program plans and schedules your workload processing and monitors and controls
the flow of work through your entire data-processing environment, both local and
remote. It reduces the human intervention needed while letting you retain manual
control of important processes and decisions.

Using the OPC/ESA program for workload management complements NetView
automation. The OPC/ESA program does the job scheduling. If a failure in a
scheduled job requires operator action, NetView automation can supply that action.

For more information about the OPC/ESA program, refer to Operations/Planning
and Control/Enterprise Systems Architecture General Information.

Managing Network Performance

You can use NetView Performance Monitor (NPM) to give your automation
application programs an increased spectrum of performance data. The NPM
program can also be valuable for centralized operations, because the program can
help you monitor the speed with which your central system communicates with
distributed systems. Operators using the NPM program on a central system can
view data collected at other systems.

NPM communicates with NetView through the NetView-to-program interface and
several other interfaces. By issuing commands to NPM through the operating
system, automation routines can request data about specific network resources. For
example, you can request data about communication controllers, lines, logical
units, and physical units in SNA, local area, and X.25 networks.

Chapter 2. Overview of Automation Products 35

NPM can also send unsolicited data. For example, if performance for a critical
network resource falls below a threshold you define, the NPM program can send
an alert to NetView. You can use the alert to inform automation routines of the
performance problem before the problem affects users. You also have the option of
sending resolutions to NetView to inform your automation routines when a
problem is resolved.

Managing Input/Output

Input/output (I/0O) management involves controlling the flow of data into and out
of a data processing complex. In an automated environment, you might want to
change your approach to 1/O activities that previously required manual
intervention, such as tape and printer management.

One approach to tape management is to avoid it by converting from tapes to direct
access storage devices (DASD). DASD does not require the manual intervention
that tapes do. You might want to compare, on a case-by-case basis, the cost of
DASD to the cost of tapes plus the cost of people to handle the tapes. Consider the
higher reliability and manageability of DASD. Also, you can institute periodic
reviews of your I/O rules and policies. Determine how effective your policies are
and how consistently your application programmers are applying them.

For less frequently used data, you might find that it is still appropriate to rely on
tape devices. The cartridge of the IBM 3480 Magnetic Tape Subsystem is
extensively used for its size and reliability advantages over other tape devices. The
Automatic Cartridge Loader function is available to assist with cartridge handling
and scratch tape mounts with minimal human intervention and minimal delay.

Sometimes, the best approach to printer handling is to place responsibility in the
hands of the users. You might be able to reduce the volume of printing. Programs
such as IBM’s Report Management and Distribution System (RMDS) program can
help. The RMDS program enables you to present report data to users online from a
central library archive. Users can view data online, printing only the portion of the
information that they need to have on paper. The RMDS program eliminates the
need for printing large volumes of report data on a regular basis and distributing
them to users who often want only a fraction of a report.

For more information about the RMDS program, refer to Report Management and
Distribution System: General Information.

Managing Storage

36 Automation Guide

Storage management involves maintaining the integrity and availability of data
that you keep on auxiliary storage devices such as tapes or DASD. Previously,
users had to be aware of the characteristics of each device within the pool of
storage devices on which their data sets can reside.

With the introduction of the Storage Management Subsystem (SMS) using the MVS
Data Facility Storage Management Subsystem (DFSMS) family of products, storage
administrators rather than users can manage DASD storage. Storage administrators
establish policy statements in the form of storage classes and management classes,
defining and managing the way storage is allocated on the basis of these classes.
The user, allocating storage in terms of these policy statements, no longer needs to
use device and configuration specifics such as UNIT and VOLSER.

Use of SMS decreases the number of program abends caused by out-of-space
conditions that plague production job streams, because jobs need not be sensitive

to configuration details. You can use storage management with
workload-management products, such as the OPC/ESA program, that offer
automated job recovery facilities. The result is production streams that run
consistently and finish within their scheduled windows with minimal human
intervention.

For more information about the DFSMS family of products, refer to the MVS
Storage Management library.

Management Reporting

As you move toward an automated environment, include a strong
management-reporting system in your automation design. As automation handles
more and more of your operations, you might need to identify things that need
management attention or that necessitate resource changes. To capture information
from logs and summarize it for presentation to management, you can use the
Information/Management and Service Level Reporter (SLR) products.

For information about Information/Family and SLR products, refer to Introducing
the Information/Family for MV'S and Service Level Reporter General Information.

Chapter 2. Overview of Automation Products 37

38 Automation Guide

Part 2. Achieving an Automated Environment

Chapter 3. Defining an Automation Project .

Project Definition Tasks

Assembling an Automation Team .

Choosing an Approach
Involving Operation Groups.

Creating a Project Plan .

Identifying the Goals of Your Organlzanon
Identifying Business Goals .
Identifying Data-Processing Requlrements .

Understanding Your Operating Environment .
MVS System and Network Logs
Operation Procedure Books .
Problem-Management Reports .

Help-Desk Logs . .
Service-Level Agreements
Users

Other Data- Processmg Plans
Interpreting the Information .

Developing Goals and Objectives for Automatlon
Developing Goals for Automation .
Developing Measurable Objectives.
Quantifying Costs and Benefits .

Securing Commitment.

Chapter 4. Designing an Automation Project

Project Design Tasks .

Identify Procedures and Functlons to Automate
Prioritize Procedures and Functions

Schedule Stages for Implementation .
Establish Standards.

Design Guidelines . .
Designing for Expansion and Propagatlon .
Designing for Auditability
Designing Automation Security .

Designing for Availability.
Automating Close to the Source

Using Multiple NetView Programs on a Slngle System .

Providing Operator Interfaces

Educating Your Staff .

Anticipating Changing Staff Roles

Providing for Testing . .
Providing for Problem and Change Management
Choosing Focal Points .

Using a Backup Focal Point .

Defining Operator Sphere-of- Control

Chapter 5. Implementing an Automation Project .

Implementation Tasks .
Production Tasks

© Copyright IBM Corp. 1997, 2009

.41
.41
.42
. 42
.42
. 43
.43
. 43
. 43
. 44
. 45
. 45
. 45
. 46
. 46
. 46
. 46
. 46
. 46
. 47
. 47
. 47
. 49

. 51
. 51
. 51
. 51
. 51
. 51
. 52
. 52
. 53
. 53
. 54
. 54
. 54
. 55
. 55
. 56
. 56
. 56
. 57
. 58
. 59

. 61
. 61
. 61

39

40 Automation Guide

Chapter 3. Defining an Automation Project

This chapter describes the project definition tasks and phase of an automation
project. In this phase, you assemble a planning team, investigate how automation
can improve your operations, and set goals and objectives for the project.

Project Definition Tasks

The project definition phase focuses on:

* [“Assembling an Automation Team” on page 42| or teams

+ [“Creating a Project Plan” on page 43|

+ [“Identifying the Goals of Your Organization” on page 43|

+ [“Understanding Your Operating Environment” on page 44|

+ ["“Developing Goals and Obijectives for Automation” on page 46|
* [“Securing Commitment” on page 49|

Automation often works best as an integrated, company-wide effort that
coordinates many separate departments and groups. Automation can change
organizational and working relationships in the following ways:

* Operation organizations might be restructured.
* Operator roles might change.

* Working relationships among operators, technical support personnel, and system
programmers might change.

Because automation can require considerable coordination or produce widespread
changes, it is important to have the commitment of the whole organization,
including upper-level management. Management must provide the resources
necessary to achieve your automation goals.

An integrated approach helps to avoid duplication of effort. A fragmented
approach, with each group or location choosing small and unrelated projects, can
lead to wasted time, inappropriate approaches, or automation applications that
cannot work together.

During the implementation phase, you can create your automation a small piece at
a time. This is also an excellent time to look at the automation process as a whole.
By developing an enterprise-wide approach from the start, you avoid the risk of
having to redesign the project later.

At the beginning of the project, it is important to identify your goals, such as the
following examples.

* How can automation best support your business objectives?
* How can it improve your data-processing operations?
While identifying the benefits of automation, you can also estimate the costs. By

doing so, you can determine the types of automation that provide the greatest
return for your investment.

© Copyright IBM Corp. 1997, 2009 41

Assembling an Automation Team

The first step is to assemble a team or teams to analyze and implement your
automation. You might already know who in your organization is doing the
automation. If not, ask these questions:

* Where in the organization does the responsibility for automation planning fall?
* What skills does the automation team need, and who can provide those skills?

Choosing an Approach®

You can use any of several approaches, depending on the resources available and
the schedule you require. One approach is to assign a project leader who works on
the project full-time, calling on the support of other organizations as needed.
Another approach, if more resources are available, is to form a temporary project
team. In this case, several people work on automation full-time.

A third and more lasting approach is to create a permanent automation
department. Also, consider whether you need separate teams for different stages or
phases of the project. Many organizations start with a temporary planning team
but establish a permanent department as their automation develops.

It is a good idea for an automation planning team to include people from all the
organizations affected by automation. You might include:

* One or more operators

* A member of the technical-support staff for system management

* Another member for network management (if applicable)

* System programmers who support your major subsystems and applications

¢ Network user representatives

You can also include your Tivoli branch system engineer on the planning team.
The branch system engineer can provide information about automation products or
about the experiences of other customers who have successfully planned and
implemented automation.

Involving Operation Groups

42 Automation Guide

To achieve success, involve your operation groups in every phase of automation,
from project definition through design, implementation, testing, and production.
Members of the operation groups understand today’s environments and can
identify procedures that are appropriate to automate. They also are the ones who
have to live with the results of automation. Involving them in the design of each
automated procedure helps to ensure that the procedure matches their needs.

For example, both system and network operators in an unautomated environment
usually rely on a constant flow of messages to know that things are running
smoothly and that expected events are happening as anticipated. If you automate a
specific procedure (system initialization) and suddenly no messages are displayed,
the operators might have difficulty assessing whether things are going as
anticipated. Involving the operation groups helps ensure that operator interfaces
are adequate.

Creating a Project Plan

To manage your automation project, use a project plan that lists the steps you need
to take in every phase, identifies the person or group responsible for each step,
and assigns a target date for completion of the step. The project plan becomes a
vehicle for managing the project and keeping track of your success in meeting the
schedule.

The project plan can evolve over time. If you are not yet able to fill in complete
details, you can, nevertheless, start a plan by setting down the tasks, responsible
parties, and target dates that you already anticipate. You can fill in the details as
the project evolves.

See |Appendix B, “Sample Project Plan,” on page 515| for a plan that identifies
representative tasks for all phases of a project: definition, design, implementation,
and production. This plan, of course, is just an example; the plan for your project
might look substantially different.

Identifying the Goals of Your Organization

Another task of the planning team is to identify automation goals. Clear goals
enable you to focus your project and measure your results. They can also help you
to complete planning documents such as business proposals or the automation
project plan.

Identifying Business Goals
Your corporation or organization probably has several business goals. They might
be something like the following goals:
* Increase total business volume over the next 2 years by 40 percent
* Increase net profit for each of the next 5 years by 10 percent

* Increase profit margin by 5 percent next year by containing costs and increasing
productivity

Different areas of the organization might have different business goals that you
need to consider. By clearly understanding the goals of your organization, you can
decide how automation can contribute to their achievement.

Identifying Data-Processing Requirements

To support overall business goals, data-processing departments typically have
requirements of their own. The requirements might be objectives like these:

* Increase system availability by 10 percent over the next 2 years.

* Accommodate 12 percent growth capacity (in millions of instructions per second,
or MIPS) and network resources over the next 2 years with no increase in
operation staff.

¢ Improve system performance by 15 percent each year for the next 5 years.

Data-processing requirements typically fall into two classes: system-oriented and
user-oriented. System-oriented requirements measure the amount of information that
your systems process. These requirements include:

* Expected batch throughputs

* Workloads on each system

¢ Interactive transaction rates

¢ The number of concurrent users that you can support

Chapter 3. Defining an Automation Project 43

By contrast, user-oriented requirements measure the impact of data-processing
services on the user. Examples are expected response times for interactive work
and expected turnaround times for batch work.

Service-level agreements reflect these expectations of performance. A service-level
agreement resembles a contract between the data-processing department and that
department’s users. A service-level agreement might specify the services you
provide, the hours you provide them, and various agreed measures of availability
and performance. Whereas other requirements often represent goals that you want
to accomplish, service-level agreements state minimums that you must accomplish.

If your organization does not use service-level agreements, or if your service-level
agreements do not accurately reflect your goals, consider establishing agreements
that are based on your goals. Service-level agreements can help you measure the
improvements in service to users that automation provides. They can also help you
identify problem areas of your operation that might benefit from automation.

Understanding Your Operating Environment

44 Automation Guide

Questions you can ask might be:

* How do your operators spend their time?

* What routine and repetitive tasks can you automate to increase productivity?
* What unscheduled events require operator action?

* For each unscheduled event requiring operator action, how severe are the results
of delayed or incorrect action?

* What events of any kind have a significant impact on your operations?

In summary, what are the most important problems and challenges in your
operating environment today, and where can you gain the greatest return from
automation?

After investigating your present environment, you can consider the future:

* What changes do you expect in your environment in the next year or the next
several years?

* Do you plan to add hardware to your systems or network?

* Do you plan to add new applications that you must manage?

* Will the number of users relying on you for service increase?

* Will you be under pressure to accommodate growth without increasing your
operations staff?

* Do you plan to add data centers?

Factors such as these contribute to your automation strategy and goals. With a
good understanding of where you are and where you are going, you can devise a
comprehensive strategy that makes full use of automation.

Start the process of identifying operating requirements for automation by working
with the operations staff. Operators can identify the procedures they perform
regularly, those they perform on a scheduled basis, and those that involve
predictable responses or repetitive tasks. With this information, you can choose
and prioritize the procedures you automate.

NetView’s Message Revision table can help you analyze your system message
traffic. By including UPON statements for MSID, PREFIX, or JOBNAME (with or

without any other statements), your revision report shows the numbers of
messages matching each condition. See [“Message Revision Table” on page 25| for
more on the MRT.

MVS System and Network Logs

Analyze your MVS system and network logs for information about the number of
messages that operators view each day. This information can help you assess the
benefits of message suppression. On most MVS systems, message suppression
yields impressive results.

You can write simple application programs to help you process logs. For an
example of an application program used to process logs, see [Appendix I, “The]
[Sample Set for Automation,” on page 579 The example program analyzes SYSLOG
(the JES2 log) or DLOG (the JES3 log). For other logs, you can modify the example
program or write one of your own.

The example analysis program illustrates several things your program can do:

* Record each unique message ID received and the number of times messages
with that ID occurred.

¢ Provide a list of unique message IDs received, sorted by frequency of
occurrence.

* Accept input that specifies such things as time limits for the analysis and any
messages that can be ignored.

The list of sorted message IDs indicates where you might concentrate your efforts.
For each message ID, compute the percentage that it contributes to total message
volume. Usually, a small number of message IDs account for most of the message
traffic. As few as 10 message IDs can cause 90 percent of the traffic. Therefore, you
need to suppress or automate only a few message IDs to produce significant
savings.

The logs also show the commands that operators have entered and help you to
identify operating problems. For example, suppose you find that operators are
entering many JES commands that start and stop job queues, alter job classes, and
reset job priorities. The indication is that operators are spending a lot of time
controlling the flow of work. You might, therefore, introduce a job scheduling
program such as OPC/ESA. Or, perhaps a large proportion of the commands
issued are responses to a frequently recurring situation such as the loss of a CICS
terminal. By noting the frequency with which different commands are issued, you
can identify the procedures that offer the greatest return on your automation effort.

Operation Procedure Books

Operation procedure books, or run books, are good sources of information for
automation. When you identify your requirements and decide which procedures to
automate, you can turn to the operator procedure books for a step-by-step guide to
how automation can perform those procedures.

Problem-Management Reports

Problem-management reports track hardware and software problems and outline
the actions taken to solve each problem. They can help you identify frequently
recurring problems that are consuming resources, and they can help you identify
procedures for responding to those problems.

Chapter 3. Defining an Automation Project 45

Look for outages that were prolonged, either because the problem was not
detected immediately or because the resources necessary to correct the problem
were not available. Decide whether an automated process could have detected the
problem and notified the correct people more quickly, or solved the problem.

Help-Desk Logs

Help-desk logs are another source of problem descriptions. Like
problem-management logs, help-desk logs help you identify recurring situations
and situations for which established procedures are inadequate.

Service-Level Agreements

By reviewing service-level agreements and measurements taken to confirm
compliance, you can identify areas where you are having difficulty meeting
commitments to users. These areas clearly represent problems. Automation might
be a way to solve them.

Users

Users can inform you of possible problems in the environment, including problems
that they have not reported to operators or that are not tracked by problem
management.

Other Data-Processing Plans

Examine the changes you anticipate in your environment over your planning
period. Start with documentation of your current system and network
configurations, both hardware and software, and then examine your plans for the
future. Document configurations for all data centers that you plan to automate,
including those you plan to operate from a central focal-point system. Your
automation plan must reflect anticipated changes.

For example, if your organization is adding a large new system, message
suppression and console consolidation might be major requirements. If you are
adding data centers or moving toward distributed networks, network and
multiple-system automation might be major requirements. If you are supporting a
growing number of users, adding hardware and software to your systems and
networks without adding operators might be your primary requirement.

Interpreting the Information

After you review these sources of information, you should know:

* How operators spend their time

* The benefits of message suppression

* Which procedures you want to standardize and document

* Which procedures offer the greatest return for your automation effort
* What problems your users are experiencing

All of the information you gather contributes to defining your requirements for
automation.

Developing Goals and Objectives for Automation

By developing goals and measurable objectives for your automation project, you
can determine the project’s contributions to your business and data-processing
requirements and improve your operating environment.

46 Automation Guide

Developing Goals for Automation

Developing goals is an essential part of the planning process. With your
knowledge of business and data-processing requirements and your list of operating
problem areas, you can develop appropriate long-term automation goals.

See [“Benefits of Automation” on page 3| for categories of possible automation
benefits.

You might want to review these categories and decide which are the most
important to your organization. You can also choose goals of your own that reflect
your own needs and environment. Choosing three or four of the most important
benefits you expect from automation and making them your long-term goals
provides a focus for the automation project.

Developing Measurable Objectives

Use measurable objectives to determine the progress you are making toward your
automation goals. Identify one or more specific measurements or indicators for
each long-term goal.

Measurements and projections play an important role in assessing the costs and
benefits of the automation project. If greater system availability is one of your
goals, you should know your current availability levels and the levels you expect
to attain. You can evaluate whether certain portions of the project require more
resources, whether others should be discontinued or expanded in scope, and the
extent to which automation is achieving your goals.

[Table 1 on page 48| shows a worksheet with examples of major measurements. The
worksheet, which covers a 5-year period, uses goals derived from the automation
benefits in [‘Benefits of Automation” on page 3] You must decide on major
measurements that reflect your automation goals and suit your situation.

For information about calculating benefits for the measurements listed in
fon page 48] see [“Quantifying Costs and Benefits.”| For additional examples of
indicators that you can use to measure progress toward a number of goals, see
[Appendix C, “Sample Progress Measurements,” on page 523

Quantifying Costs and Benefits

After identifying indicators you can use, their current measurements, and the
measurements you expect after automation, you can compute monetary values.
Calculating monetary values gives you further information about the types of
automation that can yield the greatest benefit. Calculating monetary values can
also help you determine the level of resources you must allocate to each form of
automated operations.

The projected costs for an automation project derive from assessment of the human
and system resources that implementation requires. The projected benefits derive
from the measurements and projections you have established for each of your
automation goals.

If you have created a project plan, the plan shows many of the steps you expect to
take to plan, design, and implement automation. See [Appendix B, “Sample Project]
[Plan,” on page 515|for a sample automation plan.

Chapter 3. Defining an Automation Project 47

48 Automation Guide

You can use your plan as a basis for determining the resources that each step
requires. Identify the human and system resources you need for each of the
remaining phases of the automation effort.

Next, calculate benefits. Using the measurements and projections you developed
for your automation goals, you can quantify the savings achieved by moving from
manual to automated operations. The savings represent the financial benefits of
automating. shows an example of a benefits worksheet.

For example, if one of your goals is to avoid adding operators as your network
expands, your measurable objectives must specify how many operators you expect
to add if you continue manual operations. Similarly, you must project how many
fewer operators you need to add if you implement automation and simplify
operator tasks. Calculate the money you can save to estimate the value of
automation in this area.

Improved availability can be an important benefit. To calculate the value of CICS
availability, for example, you might use the following steps:

1. Calculate the amount of yearly downtime per user for CICS without
automation and subtract the projected amount of downtime per user with
automation.

2. Multiply the difference in downtime by the total of each class of CICS user,
such as operator or programmer.

3. Multiply the result by the chance (in percent) that each user will need CICS
during downtime.

4. Multiply this result by the monetary value for the user’s time.

Some measurements might overlap. For example, a measurement of the personnel
savings per data center might overlap with a measurement of the personnel
savings per application. If you have overlapping measurements, ensure that you
do not include both of them in the total savings.

Table 1. Example of a Financial-Benefit Worksheet

Area Without With Savings per |5-Year Total
Automation | Automation | Year

System and Network
Availability

NetView program

CICS program

IMS program

TSO program

VTAM program

Communication controllers

NCP programs

Growth-Constraint
Removal

Maximum capacity

Operator Productivity

Number of personnel

Today

Table 1. Example of a Financial-Benefit Worksheet (continued)

Area

Without
Automation

With
Automation

Savings per
Year

5-Year Total

First Year

Second year

Third year

Fourth year

Fifth year

Consistent Operations

Operator-caused failures

Operator turnover

Totals

Securing Commitment

Your investigation of requirements, goals, costs, and benefits can assist you in
obtaining the commitment of management and of your whole organization for

proceeding with the automation project.

It is important to obtain commitment and support from each department or group
that automation affects. The affected groups might include system and network
operations, system programming, technical support, users, and others. You need
the cooperation of these groups to successfully design and implement automated
operations. Therefore, ensure that each group understands your goals and the

benefits that you expect.

Chapter 3. Defining an Automation Project

49

50 Automation Guide

Chapter 4. Designing an Automation Project

This chapter describes the design phase of an automation project. In this phase,
identify specific procedures to automate and the work required to automate them.
Define the scope of the project and the order in which procedures are to be
automated. From this information, determine a structure for your automation. Lay
the groundwork for implementation by establishing common practices and rules
for all of your automation application programs.

After introducing the project design tasks, this chapter describes several guidelines
that can direct your design efforts.

Project Design Tasks

After reviewing your preliminary planning decisions, you are ready to begin the
design tasks.

Identify Procedures and Functions to Automate

You might have already identified many procedures and functions to automate
during initial planning. Talking to operators, examining system and network logs,
and returning to the information sources described in [“Understanding Your|
[Operating Environment” on page 44| can help you find additional candidates for
automation. Good candidates for automation are:

* Procedures that consume operators’” time

* Events that demand quick and accurate responses

* Repetitive procedures that can be performed mechanically

Prioritize Procedures and Functions

After choosing the automation procedures and functions necessary to achieve your
automation goals, you can create a schedule. The schedule can prioritize the
procedures and functions, giving preference to the changes that offer the greatest
return for the least effort. The schedule reflects the speed with which you expect
your organization to implement and assimilate automation.

Schedule Stages for Implementation

When you schedule the implementation of the automation procedures and
functions, consider dividing the project into stages. By doing so, you give yourself
sufficient time to test, tune, and absorb each change in the environment. See
[“Stages of Automation” on page 7] for an example of a sequence of stages.

You can devise a sequence to reflect your goals and objectives.

Establish Standards

Besides creating schedules, the design team can establish standards and choose
general automation techniques. For example, you might decide on any of the
following:

* An approach to security issues for all routines
* A format for writing messages to the logs for all routines

¢ A common way of notifying operators when there are problems

© Copyright IBM Corp. 1997, 2009 51

* A common protocol for using global variables to share information between
routines

By deciding these things in advance, you ensure a unified automation approach
that makes maintenance easier and enhances accurate communication among all
parts of the automation application. [“Design Guidelines”| describes many of the
issues that you must consider. These include not only programming issues but also
the impact that operational changes might have on your environment and your
organization.

Design Guidelines

Consider the following principles, suggestions, and guidelines when creating your

design:

* Design for easy expansion and propagation - see [“Designing for Expansion and|

* Design for audibility - see [‘Designing for Auditability” on page 53|

* Design for security - see [‘Designing Automation Security” on page 53|

* Design for availability - see [“Designing for Auditability” on page 53|

+ Automate an event close to its source - see [“Automating Close to the Source” on|
page >

e Choose whether to use more than one NetView program per system - see
[“Using Multiple NetView Programs on a Single System” on page 54|

+ Provide effective operator interfaces - see ["Providing Operator Interfaces” on|

* Educate your staff for automation - see [“Educating Your Staff” on page 55|

* Anticipate changing staff roles - see [Anticipating Changing Staff Roles” on page|

+ Provide for automation testing - see [‘Providing for Testing” on page 56|

* Provide for problem and change management - see [“Designing for Auditability”|
¢ Choose reliable focal points - see [“Choosing Focal Points” on page 57|

+ Consider using backup focal points - see|“Using a Backup Focal Point” on page|

* Define operator sphere-of-control - see [“Defining Operator Sphere-of-Control” on|

Designing for Expansion and Propagation

52 Automation Guide

To save time and effort when adding new software or new equipment to your
automated environment, design your automation for expansion. If you plan to
automate more than one system, ensure that the routines you write for one system
can be easily copied onto other systems.

One way to design for expansion and propagation is to use global variables for
system and resource names and other important information rather than
hard-coding them into command procedures. You can then use a single set of
automation routines and adapt them to new equipment, new software, or new
systems by redefining your global variables.

In a parallel sysplex environment, a copy of NetView might be running on
multiple MVS images in that environment. Because of this, data set names,
partitioned data set member names, and the contents of these members might need
to be unique for each MVS image. Cloning support decreases the amount of
maintenance required by permitting this type of data to be shared across a parallel
sysplex while retaining the uniqueness of each MVS image. It might no longer be

necessary to maintain separate NetView partitioned data sets with unique member
data. To take full advantage of this function, an MVS system of Version 5 Release 2
or later is required.

See the automation samples documented in [Appendix I, “The Sample Set for|
[Automation,” on page 579 for an example of using global variables. You can also
store variable information in a control file rather than using global variables.

Another way to design for expansion and propagation is to use the Resource
Object Data Manager (RODM) for retaining system and resource names and other
important information, rather than hard-coding the information in command
procedures. See [“Resource Object Data Manager” on page 25| and [Chapter 8
[“Automation with the Resource Object Data Manager,” on page 81| for more
information about using RODM.

If you plan to propagate automation to more than one operating system, consider
writing your command procedures in a language that runs on all of them. See
[‘Choosing a Language” on page 22| for information about which languages run on
which operating systems.

Designing for Auditability

In any automated operation, a good audit trail is vital. NetView can record
messages in both the network log and the system log. In addition, you can create
sequential logs and sort information into different logs based on any criteria you
choose. For example, you can log messages coming from different subsystems in
separate files, establish separate logs for each NetView operator and autotask, or
set up a separate log to track automation-related activity.

Several basic principles apply to designing for good audit trails:
* Log each action that automation initiates.

* Flag each automation event that you log so it can be identified as an automation
event. For example, you might precede all automation-related log entries with a
greater-than symbol (>).

* Log as much relevant information as possible. For example, you might log the
reason that you issue an automation procedure and the names of global
variables that you update as a result.

* Log each occasion when automation solves a problem.

* Log each occasion when automation fails to solve a problem. You can use this
information to upgrade and improve your automation.

Designing Automation Security

Design your automated environment so that only authorized operators have access
to system and network control facilities. You can control operator access through
passwords, restricting data set access, using command authorization, with span of
control, and other techniques. Refer to the |[BM Tivoli NetView for z/OS Securitvl

for more information.

For instance, you can protect which commands can be issued by operator or
automation tasks using either the NetView command authorization table or a
system authorization facility (SAF) product such as RACF (Resource Access
Control Facility).

Ensure that a command procedure issued from the automation table validates the
source of a message or MSU before responding with any potentially disruptive

Chapter 4. Designing an Automation Project 53

commands. For example, you can ensure that a message came from the expected
system, job, or operating-system component. Because people can enter both system
and network commands from NetView consoles in an automated environment, it
becomes especially important to control access to NetView consoles.

Designing for Availability

Because you are entrusting your system or network to automation, you need to
ensure that the automation application is continuously functioning and available.
Think of ways to reduce the number of planned outages and to recover from
unplanned outages quickly. The approach you take in designing for availability
might vary, depending on whether you are automating a single system or a
multiple-system network.

Among the approaches you can take to provide for automated recovery in a single
system is to run two NetView programs on the system, as described in
[Multiple NetView Programs on a Single System.”| The advantage arises because the
two NetView programs can then monitor each other. If one fails, the other can
restart it.

In a multiple-system network, you can have NetView programs on separate
systems monitor each other and initiate recovery when necessary. However, this
approach depends on having reliable links between your systems.

If you are using a focal-point system to automate several distributed systems,
establish a backup for the focal-point system. This ensures that distributed systems
can continue to forward information that requires external automation or operator
action, even if the primary focal point becomes unavailable.

In any case, your automation applications within NetView can monitor each other,
ensuring that autotasks and the automation table function continuously. For
example, one autotask can monitor another by sending it messages and checking
for timely responses. You can use the EVERY command to perform this sort of
query on a regular basis.

Automating Close to the Source

A guiding rule for automation is to automate an event as close to its source as
possible. If you intend to operate several distributed systems from a focal-point
system, automate everything you can on the distributed systems themselves.
Forward to the focal point only those problems that the distributed systems cannot
handle. Automating close to the source maximizes both performance and reliability.

Similarly, you can suppress unwanted system messages with an MRT action in the
address space where it originates. This saves considerable processing both in the
system and in NetView.

Using Multiple NetView Programs on a Single System

54 Automation Guide

A single NetView program on a system can accomplish all NetView functions,
including network management, network automation, and system automation.
However, some organizations choose to divide these functions among two or more
NetView programs. For example, one NetView program on each system might
perform network-management operations, such as network problem determination,
and another might perform automation. Or, one NetView program might perform
all network functions and another might perform all system functions.

A NetView program for automation can run at a dispatching priority higher than
the tasks that it automates. A NetView program for network management can be
set to a lower priority so it does not interfere with automation and other tasks.

Installing more than one NetView program on a system can help groups within
your organization independently use the NetView functions they need. For
example, a system-operation group and a network-management group can have
separate NetView programs.

However, there are drawbacks to running more than one NetView program per
system, including increased complexity. Running two NetView programs means
maintaining two copies of libraries and logs. You must be careful to avoid endless
loops, in which two NetView programs continually send messages back and forth
to each other. Also, storage requirements are greater with two programs.

If you choose to run NetView Message Revision table from two Net Views in the
same system, be sure to examine the order of SSI invocations (this can be done by
the command D SSI). The later MRT override settings made in an earlier MRT.

For more information about running multiple NetView programs, see thapter 32]
[‘Running Multiple NetView Programs Per System,” on page 457

Providing Operator Interfaces

The operator interface is critical to the design of your automation scheme. Ensure

that operators are receiving the information they require to operate the system or

network, to influence the operation of the automation application program, and to
monitor the automation.

See [“Improving Operator Interfaces” on page 11| for options offered by NetView for
monitoring in the automated environment. For example, depending on which
NetView feature is installed, operators can monitor information provided by:

* The command facility

* The hardware monitor

* The status monitor

* NetView management console

¢ The Automated Operations Network (AON)

* Full-screen panels and help panels

In most environments, operators are accustomed to using messages to judge how
well the system is working. Therefore, operators need to be involved in deciding
which messages must be suppressed and what automated actions must be taken.
Ensure that you still provide operators with the information they need to verify
that the system is functioning correctly.

As you begin automation, you can inform operators of everything, from events
that require action to the issuing of automated command procedures. Eventually,
as automation becomes the standard mode of operation and the operation staff
becomes comfortable with automation, you can curtail notification and inform
operators only when their action is required. However, continue to log messages
that indicate when automation activity occurs in the system or network. These
messages can assist in problem determination if automation fails.

Educating Your Staff

The people who design and implement your automation application programs
need to be adequately trained before they begin. They need to understand both the

Chapter 4. Designing an Automation Project 55

requirements of your organization and the products you are using for automation.
If you divide the duties, you might need different training for different groups. For
example, one group might create automation procedures and another might create
automation displays.

Furthermore, operators need to be informed of the changes in their operating
environment at every stage of automation. They must understand the new
operator interfaces and the changes to their responsibilities. Education is an
ongoing requirement for ensuring the success of automation.

You can continue to train operators to run systems manually, ensuring that they
can resume responsibility for operations if automation fails. However, it is usually
more efficient to train your people to resume automation. Rather than expend the
effort teaching manual operating techniques, you can test your automation and
implement backup and recovery plans to avoid failure. Document your automation
so that operators and programmers can use the documentation to perform
procedures manually if necessary.

Anticipating Changing Staff Roles

Automation can change the roles and interactions of data-processing staff
members. Ensure that you consider these changes and how automation affects
your employees and your organization.

For example, if you are combining system and network automation, you can also
combine system and network operation staffs. Because you are using a common
design for system and network automation, the people who are to resolve
problems that automation cannot handle need to understand both system and
network resources.

Another example of a change in roles is a possible change in operator career paths.
As automation takes over system and network monitoring and routine, repetitive
tasks, operators might spend a greater proportion of their time making decisions,
solving unique problems, and working with the automation application itself. One
way to accommodate these changes is to create a new job category for operators,
such as automation specialist. The specialist must understand system and network
operations, as well as the automation applications used to run them. Operators
who create or help with automation procedures can gain automation skills and
learn to operate the environments of the future.

Providing for Testing

As with any new product or application, plan to test your automated procedures
before placing them in the production environment. Each stage of your
implementation requires thorough testing. In addition, you can do regression
testing of your automation applications when your system or network changes,
ensuring that your routines work with new releases of operating systems and
application programs, and with new hardware.

Providing for Problem and Change Management

56 Automation Guide

Problem management is an important part of automated operations. By logging
problem records before automation takes any recovery action, you can minimize
the risk of losing your record of system and network problems that require
attention.

Implementing automation also affects change management. With automation, it is
helpful to track all changes to the operating environment, possibly in more detail
than you have before. Even slight changes to a message format, for example, can
affect your operations if the message is triggering automation. Keep a list of
messages, alerts, and other data records that are triggering automation. For each
message, record whether you use just the message ID or use other parts of the
message as well. When you learn of changes to a message or alert, compare them
to the list to see whether you need to update your automation.

Choosing Focal Points

In a multiple-system environment, you can perform many automation tasks with
single-system automation running independently on each system. For tasks that
you do not automate locally, you can forward the associated data to a designated
focal-point system. Then you can automate responses to the data with automation
on the focal-point system, or you can display the data for operators.

Before choosing a focal point, consider the kinds of tasks that you want the focal
point to perform. The way you intend to use the focal point influences your choice
of a focal-point system. The following are some considerations that can affect your
decision:

* The focal point can perform automation activities that require coordination
among two or more systems.

* The focal point can monitor your automation facilities in other systems and
recover those facilities if they fail.

* The focal point can monitor the hardware and software of other systems and
recover the hardware or software if it fails.

* Operators at the focal point can respond to exception conditions that automation
cannot handle.

Choose a stable and reliable system for a focal point. In general, avoid choosing a
system that is already heavily used. Also, avoid a system that you use for
developing application programs, installing and testing new products, or other
testing.

The focal-point system must have an information management product installed,
enabling it to log problems that occur in other systems. You might also need
system-management application programs, such as programs for problem
management, change management, and reporting.

If you have a communication management configuration (CMC) system, the CMC
system might have the highest availability of your systems. Therefore, you might
want to use your CMC system as the focal point. Examine the capacity of the CMC
system to ensure that the system can handle the combined processing load of CMC
and automation duties.

[Figure 8 on page 58| shows a focal-point system that manages distributed systems.
As shown, the distributed systems can be at more than one site.

Chapter 4. Designing an Automation Project 57

Using

58 Automation Guide

I !
| Distributed System Focal Point ! Distributed System :
I . :
' !
i NetView NetView I NetView !
' !
i i [
I —— | H :
I . :
i ! !
i ! !
i ! !
i ! !
i i ! !
S S IS _i ! !
[!

i Distributed System |

! !

! !

i NetView I

i !

Site C [[

''''''''''''''''''' = I !

Distributed i I

System i I

i !

i I

NetView i i

i !

i
i
i
i
i
i
i
i
i
i
.

Figure 8. Example of a Multisite Configuration

You can forward many types of data from a distributed system to a focal point,
including messages, alerts, status information, and user-defined classes of
information for the LU 6.2 transports.

For an overview of NetView’s forwarding capabilities for each type of data, refer to
[Chapter 26, “Centralized Operations,” on page 375 Refer to IBM Tivoli NetView for

z/OS Installation: Getting Started for information about how to set up message, alert,
and status forwarding. See the [IBM Tivoli NetView for z/OS Application Programmer’s|
for more information.

You can have a single focal point or several. However, if you have more than one
focal point, each distributed system usually sends all types of data to a single focal
point. That is, any alerts, messages, status information, and operations
management information forwarded from a given system can all go to the same
focal point. With this type of design, operators and automation at the focal point
can monitor all types of data from one location.

a Backup Focal Point

You can define as many as eight backup focal points. If you intend to have a
focal-point system manage many other systems, you can use a backup to ensure
that a focal-point failure does not disrupt your automation. The backup focal point
can be one of your distributed systems or a dedicated backup system. This system
must be available to take over for the focal point if any outages occur.

For many types of data, you can establish NetView-to-NetView sessions between
the backup focal point and the distributed systems automatically if you lose
communication with the primary focal point. You can do this without operator
intervention. Only status forwarding does not support a backup focal point.

Other advantages and considerations for a backup focal point include:

* You can have primary and backup focal points monitor each other. A loss of
communication can trigger recovery actions.

¢ The VTAM program and NCP can recover links in the network if link failures
occur.

* You can establish multiple NetView-to-NetView sessions between the primary
focal point and a distributed system. Ensure that the route used by each session
is different.

Defining Operator Sphere-of-Control

Sphere-of-control enables an operator at a focal point to manage the relationships
between that focal point and entry points (distributed nodes). Each entry point is
categorized by type and state, which can be displayed by the focal point operator
using the FOCALPT DISPSOC command.

In [Figure 8 on page 58} the focal point is at Site A, and manages a sphere-of-control
encompassing four distributed NetView systems. One entry point is at Site A, two
are at Site B, and one is at Site C.

An operator at the focal point can manage a sphere-of-control through the
sphere-of-control manager (SOC-MGR). The MS-CAPS application within the focal
point or entry points is responsible for establishing and recovering the
sphere-of-control relationship, and for providing status. The focal point operator
can add and delete entry points and add information to the sphere-of-control
configuration file. This file can be used during NetView initialization to set up
sphere-of-control environments.

For information, see [Chapter 26, “Centralized Operations,” on page 375

Chapter 4. Designing an Automation Project 59

60 Automation Guide

Chapter 5. Implementing an Automation Project

This chapter describes the tasks involved in the implementation and production
phases of an automation project.

If you envision an extensive automation project, divide it into stages as described
in [Chapter 4, “Designing an Automation Project,” on page 51 You then have an
implementation phase and a production phase for each stage of automation.
Repeat the tasks in this chapter for each stage.

Implementation Tasks

In the design phase, you laid out a schedule for implementing various functions
and procedures. Examine those functions one by one in the chosen order. For each
function to be automated, use the following approach:

1. Analyze your manual method of operation. Often, you can best automate a
function by having NetView facilities closely follow the sequence of steps that
an operator usually takes. In any case, you must understand the manual
method before devising an automated method.

2. Determine the best approach to automating the function.

3. In your development environment, install the products you plan to use for this
function.

4. Develop application programs and command procedures that you plan to use
for this function.

5. Install the application programs and command procedures in a test
environment.

6. Test and debug these application programs and command procedures.

7. Measure the performance of the application programs and command
procedures. Tailor and tune them for efficiency.

When you have thoroughly tested and tuned all automation products, functions,
applications, and procedures, you are ready to go to the production phase.

Production Tasks

The production phase must begin with educating your operators on the changes
you are about to make.

When you have educated your operators, begin installing the products, if any, that
you are adding to the production systems to support automation. Test these
products to ensure that they are running correctly on the production systems.

Next, install the automation functions and procedures that you have developed.
Make necessary changes to adapt these functions to the production systems. If
your design is for easy propagation, as described in |[Chapter 4, “Designing an|
[Automation Project,” on page 51|most of the necessary changes require only that
you alter some global variables or data in a control file. Test your automation
functions and make any necessary corrections or enhancements.

If you have divided your project into stages, go to the next stage in your sequence.
See [’Stages of Automation” on page 7| for a description of automation stages.

© Copyright IBM Corp. 1997, 2009 61

62 Automation Guide

Continually re-examine and review the automation that you have put in place.
Measure the results that you are achieving and compare them to the expected
values you identified in the project-definition phase. For information about how
measurements are used to track the results of automation, see
[Measurable Objectives” on page 47}

Look for ways to improve your automation. Perhaps there is another message that
you can suppress or another MSU that can receive an automatic response. By
aggressively tuning and enhancing your functions and procedures, you can realize
the maximum benefit from automation.

Use the AUTOCNT command to generate automation table usage reports for your
system. You can use the reports to analyze automation table statements to see how
frequently they are matched. You can move frequently matched statements toward
the top of the table so that less checking of unmatched criteria takes place. You can
also determine whether to delete unmatched statements from the table or to delete
statements changed because of logic errors.

Automation table usage reports also enable you to determine the level of
automation taking place on your system. These statistics can be useful in reports
for management purposes. For information about the AUTOCNT command and
ﬁomation table usage reports, see [Chapter 15, “The Automation Table,” on page|
149

Part 3. Planning for Automation in Selected Environments

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles
Using EMCS Consoles with NetView . . e e
Advantages of Using EMCS Consoles with NetV1ew
Planning for Extended Multiple Console Support Consoles
Enabling Extended Multiple Console Support Consoles.
Developing Console Naming Conventions . .
Acquiring Extended Multiple Console Support Consoles
Defining Task Names for CNMCSSIR Tasks .
Defining Consoles in Groups .
Using the MRT or the MPF Table to Drrect Messages to NetV1ew Automatlon .
Using Attribute Values for Extended Multiple Console Support Consoles.
Defaults for a Console Obtained by the CNMCSSIR Task .
Defaults for a Console Obtained by an Operator .
Using Route Codes . . o
Case 1 .
Case 2 . .
Understanding Effects of Attrlbutes
Implementing Security Access . .
Avoiding Message Loss because of a Full MVS Message Data Space
Avoiding Message Loss because of an Exceeded Queue Limit
Balancing MVS Message Storage and Message Queue Limit . .
Comparing Extended Multiple Console Support Consoles with Subsystem Allocatable Consoles .
Migrating from the Subsystem Interface to Extended Multiple Console Support Consoles
Establish Unique Names . e e
Migrate to a Later Release NetVrew Program at Each Host
Continue Using the Subsystem Interface If Needed .
Use the RMTCMD Command and LU 6.2 Sessions for Cross- Domam Commun1cat1on
Restrict Operator Access to the MVS VARY Command .
Restrict AUTO Attribute of EMCS Consoles
Define Each NetView Program to Use Extended Mult1ple Console Support Consoles

Chapter 7. Automation in an MVS Sysplex .

MVS Sysplex . .

Using NetView Automat1on ina Sysplex

Planning for Automation in a Sysplex
Stage 1. Become Familiar with EMCS Consoles and How Thelr Attrlbutes Affect Message Routlng ina Sysplex
Stage 2. Coordinate MPF Actions with the Definitions of EMCS Consoles. .
Stage 3. Decide Whether to Centralize Your NetView Automation on One System of the Sysplex

How Foreign Messages are Processed. o

Chapter 8. Automation with the Resource Object Data Manager

Introducing the Resource Object Data Manager
Interactions with RODM . .
Using RODM in Automation

Advantages of Using RODM .

Planning for Using RODM in Automat1on . .
Determining the Types of Events to Produce Automated Responses from RODM .
Understanding RODM Automation Capabilities .

Chapter 9. NetView Information Routing for Automation
NetView Interfaces .

Interfaces to the Operatmg System

Interfaces to Other NetView Programs

Other Message and Command Facilities .

Interfaces for Hardware-Monitor Data and MSUs
NetView Message Routing

© Copyright IBM Corp. 1997, 2009

. 65
. 65
. 65
. 66
. 66
. 66
. 67
. 67
. 68
. 68
. 68
. 68
. 69
. 69
. 69
.70
. 70
. 70
.70
.70
.71
.71
.73
.73
.73
.73
. 74
.74
.74
.74

.77
.77
.77
.78

. 78
.79
.79

. 81
. 81
.81
. 82
. 82
. 82
. 83
. 83

. 85
. 85
. 86
. 87
. 87
. 87
. 87

63

Solicited Messages88

Unsolicited Messages88
The Authorized Receiver . . . R 1
Unsolicited Messages from a DST -
Unsolicited Messages from MVS .8

Message Routing Facilities . . . e <

Routing Messages with the ASSIGN Command e 9%
Assigning Messages to Operators .9
Assigning Operators to Groups. . . (0]
Using ASSIGN to Route Unsolicited Messages L]
Using ASSIGN to Drop Unsolicited Messages .9
Using ASSIGN to Route Solicited Messages. .9
Using ASSIGN to Route Messages to Autotasks .9
Using ASSIGN with Automation Logic . . . e S
Using the REFRESH and ASSIGN Commands for Dynamlc Operator Control e 98
ASSIGN Command Versus Automation Table Routing93

Routing Messages with the MSGROUTE Command .9%

Routing Messages to EMCS Consoles Based on Route Codes%
Specifying the Route Codes A
Eliminating Duplicate Automation of Messages)

Message Routing Flow9%

DSIEX17 Processingo 9%

PIPE CORRWAIT . . . s

ASSIGN PRI/SEC Processmg R

Authorized Receiver Processing LY

DSIEX02A Processing Y

Wait Processing . . C e s Yy

Automation-Table Processmg e e 98
Routing Messages9
Setting Message Attributes L o L. L L Lo 99

DSIEX16 Processing L .. .Y

ASSIGN COPY Processing9

Discard or Display Processing . . e ()

NetView Hardware-Monitor Data and MSU Routmg . (0]0]

ALERT-NETOP Application .10

XITCI Processing . . e (0]

Initial Hardware- Morutor Processmg e (06

Automation-Table Processing .103

DSIEX16B Processing. . . e 0

Continued Hardware Monitor Processmg e 2

NetView Command Routing . . e 0

Compatibility of Commands w1th Tasks e (1G]

Command Routing Facilities . . . e (05}
Automation-Table ROUTE Keyword . e (0]
CNMSMSG Service Routine and DSIMQS Macro O 05
EXCMD Command .l06
RMTCMD Command. .106
Command Label Prefixes .1086

Command Priority .. .1086

64 Automation Guide

Chapter 6. Automation Using MVS Extended Multiple Console
Support Consoles

This chapter describes in more detail the information about extended multiple
console support (EMCS) consoles that was given in [*Automation on MVS|
[Systems” on page 27 This chapter describes:

* Some of the advantages, implications, and planning considerations for using
EMCS in NetView automation

* Some advantages for using EMCS instead of the MVS subsystem interface

Using EMCS Consoles with NetView

EMCS consoles enable an MVS application program to interact with the MVS
system as if the application program were an operator at a terminal. Using
extended multiple console support consoles, NetView automation can interact with
the MVS system as if the NetView operator were an MVS operator.

Using extended multiple console support consoles enables NetView automation to
interact with the MVS system without some of the restrictions imposed in other
versions of the MVS system. For example, extended multiple console support
consoles do not need to be defined in the CONSOLxx member of the PARMLIB
data set.

You can process unsolicited MVS messages using the subsystem interface while
processing solicited command responses using extended multiple console support
consoles. This allows you to extract unsolicited messages earlier in the MVS
process, while allowing operators the flexibility of EMCS.

For information about extended multiple console support consoles, refer to the

MVS library. For more information about attributes for extended multiple console
support consoles that NetView uses, refer to the [BM Tivoli NetView fo
[z/OS Security Referencel

Advantages of Using EMCS Consoles with NetView

Some advantages for using EMCS consoles with NetView are:

* There is no defined limit on the number of MVS operator consoles that can be
used.

* You can define MVS consoles dynamically for NetView operators.

Note: When you either specify MVSPARM.MSGIFAC=SYSTEM or use the
default value SSIEXT, then operator commands and response use EMCS
consoles allocated for each operator.

* Information appearing on the NetView command facility screen can be made to
look more like MVS operator consoles.

e Consoles do not need to be defined in the CONSOLxx member of the PARMLIB
data set.

* You have the option to have system messages delivered directly based on route
codes.

* You can more easily define authority for your operators.

© Copyright IBM Corp. 1997, 2009 65

Usage Notes::

1. All cross-domain sessions must use the RMTCMD command to prevent loss of
data. Otherwise, if the sessions are established between an operator station task
(OST) and a NetView-NetView task (NNT), messages are sent without any
appended message data block (MDB) data structures. Data structures contain
special information about a message. Data structures also contain some deleted
operator message (DOM) information associated with the message. Such
information in the MDB data structures, therefore, is lost on the OST-NNT
sessions.

Sending a message without the MDB data structures provides compatibility for
earlier levels of NetView that do not process the MDB information.

2. Change in the attributes for your extended multiple console support consoles
might cause more than one console in NetView to solicit the same MVS system
message.

Planning for Extended Multiple Console Support Consoles

This section describes points to consider as you plan for using extended multiple
console support consoles in your NetView automation.

Enabling Extended Multiple Console Support Consoles

You can enable extended multiple console support consoles by specifying certain
values in these situations:

* MVSPARM statements in the CNMSTYLE member

* Subsystem address space procedure (CNMPSSI)

For more information about selecting and coordinating these values, see

“Comparing Extended Multiple Console Support Consoles with Subsystem|

Allocatable Consoles” on page 71|

Developing Console Naming Conventions

66 Automation Guide

Develop your naming conventions for consoles before you start to use extended
multiple console support consoles.

Note: You can use the ConsMask keyword in your style specifications to simplify
the task of choosing unique console names.

These are rules for developing console names:

* The length of each name must be between 2 and 8 characters.

* The first character must be from the group of A-Z, @, #, and $.

* The remaining characters must be from the group of A-Z, 0-9, @, #, and $.

When using console naming conventions:

* Each name must be unique within a system and within all systems in a sysplex
configuration.

* Console names that are defined in the CONSOLxx member of the PARMLIB
data set are not available to be used as names of extended multiple console
support consoles.

* Console names might be used by other application programs and must not be
duplicated.

Acquiring Extended Multiple Console Support Consoles

You can acquire an EMCS console by using an MVS command or the NetView
GETCONID command. If you issue an MVS command or the GETCONID without
the CONSOLE keyword to acquire an EMCS console and your task has not already
obtained a console, NetView determines the console name in the following order:

1. If a SETCONID command was used, the name specified by it is used.

2. If the ConsMask statement in the CNMSTUSR or CxxSTGEN member that is
included in the CNMSTYLE member is not defined as an asterisk (*), its value
is used as a mask for determining the default console name. Refer to
[NetView for z/0S Administration Reference for more information.

3. If OPERSEC=SAFDEF was in effect when the operator logged on, NetView uses
the value of CONSNAME specified in the NetView segment of the SAF
product. If there is not a CONSNAME in the NetView segment, see Step

4. If OPERSEC=SAFDEF was not in effect when the operator logged on, NetView
uses the value of CONSNAME specified in the operator’s profile in DSIPRE. If
there is not a CONSNAME in the operator’s profile, see Step

5. If a CONSNAME was not specified in either the NetView segment or the
operator’s profile, NetView uses the operator task name as the console name. In
this case, the operator ID must be greater than one character in length and
abide by the same rules as for console names.

You can issue the GETCONID command to acquire an EMCS console with a name
specified by the invoker as well as specifying other attributes for the console.

For information about the GETCONID and SETCONID commands, refer to the
NetView online command help. For more information about attributes associated
with extended multiple console support consoles, refer to the [[BM Tivoli NetView)
ffor z/OS Security Referencel

Defining Task Names for CNMCSSIR Tasks

The subsystem router task (CNMCSSIR) requires a console name if you specify at
least one RTNDEF.BASE.AGENT statement or when you specify
MSGIFAC=SYSTEM in the CNMSTYLE member. If you specify
MSGIFAC=SYSTEM, use the ConsMask keyword in your style specifications to
automatically avoid conflicts in choosing console names. For additional
information on CNMSTYLE, see the |[BM Tivoli NetView for z/OS Administration|

If you cannot use console masking, then if you use extended multiple console
support consoles and you are also running multiple NetView programs or are
defining a sysplex configuration, ensure that you define a unique task name for
each task that uses load module CNMCSSIR.

The task with the load module name CNMCSSIR attempts to obtain an EMCS
console with the task ID as the EMCS console name. If you have multiple tasks
named CNMCSSIR, the first one that is activated gets the EMCS console named
CNMCSSIR. The remaining CNMCSSIR tasks are not able to obtain a console. If
you have more than one NetView program that uses the CNMCSSIR task, ensure
that you assign unique task names to avoid console name conflicts.

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 67

Defining Consoles in Groups

If you want to use the RELCONID command SWITCH parameter to switch
messages to an alternative console when your console is released, define your
console to a group. For more information about console groups, refer to the MVS
library.

Using the MRT or the MPF Table to Direct Messages to
NetView Automation

You can use the NetView’s Message Revision Table (MRT) or the system’s message
processing facility (MPF) to mark messages for automation. When you use
extended multiple console support consoles (MSGIFAC=SYSTEM), messages that
are marked for automation are sent to the EMCS console with the AUTO attribute.
By default, the EMCS console for the CNMCSSIR task is set up with the AUTO
attribute. Information on direct a message for NetView automation can be found in
[‘Subsystems in Message Processing” on page 526|

You can also use the Message Revision table (MRT) to perform the functions
provided by the message processing facility (MPF). Additional information about
the Message Revision table can be found in [“Message Revision Table” on page 25,

Using Attribute Values for Extended Multiple Console Support
Consoles

68 Automation Guide

Use specific attributes and their values for extended multiple console support
consoles are provided as defaults. Refer to the [[BM Tivoli NetView for z/OS Security|
for a chart of the full set of defaults.

Defaults for a Console Obtained by the CNMCSSIR Task

For a console obtained by the CNMCSSIR task, some defaults and their meanings
are:

MSCOPE = *
The console receives messages from the system on which it is running.

Note: The value of MSCOPE can be overridden by the
RTNDEF.BASE.AGENT.sysname statement in the CNMSTUSR or
CxxSTGEN member that is included in the CNMSTYLE member. For
more information, refer to [I[BM Tivoli NetView for z/OS Administration|

AUTO(YES)
The console receives messages that are marked with AUTO(YES) or
AUTO(token) in the MPF table. This condition cannot be changed after the
console is activated. (For more information, refer to the chart of defaults in
the |IBM Tivoli NetView for z/OS Security Referencel)

ROUTCODE = NONE
The console does not solicit system messages by route code.

The CNMCSSIR task avoids duplicate automation by discarding messages that are
also received by console NAME on another NetView task. MVS messages that are
broadcast to all consoles are submitted to NetView automation by CNMCSSIR and
not by other NetView tasks.

For all values of MSGIFAC, the CNMCSSIR task attempts to avoid duplicate
automation for messages, such as command responses, that are delivered to a

NetView operator by console name. The method works only for messages
delivered by console name, and not, for example, for messages delivered by route
code to a console owned by a NetView operator. Be sure to avoid duplicate
automation when assigning route codes to a NetView operator’s console.

Defaults for a Console Obtained by an Operator
For a console obtained for an operator, some defaults and their meanings are:

MSCOPE = *ALL
The console can receive messages from any member of a sysplex, and
command responses can be received from all systems.

ROUTCODE = NONE
The console does not solicit system messages by route code.

Using Route Codes

If you decide to solicit messages for your extended multiple console support
consoles by using route codes, be aware that you might create duplicate
automation. When you set up an EMCS console to receive messages with a certain
route code, a message with that route code is delivered to that console, as well as
to any other console that solicited the message.

Some messages have more than one route code. When messages are solicited by
route code, multiple instances of a message can be delivered to extended multiple
console support consoles used by NetView. When setting console attributes, it is
preferable to ensure that you do not solicit multiple instances of the same message.
If you choose to solicit multiple instances of the same message, you can use the
automation table to select which task is to process a message if two tasks receive
the same message.

These examples illustrate cases in which duplicate message solicitation can cause
NetView to produce duplicate automation.

Case 1

Consoles in use:

¢ EMCS console CON4 is set up to receive messages with route code 4.
This might have been set up with the MVS VARY command or the
RACF OPERPARM segment.

¢ EMCS console CONG is set up to receive messages with route code 6.
* EMCS console AO1CSSIR is receiving messages marked for automation,

or which are subject to NETVONLY or REVISE('Y' AUTOMATE) revision
table actions or similar.

Event: The MVS system issues message IEExxxx with route code 4, and this
message is marked for automation..

Result:

CON4 receives the message from the MVS system because the message is
assigned route code 4. AO1CSSIR also receives the message from the MVS
system because the message is marked for Automation in the Revision
AUTO(YES). Both tasks drive automation. Unless the automation table
contains a statement to disregard one of the messages (for example, by
operator ID), automation occurs twice because two identical messages are
delivered to NetView.

Note: If NETVONLY, rather than REVISE("Y” AUTOMATE) had been
specified in NetView’s MRT, the duplicate automation is avoided.

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 69

Case 2

Consoles in use:
Same as for case 1.

Event: The MVS system issues message IEEyyyy with route codes 4 and 6, and
this message is marked AUTO(NO) in the MPF table.

Result:
CON4 receives the message from the MVS system because the message is
assigned route code 4. CONG6 receives the message because it is assigned
route code 6. Both tasks drive automation as in case 1.

Understanding Effects of Attributes

From the preceding examples, you must realize that the attributes set for extended
multiple console support consoles affect the delivery of MVS system messages. For
more information about the attributes of extended multiple console support
consoles, see the [IBM Tivoli NetView for z/OS Security Reference

If you solicit messages by route code, be aware that some messages have no route
codes. Therefore, a console defined to receive all messages with route codes does
not receive all the messages in the system. For example, monitor type messages do
not have route codes. Refer to the MVS library for a list of MVS system messages
and their route codes.

Implementing Security Access

You can implement a security access facility product such as the Resource Access
Control Facility (RACF) to provide security for NetView operator tasks and
autotasks. Refer to the [[BM Tivoli NetView for z/OS Security Reference| for
information about using RACF to protect access to names of extended multiple
console support consoles and about protecting system commands for operators and
autotasks.

Avoiding Message Loss because of a Full MVS Message Data

Space

Messages to be written to extended multiple console support consoles are
temporarily stored in an MVS message data space until NetView retrieves them. If
the maximum storage value set for the MVS message data space is exceeded
during operation, message delivery is halted temporarily from the MVS system to
the message data space for the extended multiple console support consoles that
NetView uses. To avoid this problem, you can use the defaults that the NetView
GETCONID command sets for the maximum data space for message transfer. This
data space is managed by the MVS system and is used only as needed.

Avoiding Message Loss because of an Exceeded Queue Limit

70 Automation Guide

Each EMCS console has an attribute called QLIMIT. This attribute defines the
number of messages that can be queued at one time in the data space for this
console. If the queue limit is reached, the MVS system temporarily stops delivering
messages for this console, and these messages are lost.

Another attribute for each EMCS console is called ALERTPCT. You can use this
attribute to help determine whether you are approaching the queue limit for a
particular console. The ALERTPCT attribute defines the percentage of the queue
limit that causes a warning message to be issued.

If the message queue limit for a console is reached, a task might not have enough
time to process all the messages directed to it. Some tasks run at a lower priority
than other tasks and do not get sufficient time for processing all messages.

Balancing MVS Message Storage and Message Queue Limit

You need to obtain a balance among the amount of storage reserved for the MVS
message data space, the number of operators using extended multiple console
support consoles, and the values defined for the message queue limits. Use the
STORAGE parameter of the GETCONID command to reserve storage for the
message data space. Use the QLIMIT parameter of the GETCONID command to
define the queue limit.

Note: The QLIMIT and STORAGE attributes can also be set using the RACF
OPERPARM segment.

The STORAGE parameter sets the maximum allowable size for the data space. The
first active console in NetView sets the maximum storage value. Ensure that the
first EMCS console to be activated sets the maximum storage value that you want.
The queue limit value defined by the QLIMIT parameter for each console applies
only to that console.

These messages are related to reaching the storage limit and queue limit for
extended multiple console support consoles. Correct responses to these messages
are especially important:

+ DWO201I

+ DWO202I

* DWO2041

For explanations of these messages, refer to the NetView online help.

Comparing Extended Multiple Console Support Consoles with
Subsystem Allocatable Consoles

Note: Beginning with z/OS v1r8, subsystem allocatable consoles are not
supported.

EMCS consoles provide improvements over the subsystem allocatable interface for
transferring MVS messages between the MVS system and NetView. Improvements
in message communication also result in improved automation.

EMCS consoles use a message data block (MDB) to transfer information between
NetView and the MVS system. This MDB is an architected MVS structure that
provides more information about a message than is available with the subsystem
interface. For example, message attributes, such as highlighting (which includes
color), can be retained in the messages. Because more attributes are retained, more
attributes are available for manipulation by automation procedures.

Use the extended multiple console support consoles or the subsystem interface for
transferring messages. A specific coding combination determines which method is
used. The coding involves a MSGIFAC parameter in both the MVSPARM statement
in the CNMSTUSR or CxxSTGEN member that is included in the CNMSTYLE
member and a start option in the start procedure for NetView subsystem address

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 71

space (CNMPSSI). A MSGIFAC parameter is used in both places. If SSI.ProcString
is specified in the CNMSTYLE member, then the value MVSPARM.MSGIFAC is
used when starting the SSI.ProcString.

Coordinate the coding of two MSGIFAC parameters. Some coding combinations of
the two parameters cause a mismatch and are not valid. [Table 2| lists the
combinations that produce acceptable results.

Note: Messages queued to NetView through the subsystem interface are time
stamped when they are submitted to the subsystem interface except when
MSGIFAC=SYSTEM is specified. You can examine this time stamp in several
ways, including use of the ACQUIRE function in the automation table and
the PIPE EDIT IFRAUGMT order in combination with any of the time
conversion orders.

Table 2. Acceptable Combinations of MSGIFAC Values for MVSPARM and Subsystem Address Space Procedure

Effects of the Combination of MSGIFAC Values

Extended Multiple Console Support Consoles are used for delivery of MVS
system messages. The CNMCSSIR task does not obtain an EMCS console for
receiving MVS system messages.

For any MVS level, NetView commands entered from EMCS consoles use
the subsystem interface.
Note: A message revision table is not allowed when CMDONLY is specified

Unsolicited messages are buffered as soon as the NetView Subsystem
completes initialization.

The NetView subsystem interface router task (CNMCSSIR) does not have to
be active for message buffering to occur. The automation token character
position 8 is replaced with '@" if the CNMCSSIR task is inactive.

NetView operators and autotasks use extended multiple console support
consoles instead of subsystem interface delivery. This gives you the queuing
of unsolicited messages with all the benefits of extended multiple console
support consoles.

Subsystem
CNMSTYLE Address Space
MVSPARM Procedure
MSGIFAC= MSGIFAC=
CMDONLY SYSTEM
SSIEXT SSIEXT
SYSTEM NOSSI

72 Automation Guide

Extended Multiple Console Support Consoles are used for delivery of MVS
system messages.

The CNMCSSIR task obtains an extended multiple console support console.
By default, this EMCS console has the AUTO attribute. This console
attribute causes all messages that are marked AUTO(YES) or AUTO(token)
in the MPF table to be delivered to the CNMCSSIR task.

For any MVS level, NetView commands cannot be entered from EMCS
consoles because the NetView subsystem is not active.
Note: The Message Revision Table cannot be used when MSGIFAC=NOSSI.

Table 2. Acceptable Combinations of MSGIFAC Values for MVSPARM and Subsystem Address Space
Procedure (continued)

Subsystem
CNMSTYLE Address Space
MVSPARM Procedure
MSGIFAC= MSGIFAC= Effects of the Combination of MSGIFAC Values
SYSTEM SYSTEM Extended Multiple Console Support Consoles are used for delivery of MVS

system messages.

The CNMCSSIR task obtains an EMCS console. By default, this EMCS
console has the AUTO attribute. This console attribute causes all messages
that are marked AUTO(YES) or AUTO(token) in the MPF table to be
delivered to the CNMCSSIR task.

For any MVS level, NetView commands entered from EMCS consoles use
the NetView subsystem interface.

Migrating from the Subsystem Interface to Extended Multiple Console
Support Consoles

Migration from the subsystem interface to EMCS consoles must be done in stages.
These are the suggested stages. For information about using the subsystem
interface and EMCS consoles, see [‘Comparing Extended Multiple Console Support|
[Consoles with Subsystem Allocatable Consoles” on page 71|

Establish Unique Names

Establish naming conventions for EMCS consoles before you start to use the
consoles. For information about console naming conventions, see
[Console Naming Conventions” on page 66,

To avoid name conflicts, establish unique names for all tasks that use load module

CNMCSSIR. For information about names for CNMCSSIR tasks, see
[Names for CNMCSSIR Tasks” on page 67|

Migrate to a Later Release NetView Program at Each Host

In networks that use a communication management configuration (CMC) or a
focal-point organization, start migrating to a later release of the NetView program
(V2R4 or later) at the CMC or the focal-point host. Then distribute the migration to
other hosts throughout the network.

Continue Using the Subsystem Interface If Needed

If you want the NetView program to use the subsystem interface for transferring

messages, override these two parameters:

* MVSPARM.MSGIFAC parameter in the CNMSTUSR or CxxXSTGEN member that
is included in the CNMSTYLE member

* MSGIFAC parameter in the subsystem address space procedure (CNMPSSI)

For information about selecting values for MSGIFAC, see [“Comparing Extended|
Multiple Console Support Consoles with Subsystem Allocatable Consoles” on page

71]

The default in the sample JCL procedure specifies that NetView is to use extended
multiple console support consoles. Otherwise, the default is the subsystem

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 73

interface. You can change the JCL procedure default when the required MVS
operating system, NetView program, and cross-domain communication support are
available.

With NetView, you can process unsolicited MVS messages using the subsystem
interface while processing solicited command responses using EMCS consoles.

Use the RMTCMD Command and LU 6.2 Sessions for
Cross-Domain Communication

You can gradually migrate older NetView nodes to use the RMTCMD command
and LU 6.2 sessions.

In a multiple CMC or multiple focal-point enterprise, update all CMCs or focal
points to use the RMTCMD command and LU 6.2 sessions before you migrate
these nodes to use extended multiple console support consoles. Also, in networks
that use distributed automation, update all NetView programs that exchange
messages to use the RMTCMD command and LU 6.2 sessions before you migrate
the programs to use EMCS consoles. In both cases, if possible, complete the
migration to the RMTCMD command and LU 6.2 sessions before you use extended
multiple console support consoles, to avoid losing MDB data such as highlighting
and some DOM information.

Restrict Operator Access to the MVS VARY Command

Unless restricted from doing so, an operator can use the VARY command to
change attributes of an EMCS console, such as the route codes that the console
receives. This type of change can cause duplicate message delivery and duplicate
automation. Therefore, restrict the use of the NetView MVS command by using
NetView command authorization checks, or by protecting the VARY command in a
system authorization facility (SAF) product. For instance, protect the NetView MVS
command using NetView command authorization table, or a system authorization
facility (SAF) product such as RACF (Resource Access Control Facility). Refer to
the [[BM Tivoli NetView for z/OS Security Referencel for information about command
authorization.

Restrict AUTO Attribute of EMCS Consoles

The AUTO attribute causes a console to receive messaged marked for automation
using the MPF or the MRT statement ("Y” AUTOMATE). When using
MSGIFAC=SSIEXT (the default), avoid duplicate automation by ensuring that no
NetView console has the AUTO attribute. If you are using MSGIFAC=SYSTEM,
ensure that only one console has the AUTO attribute. Note that messages affected
by the MRT action NETVONLY are always delivered directly to NetView through
the subsystem router (CNMCSSIR) and not to any console.

Define Each NetView Program to Use Extended Multiple
Console Support Consoles

74 Automation Guide

After the preceding steps are completed, individually migrate each NetView

program to use extended multiple console support consoles. To do so, make

appropriate changes in these two parameters:

* MVSPARM.MSGIFAC parameter in the CNMSTUSR or CxxSTGEN member that
is included in the CNMSTYLE member

* MSGIFAC parameter in the subsystem address space procedure (CNMPSSI)

For more information about values for the MSGIFAC parameters, see |”Comparin§|
Extended Multiple Console Support Consoles with Subsystem Allocatable|
Consoles” on page 71|

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 75

76 Automation Guide

Chapter 7. Automation in an MVS Sysplex

This chapter describes an MVS sysplex, some of the advantages, suggestions for
automation in a sysplex, and how to plan for automation in the sysplex.

MVS Sysplex

An MVS sysplex is a configuration of multiple MVS operating systems working as
a single system by sharing functions and programs. An MVS component that
enables these multiple MVS systems to operate as a sysplex is the cross-system
coupling facility (XCF). The XCF provides coupling services so that authorized
programs on one of the MVS systems can communicate, or exchange data, with
programs on the same MVS system or other MVS systems. A major purpose of
XCF is to enable multiple MVS systems to appear to be one system.

With XCF, a multiple-system environment is defined as two or more MVS systems
residing on one or more processors. If there are two or more processors, the
processors must:

* Be interconnected by one or more channel-to-channel (CTC) connections, or one
or more coupling facilities
» Use the External Time Reference (ETR)

* Share an XCF couple data set

The set of one or more coupled MVS systems in a sysplex is given an XCF sysplex
name so that authorized programs in the systems can use the XCF coupling
services. XCF monitors the systems in the sysplex and can remove a failing system
from the sysplex with minimal operator intervention.

In the sysplex, messages can be routed to a console on one MVS system from the
other systems in the sysplex. Also, commands can be routed from a console on one
MVS system to the other systems in the sysplex.

Each console name used in the sysplex must be unique.

Refer to the MVS library for information about planning the management of a
sysplex.

Using NetView Automation in a Sysplex

One important advantage for using NetView automation in a sysplex is that
NetView can receive messages from any or all members of a sysplex and can issue
automatic responses to the appropriate member of the sysplex.

These are some methods for using NetView automation in a sysplex:

* Use extended multiple console support (EMCS) consoles as the mechanism for
delivering MVS system messages, rather than using the subsystem interface.

* Develop a strategy for using different segments of the NetView automation table
to handle messages for different systems in the sysplex. You can add SYSID
condition items to your existing automation table statements to block messages
from certain systems, or to invoke certain automation table actions based on the
system ID.

© Copyright IBM Corp. 1997, 2009 77

* Develop a strategy for naming consoles. The default is to assign console names
to be the same as the operator names, but you can override the default.

For details about the GETCONID and SETCONID commands, see NetView
online help.

Planning for Automation in a Sysplex

Before you can start to plan for automation in a sysplex, you must be familiar with
the planning required for managing a sysplex. Refer to the MVS library for
information about managing a sysplex.

You can also use the Message Revision table (MRT) to perform the functions
provided by the message processing facility (MPF). Additional information about
the Message Revision table can be found in [‘Message Revision Table” on page 25

Because a sysplex involves coordinated interaction among several MVS systems,
planning for automation in a sysplex can be an intricate process. To help you in
the planning process, the remainder of this section is divided into major stages.
These stages are units of information presented in the order that you must
consider the information when planning. Consider all of this information carefully.

Stage 1. Become Familiar with EMCS Consoles and How Their
Attributes Affect Message Routing in a Sysplex

Review the information about extended multiple console support consoles given in

Chapter 6, “Automation Using MVS Extended Multiple Console Support|

Consoles,” on page 65 Next, consider these items:

* Console names must be unique across the sysplex.

* The value of the MSCOPE console attribute determines the MVS system or
systems from which a console receives messages. Carefully consider these
MSCORPE values in a sysplex, especially if you do not plan to use the NetView
defaults. You can set the MSCOPE value for a console to receive messages from:
— The system on which the console is running
— All systems in the sysplex
— Alist of systems within the sysplex

¢ The CMDSYS console attribute defines which system in a sysplex acts on MVS
commands. With the CMDSYS attribute, a NetView operator can automatically
direct all of that operator’s MVS commands to a particular system of the sysplex.
Consider what function each console has in the sysplex. Consider also that:

— The default CMDSYS setting is the local MVS system; the system on which
NetView is running.

— One operator on a particular NetView program might want to issue
commands to another member of the sysplex, exclusively. Therefore, the
CMDSYS attribute must be set to that system.

Stage 2. Coordinate MPF Actions with the Definitions of EMCS
Consoles

78 Automation Guide

Because the automation of responses to MVS messages is affected by the message
processing facility (MPF) table, coordinate the actions performed in MPF with the
definitions you plan to use for extended multiple console support consoles. For
example, decide which console receives messages marked with the AUTO(YES)
keyword, and decide what MSCOPE values to use. Consider this information:

* Each message is processed by only one MPF table, which is the MPF table in the
system that originated the message. However, the message can be processed by
other facilities, such as the NetView automation table, in the other systems in the
sysplex.

* Defining the MPF tables the same way in all systems in the sysplex is not
necessary, but might be wanted to ease maintenance or if workloads can be
moved from one system to another during recovery actions.

* Define the MPF table for each system to provide processing for all MVS
messages generated on that system. Understand and anticipate the effect of the
additional processing or automation that the messages might undergo on other
systems in the sysplex.

Stage 3. Decide Whether to Centralize Your NetView
Automation on One System of the Sysplex

Although it is usually most efficient to provide automation as close to the source
as possible, you can centralize system automation. If you run JES3, see
[Job Entry Subsystem 3 (JES3) Automation,” on page 493| for considerations in
centralizing automation in a JES3 environment.

During NetView initialization, if you specify the RTNDEF.BASE.AGENT.sysname
statement that is included in the CNMSTYLE member, the console obtained by the
CNMCSSIR task receives messages from each system that you define.

You can set MSCOPE values for extended consoles so that one system in the
sysplex can receive all system message traffic and provide automated responses.
Use the MVS VARY command or the OPERPARM segment in RACF (or equivalent
system authorization facility) to set the MSCOPE attribute for EMCS consoles.

Your automation actions, command lists, and command processors must use the
MYVS ROUTE command to route the automation action back to the appropriate
system. You can determine which system in the sysplex issued the message by
checking the SYSID condition item in the automation table. The SYSID information
is also available to command lists written in REXX and the NetView command list
language or command processors. Refer to [IBM Tivoli NetView fo
[z/0S Programming: REXX and the NetView Command List Languagd for information
about using SYSID.

If the message traffic is extremely heavy, centralizing your system automation
might not be a good option for your enterprise. Criteria have not been established
for determining how much traffic can be handled with acceptable performance
when using centralized system automation.

| How Foreign Messages are Processed

I A foreign message is defined as a message that originated in a different system from
I the local system in a sysplex. There are various ways to control how foreign

I messages are processed. When foreign messages are received by the local system,

[they are first passed through any SSI exits that are active, unless the .FORNSSI

[MPFLSTxx statement prevents the SSI exit from receiving them. (See the

I description of the .FORNSSI statement in the z/OS MVS Initialization and Tuning
| Reference, SA22-7592, for more information.) Because Message Revision Table

| (MRT) processing occurs during SSI exit processing, actions can be taken for

I foreign messages at that time (see [Chapter 13, “The Message Revision Table,” on|

I for additional information on this topic). MVS then determines which

I consoles are to receive the foreign message. If the message is destined for a console

Chapter 7. Automation in an MVS Sysplex 79

80 Automation Guide

owned by a NetView operator, the message is delivered there and the message is
considered solicited. If it is not destined for a NetView operator, it is considered
unsolicited and the following are true:

* The NetView SSI determines whether a copy of the message should be
forwarded to the NetView address space. By default, foreign messages are not
forwarded to the NetView address space. This can be overridden by setting
AUTOMATE=Y in the MRT.

e If MSGIFAC is set to SYSTEM, the task with the load module named
CNMCSSIR will receive the message if the message is marked as automatable
and the EMCS console owned by that task has an MSCOPE setting that allows
messages to be received from the originating system. Note that the MSCOPE
value is automatically changed by specifying RINDEF.BASE.AGENT statements
in the CNMSTYLE member. If no RTINDEFE.BASE.AGENT statements are
specified, the default MSCOPE setting is for the local system only.

* In order to reduce the chances of re-revising or re-automating a message, MRT
processing and message automation should be performed as close to the source
of the message as possible.

* Once an unsolicited foreign message is received by the NetView address space,
automation is performed against it as normal.

Chapter 8. Automation with the Resource Object Data

Manager

This chapter introduces the Resource Object Data Manager (RODM) and describes
some of the advantages, implications, and planning considerations for using
RODM in automation.

For more information about the object-oriented terms used by NetView to describe
RODM and its data model, refer to the [[BM Tivoli NetView for z/OS Resource Object]
[Data Manager and GMFHS Programmer’s Guidel

Introducing the Resource Object Data Manager

RODM is a data cache that is maintained in high-speed storage. RODM can hold
many types of information about network and system resources. Because RODM
keeps this information in high-speed storage, NetView can retrieve and update the
information faster than if it were held in most other types of storage.

NetView can use RODM and the resource information held in RODM to assist in
network and system automation.

Interactions with RODM

RODM can use programs called methods to perform many functions that retrieve,
update, and manipulate information within RODM. To perform special
user-defined functions in RODM, users can write their own methods and have
RODM call the methods. Users can write methods in either PL/I or C language.
Methods can be called directly from application programs (such as NetView
command processors) or can be triggered automatically when RODM fields (such
as the status of an object) change.

Non-NetView users of RODM can interact with RODM through an application
program interface that RODM provides. Through the API, an application program
can retrieve and update the resource information held in RODM or can call RODM
methods. You can write application programs for RODM in PL/I, C, or assembler
language.

The MultiSystem Manager RODM Access Facility provides a fast and efficient
REXX program interface to RODM. It gives you the ability to create, update, query,
and delete objects from RODM.

NetView command processors can get values from RODM, change information in
RODM, and call RODM methods. You can write NetView command processors in
PL/1, C, or assembler language. REXX programs, NetView automation table
statements and, to some degree, command lists can also call methods and can
change information in RODM by using the ORCONYV or the FLCARODM
command.

See |Chapter 28, “Automation Using the Resource Object Data Manager,” on page
{409] for examples of using method EKGSPPI and the ORCONV command.

© Copyright IBM Corp. 1997, 2009 81

Using

The RODM methods can call any NetView command list or command procedure
by using the EKGSPPI object-independent method. For an example of using
EKGSPPI, see [Chapter 28, “Automation Using the Resource Object Data Manager,”|

|0n page 409[
RODM in Automation

As an example of how you can use RODM, an application program for RODM can
enable some external event, such as a change in status of a resource, to update the
associated resource information in RODM. This update starts a specific RODM
method. The method, in turn, can compare the updated information with other
information in RODM, according to a predefined algorithm, and issue an
appropriate response. Thus, by maintaining resource information in storage and by
providing rapid access to the information through an API and through some of the
methods, RODM can assist in determining the correct automatic responses to
various network and system events.

Also, an “automation in progress” indicator is maintained in RODM for each
resource affected by automation. This enables operators who are viewing the
resource with the NetView management console to wait until the automation is
complete before attempting to fix a problem with the resource.

For more information about RODM and about writing RODM application
programs and methods, refer to the [BM Tivoli NetView for z/OS Resource Object|
[Data Manager and GMFHS Programmer’s Guidel

Advantages of Using RODM

RODM can accept and retain many types of information about resources, such as
status, history, and configuration information. With the types and amount of
information retained, more data is available to help in analyzing the causes and
remedies for resource problems. Because RODM retains information in memory,
you can quickly update and retrieve this resource information.

RODM retains information as objects and collections of objects and can associate
objects according to program-defined relationships. Because the relationships
among pieces of information can be specified in RODM, you can determine
interactions between events and use this information in analyzing problems.

You can use RODM methods to provide automatic responses to network and
system events. RODM methods can start NetView routines, and NetView routines
(including automation table statements) can start RODM methods.

Note: You might need to write NetView command lists, NetView command
processors, or NetView automation table statements to retrieve and update
RODM information from NetView.

Planning for Using RODM in Automation

82 Automation Guide

This section describes items to consider as you plan how to use RODM in the
NetView automation of your network and system. Refer to the [[BM Tivoli NetVieuw|
[for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for more
information.

Determining the Types of Events to Produce Automated
Responses from RODM

RODM can produce automated responses to many types of network and system
events. For some events, however, automated responses are best generated by the
automation table alone or by a combination of the automation table and RODM.
You need to determine the best method and best component (or components) to
use for responding to each type of event.

For example, the automation table is best suited for automating responses to
simple, quick events because the automation table is faster than RODM for such
automation tasks and is simpler to code. RODM is best suited for automating
responses to complex events that result from multiple messages or alerts. RODM is
also best suited for automating responses that:

* Require more information to determine an appropriate response than is usually
available with the automation table alone

* Require analysis of conditions before issuing a response

¢ Can take advantage of the algorithms in existing RODM methods or RODM
application programs

Understanding RODM Automation Capabilities

Before using RODM in automation, review an outline of events (a scenario) that
uses RODM capabilities for automation. For an example of a RODM scenario, see
[Chapter 28, “Automation Using the Resource Object Data Manager,” on page 409}

Chapter 8. Automation with the Resource Object Data Manager ~ 83

84 Automation Guide

Chapter 9. NetView Information Routing for Automation

The chapter explains how automation information is routed. These routing details
include topics such as:

* NetView interfaces
* NetView Message Routing
* NetView Hardware-Monitor Data and MSU Routing

* NetView Command Routing

In many cases, NetView message and data flows are complex. However, being
familiar with the general path of information can help you ensure that the
messages and MSUs you want to automate go to the automation facility.

For example, you might want the automation table to generate automatic responses
to network management vector transports (NMVTs) from the VTAM program’s
communication network management (CNM) interface. To do so, ensure that
nothing impedes the flow of NMVTs to the automation table.

Another use of routing information is to determine what happens when two
NetView facilities specify conflicting attributes for a single message or MSU. For
example, an MSU might go to the hardware monitor, then to the automation table,
then to installation exit DSIEX16B. Knowing that exit DSIEX16B processes the data
last can help you determine that the attributes set by the exit take priority.

NetView Interfaces

NetView automation can monitor data-processing events by receiving messages,
MSUs, and other data from a variety of sources. Similarly, NetView can issue
commands to many different targets and destinations. [Figure 9 on page 86| shows
commonly used interfaces for receiving event notifications and issuing commands.
See |Chapter 2, “Overview of Automation Products,” on page 21| for diagrams that
elaborate on the interface to the operating system.

© Copyright IBM Corp. 1997, 2009 85

>

MCS T
Consoles (MVS)

Interface to operating system

Vi

Local device
A Autotask System System PPI records (MVS)
messages | |commands or IUCV (VM)
A
External
Database\ s
I~ i
NetView Bridge transport '\\\
Consoles ™ Other
— High //' nodes
< > OST performance 41|
— B g NetView / transport
) // Processing
| &1 Facilities
/ \ TAF P _ Other
~— / OST-NNT session | > VTAM
o] / session applications
“— /
< p» Target
////v RMTCMD TSCF systom
Other 4|]
NetView <« »| LUC CNMI POI Service | o Non-SNA
programs session point - " network
A A
VTAM

Figure 9. NetView Interfaces Used in Automation

Interfaces to the Operating System

To implement system automation, begin by giving NetView access to information
that describes the state of the operating system, subsystems, and applications. Also
set up NetView to send commands to the system and receive command responses.
You can enter commands and receive responses using the subsystem interface or
extended multiple console support (EMCS) consoles. Other interfaces that you can
use for system automation include:

* System Automation for OS/390 Processor Operations can intercept traffic on
system consoles.

e The NetView terminal access facility (TAF) can intercept messages from other
applications, including system applications, to their own consoles.

* Local devices of MVS can pass certain types of system problem notifications to
NetView for processing.

* The MS transport and the high-performance option of the MS transport allow
LU 6.2 communication between two applications. One use of the transports is to
pass information between a system application and NetView.

* The program-to-program interface accepts MSUs from system applications
running with NetView on the same system and can pass them to the NetView
hardware monitor or to the automation table.

86 Automation Guide

If you intend to automate your system, ensure that the messages and other
information you want to automate come to NetView.

See |Chapter 2, “Overview of Automation Products,” on page 21| for an overview of
the relationship between the operating system and NetView in system automation.

For step-by-step information about how to set up system communication, see
“Establishing Communication between NetView and the Operating System” on|

page 293.|

If you need system flow information in more detail, see[Appendix D, “MVS|
[Message and Command Processing,” on page 525.|

Interfaces to Other NetView Programs

With these interfaces, you can send information between two systems running

NetView:

e The RMTCMD command, for sending commands to other NetView programs
and receiving any messages generated in response

¢ OST-NNT sessions, an alternative way of sending messages and commands
between NetView programs

* LUC sessions, for forwarding alerts or status information to a focal point

You can also use TAF sessions, the MS transport, and the high-performance option
of the MS transport for NetView-to-NetView communication. See
[“Centralized Operations,” on page 375| for a discussion of NetView-to-NetView
communication.

Other Message and Command Facilities
Other NetView facilities for receiving messages and sending commands include:
* The program operator interface (POI) for VTAM messages

* NetView Bridge for communication with Information/Management and other
external databases

Interfaces for Hardware-Monitor Data and MSUs

NetView enables direct automation of MSUs. You can also automate
hardware-monitor data other than MSUs, by first converting them to messages.
Hardware-monitor data and MSUs come to NetView from these sources:

* The communication network management interface (CNMI), for problem records
from an SNA network

* Service points for NMVTs from non-SNA sources
* Local devices, for problem records from the operating system

* The program-to-program interface, for MSUs from other applications running
with NetView on the same system

e The LU 6.2 transports, for MSUs from LU 6.2 applications

NetView Message Routing

After NetView receives a message, NetView routing facilities control the
destination of the message within NetView. You can use routing facilities to choose
the operators who see the message or the autotasks that process it. To control
message routing effectively, you must understand the distinction between solicited
and unsolicited messages. You must also be familiar with the major routing

Chapter 9. NetView Information Routing for Automation ~ 87

facilities and the path of a message through NetView. If you need more
information about message paths, see |[Appendix F, “Detailed NetView Message and|
[Command Flows,” on page 539}

NetView treats a message as solicited if a specific destination for the message is
known; otherwise, the NetView program treats the message as unsolicited.

Solicited Messages

NetView queues solicited messages to the known destination task: a NetView
operator, an autotask, or a NetView-NetView task (NNT). These are examples of
solicited messages:

* Responses to NetView commands.

* MVS system messages delivered directly to a NetView operator station task
(OST) that has obtained an EMCS console.

* Responses to system commands issued from a NetView operator console. See
[“Command Flow” on page 527 for details about how solicited messages are
returned in response to system commands.

* Responses to VTAM commands.

* Messages issued from a terminal access facility (TAF) operator-control session
with an application such as CICS or Information Management System (IMS),
including all messages received from those applications on a TAF session.

* Messages issued as a result of an &CONTROL ALL, &CONTROL ERR, or
&CONTROL CMD specification in a NetView command list language command
list.

* Messages issued as a result of an &WRITE or &BEGWRITE statement in a
NetView command list language command list.

* Messages issued as a result of a TRACE or SAY instruction in a NetView REXX
command list.

* Messages issued by the NetView MSG command or the MVS and TSO SEND
commands.

System messages from MVS can be either solicited or unsolicited. See
[Messages from MVS” on page 89| for a description of unsolicited MVS system
messages.

Unsolicited Messages

88 Automation Guide

A message is unsolicited if a specific destination task is not known. For example,
VTAM might send a message to NetView that is unrelated to any request by
NetView, through the primary POI (program operator interface). The NetView
program also regards a message as unsolicited if it is directed to the primary POI
task (PPT), because the PPT cannot display messages. An MVS message that is a
response to a command issued by the PPT routed through the subsystem interface
is also regarded as unsolicited.

However, an MVS message routed through an EMCS console is considered
solicited. Unlike solicited messages sent to any other task, these solicited messages
can be processed with the ASSIGN PRI and ASSIGN SEC commands.

Note: The hardware-monitor submits only unsolicited MSUs to automation.

The Authorized Receiver
Because there is no specific destination task for an unsolicited message, NetView
routes all unsolicited messages to the authorized receiver, unless you use the

ASSIGN command or the automation table to provide a destination. The
authorized receiver is simply a NetView operator you have authorized to receive
unsolicited and authorized messages that do not have another destination.

Use the AUTH statement in an operator profile to determine the authority of a
particular operator. All operators with AUTH MSGRECVR=YES in their profiles
are permitted to be the authorized receiver. However, NetView has only one
authorized receiver at a time.

Unsolicited Messages from a DST

Unsolicited messages from a data services task (DST) go to the task that started the
DST (if it is still active), rather than to the authorized receiver. Although the
ASSIGN command cannot affect routing of unsolicited DST messages, the
automation table can affect the routing.

Unsolicited Messages from MVS

Unsolicited messages received from MVS are not sent to the authorized receiver.
You can use the ASSIGN command to re-route these messages to another task. See
[“Using ASSIGN to Route Solicited Messages” on page 92| for more information
about the ASSIGN command.

If you do not use the ASSIGN command, the CNMCSSIR task scans the
automation table for each unsolicited message. The scan might result in a match in
the automation table.

If one of the actions specified for the matching statement is to run a command and
if the command is not routed to a logged-on task, the command specified in the
automation table statement is ignored and a DWOO50E message related to Invalid
cmd: is added to the netlog.

If an operator is specified with the ROUTE action in the automation table, the
command runs under that operator task instead of under the task that started
CNMCSSIR.

If you are using EMCS consoles, all MVS system messages received by the
CNMCSSIR task are unsolicited messages. System messages received by any other
NetView operator task are solicited messages.

Message Routing Facilities

You can control message routing in NetView with installation exits, the automation
table, and the ASSIGN command, the MSGROUTE command, and the Pipes
ROUTE command. For MVS systems with EMCS consoles, you can also set your
EMCS console attributes to control message routing. For example, you can route
messages to an EMCS console based on the message route code. The MVS system
messages with that route code are directly delivered to the NetView task that
obtained the EMCS console.

Attention: If you use route codes to route messages directly to EMCS consoles,
duplicate automation of some messages can result. For more information, see
Chapter 6, “Automation Using MVS Extended Multiple Console Supportf
Consoles,” on page 65|

Chapter 15, “The Automation Table,” on page 149|and [Chapter 17, “Installation|
Exits,” on page 287| describe the automation table and installation exits,
respectively. These sections discuss the ASSIGN command, the MSGROUTE
command, and routing messages based on route codes.

Chapter 9. NetView Information Routing for Automation 89

Routing Messages with the ASSIGN Command

90 Automation Guide

These sections describe how to use the ASSIGN command. For most message
routing, use the automation table rather than using the ASSIGN command, as
discussed in [“ASSIGN Command Versus Automation Table Routing” on page 93
However, the ASSIGN command is useful for such things as assigning operators to
groups and routing messages to autotasks to speed up automation.

The MVS system messages that are delivered directly to EMCS consoles in use by
NetView OSTs are considered solicited, and therefore are not subject to ASSIGN
PRI and ASSIGN SEC processing. There is one exception: If the PPT has an EMCS
console, the solicited messages sent to the PPT can be processed with ASSIGN PRI
and ASSIGN SEC. The MVS system messages that are delivered to the EMCS
console obtained by the CNMCSSIR task are considered unsolicited messages.

Assigning Messages to Operators

The MSG option enables you to direct copies of solicited, unsolicited, or authorized
messages to:

e A particular operator

* A group of operators

* The system operator (SYSOP)

* The network log (LOG)

The ASSIGN command enables the operator to change message routing without
editing and reloading the automation table.

Assigning Operators to Groups

The GROUP option enables you to assign a list of operators to a particular group.
You can then use the operator group with other ASSIGN commands, with the
MSGROUTE command in a command list, and with the EXEC(ROUTE) action in
the automation table.

If you specify ROUTE(+groupname) in the automation table to route a message to a
group, you can change the list of operators who receive the message by changing
the contents of the group. You can issue the ASSIGN command with the GROUP
option whenever you need to modify the list of operators belonging to a particular

group.

Note: Because assignment changes are difficult to monitor, when you are setting
the ASSIGN Options, consider authorizing operators to issue only the
GROUP option. You can use the NetView LIST command to monitor what is
assigned at any given time.

For more information, refer to the [BM Tivoli NetView for z/OS Security|

Using ASSIGN to Route Unsolicited Messages

With the PRI option of the ASSIGN command, you can specify a list of operators
to receive unsolicited or authorized messages. You can specify:

* An operator

* An autotask

* A list of operators and autotasks

* Agroup ID

* The system operator (SYSOP)

* The network log (LOG)

Only one operator receives each message. If you specify a list or a group ID, only
the first operator in the list or group that is logged on receives the message.

The message sent to the primary receiver is flagged with a percent sign (%) in the
last position of the DOMAINID field. NetView displays the percent sign on the
screen with the message and also records the percent sign in the network log. The
percent sign does not appear in the HDRDOMID field of BUFHDR.

Installation exits that need to determine whether a message is a primary copy must
check the IFRAUPRI and IFRAUSEC fields of the internal function request.

If you issue the ASSIGN command for a message with PRI=SYSOP or PRI=LOG,
the NetView automation table does not process the message.

With the SEC option of the ASSIGN command, you can specify a list of operators
to receive secondary copies of the unsolicited or authorized messages. Before you
can generate SEC copies, you must have a PRI assignment for a message.

All operators, or groups of operators, in the SEC list receive the message if:
* They are logged on
* At least one operator in the PRI list is logged on

The message sent to the SEC receiver is flagged with an asterisk (*) in the last
position of the DOMAINID field. NetView displays the asterisk when displaying
the message and also places the asterisk in the network log. The asterisk does not
appear in the HDRDOMID field of BUFHDR.

Installation exits can check the IFRAUSEC field in the automation internal function
request (AIFR) to determine whether a message is a secondary copy.

If no primary receiver is logged on, NetView continues as if you had not made an
assignment. The routing of the message does not change, and a secondary copy of
the message does not go to secondary receivers. To ensure that a message
assignment does take effect and that secondary copies go to secondary receivers,
you might want to include several operators on the PRI list or use a stable
autotask as one of your primary receivers.

These points apply to secondary copies:

* They are not subject to automation table processing unless they are routed
cross-domain to another NetView operator. Secondary copies routed
cross-domain are subject to automation table processing in the cross-domain
NetView program.

* They are subject to WAIT processing in command procedures.
* They are useful for displaying messages to several operators.

You can use the ASSIGN command to route unsolicited messages. The command
in routes all unsolicited messages to the first operator who is specified on
the PRI option and who is logged on.

ASSIGN MSG=+,PRI=(OPER1,AUTO1),SEC=(NETOP1,L0G)

Figure 10. Using the ASSIGN Command to Route Unsolicited Messages

Chapter 9. NetView Information Routing for Automation 91

92 Automation Guide

NetView logs each copy in the network log unless you indicate otherwise in
installation exit DSIEX04. In the previous example, because LOG is specified in the
SEC list of operators, duplicate logging occurs unless OPER1, AUTO1, and
NETOP1 have suppressed logging.

Using ASSIGN to Drop Unsolicited Messages

You can also use the DROP option of the ASSIGN command with the MSG option
or the GROUP option. When used with the MSG option, DROP=AUTH drops the
specified messages from the PRI and SEC assignments. For example if you type the
command shown in the system does not drop all assignments; it drops
the assignments you made using MSG=*. (AUTH is the default value and does not
have to be specified.)

ASSIGN MSG=*,DROP=AUTH

Figure 11. Using the ASSIGN Command to Drop Unsolicited Messages

Using ASSIGN to Route Solicited Messages

With the COPY option of the ASSIGN command, you can specify a list of operators
who receive a copy of a solicited message. You can specify:

* An operator

A list of operators

e Agroup ID

* The system operator (SYSOP)

* The network log (LOG)

Copies of the solicited message go to all recipients who are in the copy list and are
logged on.

The message sent as a copy is flagged with a plus sign (+) in the last position of
the DOMAINID field. NetView displays a plus sign on the screen when the
message is issued and also places a plus sign in the network log. The plus sign
does not appear as part of the HDRDOMID field of BUFHDR. Installation exits can
check the IFRAUCPY field of the internal function request to determine whether a
solicited message is a copy.

These points apply to copies generated by the ASSIGN COPY option:

* They are not subject to automation-table processing unless they are routed
cross-domain to another NetView operator. Such copies are subject to
automation table processing in the cross-domain NetView program.

* They are subject to WAIT processing in command procedures.

The first command in ends copies of all solicited messages to both
NETOP1 and OPERT1 (if they are logged on).

If you issue the ASSIGN command with DROP=COPY, the COPY assignments are
dropped for the specified messages. The second command in drops those
messages assigned with MSG=* from the COPY assignment, type ASSIGN
MSG=+,DROP=COPY.

ASSIGN MSG=+,COPY=(NETOP1,0PER1)
Figure 12. Using the ASSIGN Command to Route Solicited Messages
Using ASSIGN to Route Messages to Autotasks

If your automation slows because many messages are queued on a single task,
waiting for automation table processing, you can use the ASSIGN command to

split the messages among several tasks. In this case, you can still use the
automation table for final routing of the message.

Note: The ASSIGN command cannot route messages to an optional task. See
[“Actions” on page 211 for details.

Using ASSIGN with Automation Logic

Independently from the specification of the destination of the ASSIGN command,
you can apply automation logic to determine whether messages are routed to their
assigned destination. When used with the MEMBER option, the ASSIGN command
can be used to denote a DSIPARM member or PIPE message data that has
automation table statements. These statements are compiled into an automation
table. When messages pass through this table, it is determined whether they satisfy
ASSIGN routing criteria. For more information on the ASSIGN command, refer to
the |IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N)| or the online
help.

Using the REFRESH and ASSIGN Commands for Dynamic
Operator Control

Using the REFRESH command, you can dynamically delete operators and
dynamically add operators without predefining the operators to NetView. The
ASSIGN command enables you to assign messages to operators that are not
presently defined to NetView. If you assign messages to an operator before you
define the operator to NetView, you receive a message informing you that the
operator specified in the ASSIGN command is not presently defined to NetView.
The assignment is then completed successfully.

When the defined operator logs on, the operator begins receiving messages.
Regardless of whether an operator is defined to NetView, messages assigned to
operators that are not logged on are delivered to the next assigned operator or to
the original destination.

If an operator definition is deleted using the REFRESH command, the operator
session continues until that operator logs off. Messages assigned to operators that
are logged on but no longer defined to NetView are still delivered to that operator.

ASSIGN Command Versus Automation Table Routing

You can use the ASSIGN command to route solicited and unsolicited messages.
ASSIGN is most useful for assigning operators to groups, for preliminary routing
of messages to autotasks to get messages to the automation table faster, and for
assigning messages to the system operator. Otherwise, it is usually preferable to
use the automation table for message routing, for these reasons:

* Message routing with the ASSIGN command occurs in a specific-to-general
order, regardless of the order in which you issue ASSIGN commands.
shows examples.

ASSIGN MSG=IST+,PRI=(VTAMOPER,AUTO1)
ASSIGN MSG=IST5%,PRI=(VTAMOPER,AUT02)

Figure 13. General and Specific Message Routing

Notice that the routing specified in the second command occurs first because
IST5* is more specific than IST*. If a third ASSIGN command, such as this
example, is issued to undo the message routing specified in the first ASSIGN
command, the second ASSIGN command is still processed.

ASSIGN MSG=IST+*,DROP

Chapter 9. NetView Information Routing for Automation 93

An operator who wants to drop all ASSIGN commands for IST messages needs
to know about the second command as well as any other commands issued for
IST messages. The operator can then issue the appropriate commands to drop
the ASSIGN commands.

When several different operators, command lists, and command processors are
issuing ASSIGN commands, they are not necessarily aware of other assignments.
Therefore, message routing with the ASSIGN command can be difficult to
monitor. With the automation table, message routing is centralized, and thus is
easier to monitor.

 If you route all messages with the automation table, the table is easier to
maintain because all of the routing instructions are in one file or set of files. You
are less likely to create conflicting route instructions and can correct them more
easily if you do.

* When you route messages with the NetView automation table, you usually do
not need to be concerned about whether messages are solicited or unsolicited.
However, you can use the automation table to identify whether messages are
solicited if you desire. Bit 16 of IFRAUIND indicates whether the NetView
program treats a message as unsolicited. You can use the IFRAUIND automation
table action to check this bit.

Routing Messages with the MSGROUTE Command

You can use the MSGROUTE command to direct copies of messages to:
* A particular operator or autotask

* A group of operators

* The system operator (SYSOP)

* The NetView hardcopy log

* The network log (LOG)

You can issue the MSGROUTE command from a command list initiated from the
NetView automation table. Like the NetView automation table, MSGROUTE can
set such actions as BEEP or DISPLAY for the message. However, actions specified
on the MSGROUTE command cannot override the actions specified in the NetView
automation table for a given message. NetView does not send the message to the
automation table again when the message is routed with the MSGROUTE
command. However, if a copy is routed cross-domain, the cross-domain
automation table processes the message.

Using the MSGROUTE command can help you decide where to route a message or
what action to take without more information. For example, you can review a
command list to check the second line of a multiline message before deciding
where to route the message.

Routing Messages to EMCS Consoles Based on Route Codes

94 Automation Guide

To route MVS system messages based on their route codes, set up your EMCS
consoles to receive the route code or codes that interest you. To route messages
based on route codes, also eliminate any duplicate message automation.

Specifying the Route Codes

You can use the Resource Access Control Facility (RACF) OPERPARM segment or
the ROUT keyword on the MVS VARY command to specify the route codes you
want to receive at an EMCS console. NetView treats these messages as solicited
messages because by requesting a specific route code, you have given the messages
a known destination.

Eliminating Duplicate Automation of Messages

By default, all messages marked AUTO(YES) or AUTO(token) in the MVS message
processing facility (MPF), or which are subject to NETVONLY or REVISE("1"
AUTOMATE) revision table actions or similar, are delivered to the EMCS console
obtained by the CNMCSSIR task. Also, by default, no MVS system messages are
routed to this console based on route code. Refer to the |[BM Tivoli NetView for|
[z/0OS Security Referencel for information about attributes for EMCS consoles.

If you use route codes to send messages directly to EMCS consoles, some messages
might be automated twice because they are also delivered to other EMCS consoles
based on other routing criteria. Examine the attributes of every EMCS console in
your system to avoid duplicate automation.

The best way to avoid duplicating automation is to avoid using route codes to
send messages directly to EMCS consoles. However, if you do use route codes to
send messages directly to EMCS consoles, you can use the automation table to
help avoid duplicate automation.

Some causes of duplicate automation include:
* Action messages routed to multiple operators
¢ Command lists called more than once for a single message

You can use NetView automation table condition items such as OPID and
ROUTCDE to ensure that specific automation actions are performed only once for
a given message.

Message Routing Flow

The message routing flow in NetView is:
1. DSIEX17 processing
2. PIPE CORRWAIT
ASSIGN PRI/SEC processing
Authorized receiver processing
DSIEX02A processing
Wait processing
Automation table processing
DSIEX16 processing
ASSIGN COPY processing

Discard or display processing

© 0 XN~

—_

[Table 3 on page 96| shows the routing steps for these message types:
* Unsolicited messages from the MVS subsystem interface

* Other unsolicited messages

* Solicited messages

Read the table as if a message enters the top and flows down through the table. If
the classification of a message changes, the flow of the message continues in the
new column of the table without repeating any steps already taken. NetView
invokes the automation table and each installation exit only once for each original
message.

For example, an unsolicited message from VTAM flows through the steps in the
All Other Unsolicited Messages column. The unsolicited message undergoes

Chapter 9. NetView Information Routing for Automation 95

ASSIGN (PRI/SEC), authorized receiver, DSIEX02A, and automation-table
processing. Suppose that the automation table routes the message to an autotask.
Thereafter, NetView treats the message as solicited. The message flow proceeds as
described in the All Other Solicited Messages column without repeating any of the
processing that has already taken place. The solicited message undergoes wait,
DSIEX16, ASSIGN(COPY), logging, and display processing.

Table 3. NetView Message Routing

All Other All Other

Unsolicited Unsolicited Solicited MVS Solicited
Step MVS Messages Messages Messages Messages
DSIEX17 () e
PIPE CORRWAIT Note 2 Note 2
ASSIGN (PRI/SEC) [) ()
Authorized Receiver ()
DSIEX02A () (] ([) []
Wait Processing Note 1 Note 1 [) o
NetView Automation [] () [) o
Table
DSIEX16 (] (] [] []
ASSIGN (COPY) ([] ([]
Logging L o L e
Display to NetView o [
Display to System [] ([] (]
Discard ([

Notes:
1. Wait processing for unsolicited messages occurs only when the message is routed to a
task that is waiting.

2. When a message is solicited by a command in a pipeline, all subsequent routing is
superseded and does not occur. If the pipeline re-issues the message, it is treated like a
non-MVS solicited message.

DSIEX17 Processing

Installation exit DSIEX17 is called to process all inbound MVS messages, solicited
or unsolicited, or delete operator messages (DOMs). This exit can change, replace,
or delete messages before the automation table is invoked. This exit enables you to
delete a message or a DOM.

PIPE CORRWAIT

96 Automation Guide

You can use the CORRWAIT stage of the NetView PIPE command to identify
messages that:

* Are in response to a command issued from the pipeline
* Are to be processed by the pipeline

Messages are marked by exposure to installation exit DSIEX02A, ASSIGN routing,
and automation. If a message has been through any of these steps and is later

captured by a pipeline and reissued, it is not re-exposed to the same steps. Refer to
exceptions under the ONLY option of the CONSOLE stage in the [[BM Tivoli

[NetView for z/OS Programming: Pipes|

ASSIGN PRI/SEC Processing

ASSIGN PRI/SEC processing can be used only on unsolicited messages. If you are
using EMCS consoles, MVS system messages that, based on route codes, are
delivered directly to NetView OSTs are considered solicited messages; therefore,
these messages are not subject to ASSIGN PRI/SEC processing. Solicited MVS
system messages sent to the PPT can be processed with ASSIGN PRI and ASSIGN
SEC.

When you use EMCS consoles, the only unsolicited MVS system messages are
those delivered to the CNMCSSIR task. Unsolicited messages are checked to
determine if they are assigned to a primary receiver.

A primary receiver is an operator or autotask to which you have assigned the
message with the PRI operand of an ASSIGN command. If a primary receiver is
logged on, the message is assigned to that operator ID. Secondary copies of the
message are then created for any operators specified in the SEC operand of the
ASSIGN command. Secondary copies are not subject to automation table
processing, except that secondary copies routed to a cross-domain NetView
program are processed by the automation table of the cross-domain NetView
program.

Authorized Receiver Processing

Unsolicited messages for which no primary receiver was found are directed to the
authorized receiver, if one is available.

However, unsolicited messages going to a DST go to the task that started the DST
in preference to the authorized receiver, if the DST was started by a task that is
still active. Also, NetView does not send unsolicited messages from MVS to the
authorized receiver.

DSIEXO02A Processing

Installation exit DSIEX02A is called to process standard output to an operator’s
terminal. It can change, replace, or delete messages before the automation table is
invoked.

If this exit deletes a message (with the USERDROP return code from the exit or by
setting the IFRAUTBA field to B'0’), NetView does not search the automation table
for that message or call exit DSIEX16.

If DSIEX02A sets the IFRAUMTB bit on for a message, NetView does not search
the automation table for the message. However, DSIEX16 processes the message.
For more information about DSIEX02A, see |Chapter 17, “Installation Exits,” on|

-ae 287.

Wait Processing

After DSIEX02A processing, all routed messages are checked to determine if they
satisfy an outstanding wait condition for a command procedure operating under
the task to which the message was routed.

Chapter 9. NetView Information Routing for Automation 97

Command procedures written in PL/I, C, REXX, and the NetView command list
language allow you to suspend processing while waiting for a particular message
or group of messages. PL/I, C, and REXX command procedures use the TRAP and
WAIT commands for this function. The NetView command list language uses
&WAIT.

Messages that are subject to wait processing include:
* All messages solicited by an operator or autotask
» Copies of solicited messages created with ASSIGN COPY

* Unsolicited messages assigned to an operator or autotask with ASSIGN PRI or
authorized receiver processing

* Secondary copies of unsolicited messages created with ASSIGN SEC

If the message satisfies the wait condition, processing of the waiting command
procedure resumes. If you do not suppress the message at this point it continues
with the message flow. If you suppress the message, however, NetView marks it
for deletion. In this case, automation-table processing does not occur and NetView
does not display or log the message. The message does go to installation exit
DSIEX16. You can suppress messages in a PL/I or C command processor or REXX
command list with TRAP and SUPPRESS. In the NetView command list language,
you can use the &WAIT SUPPRESS statement.

Messages rerouted by the automation table can undergo wait processing a second
time on the new task, as explained in [Automation-Table Processing.”|

Automation-Table Processing

98 Automation Guide

Except for messages written directly to the network log, solicited and unsolicited
messages from all sources are subject to automation table processing for the
original instance of the message. Copies of the message produced by the ASSIGN
command with the SEC or COPY operands, by the MSGROUTE command, or by
the ROUTE keyword in the automation table itself are not subject to
automation-table processing. However, if you route a copy cross-domain, the
automation table in the other domain processes the message.

Routing Messages

In automation-table processing, the ROUTE keyword can reroute an unsolicited
message that you previously routed with ASSIGN PRI or authorized receiver
processing. Similarly, you can change the automatic assignment of a solicited
message to add other receivers or even to eliminate the original receiver. Copy
assignment for solicited messages is not affected. Copies always go to the
operators you specified with the ASSIGN COPY command.

You can code automation-table statements that direct messages or commands to
any combination of operators, autotasks, operator groups, and the PPT. Routed
commands can include command processors and command lists. The list of
operator IDs that are to receive the message does not have to be the same as the
list of operator IDs that are to process the commands you are issuing in response.

Assume that a message with an ID of DSI374A is ready to undergo
automation-table processing and that the statement in [Figure 14 on page 99is in
your automation table.

IF MSGID='DSI374A' THEN
EXEC (ROUTE(ALL OPER1 OPER2 *));

Figure 14. MSGID Statement in Automation Table

In this example, copies of message DSI374A are to be sent to OPER1, OPER2, and
the operator associated with the message when it entered automation-table
processing. Copies of messages created by the ROUTE keyword in the automation
table and sent to a new task are subject to wait processing on the new task, as
described in [“Wait Processing” on page 97

If a message has no match in the automation table, it goes to the receiver that was
associated with that message when it entered automation-table processing. For a
solicited message, that receiver is the task whose input generated the message. For
an unsolicited message, that receiver is a primary receiver you assigned for the
message if you assigned primary receivers and one of them is logged on.

For an unsolicited MVS system message with no primary receiver, the CNMCSSIR
task scans the automation table. If a match exists, any command issued using
EXEC(CMD) must be routed to a specific task using the ROUTE keyword. If no
ROUTE keyword exists, the message is routed to the task that started the
CNMCSSIR task. If the task that started the CNMCSSIR task is no longer active or
if the CNMCSSIR task was started with INIT=Y in the CNMSTYLE member, the
message is discarded, and the automation action is not processed.

For an unassigned message from a DST, the default receiver can be one of these
items:

* The task that started the DST (if that task is logged on)

* The authorized receiver (if there is one)

* The system console operator

Other unsolicited messages (without a primary receiver assigned) go either to the
authorized receiver or to the system console operator.

Setting Message Attributes

The automation table can check or set the color and highlighting attributes of the
messages. The automation table can set attributes, such as logging and display
characteristics, for messages.

These automation table settings take precedence over attributes specified with the
NetView DEFAULTS command. Except for message color and intensity as set with
the SCRNFMT keyword, attributes specified with the NetView OVERRIDE
command take precedence over the automation table settings.

DSIEX16 Processing

NetView calls installation exit DSIEX16 after a message is considered for
automation. The exit allows the user to change message text and processing
options.

For more information about DSIEX16, see [Chapter 17, “Installation Exits,” on page]

ASSIGN COPY Processing

After automation-table processing, NetView makes a copy of a solicited message
for each designated operator if an ASSIGN COPY command is in effect. The copies
take their display and logging attributes, such as DISPLAY, NETLOG, and BEEP,

Chapter 9. NetView Information Routing for Automation 99

from the original instance of the message. Therefore, an automation table entry for
the original message can also affect the copies made using the ASSIGN COPY
command.

Secondary copies, created by the SEC operand for unsolicited messages, have
NetView system defaults (unless you change the defaults with a DEFAULTS or
OVERRIDE command). Copies created by the ASSIGN COPY process undergo the
wait processing described in [“Wait Processing” on page 97/

Discard or Display Processing

NetView either discards or displays a message after completion of routing.
NetView discards all unsolicited MVS system messages if they have not been
rerouted. Regardless of the operating system, the NetView program displays all
other unsolicited messages and all solicited messages unless an installation exit or
the automation table has turned off the display option for a message or messages.

NetView Hardware-Monitor Data and MSU Routing

100 Automation Guide

This section describes the flow of data to the hardware monitor and the flow of
MSUs to automation. You have several ways of sending data to the hardware
monitor:

* Forwarding an alert from one NetView program to another over an LUC session

* Sending a multiple domain support message unit (MDS-MU) over the MS
transport to the ALERT-NETOP application

* Sending a control point management services unit (CP-MSU) or network
management vector transport (NMVT) to the hardware monitor over the
program-to-program interface

* Receiving a hardware-monitor problem record (NMVT, record maintenance
statistics [RECMS], or record formatted maintenance statistics [RECFMS]) over
the CNM interface

* Using the GENALERT command to generate a hardware-monitor record from
within NetView

* Receiving a system-format record for the hardware monitor (OBR, MDR, MCH,
CWR, or SLH) from local MVS devices

Many of the records that the hardware monitor receives go to the automation table
during normal processing. The automation table can change filtering and
highlighting attributes or issue automatic responses. Specifically, the records that
go to the automation table are NMVTs, CP-MSUs, MDS-MUs, RECMSs, and
RECFEMSs, collectively known as MSUs. The hardware monitor sends only MSUs
containing:

* Alerts, key X'0000'

* Link events, key X'0001'

* Resolution, key X'0002'

* DD statistics, key X'0025'

¢ RECMSs, encapsulated in a X'1044'

* RECFMSs, encapsulated in a X'1045'

* Link configuration data, key X'1332'

A routing and targeting instruction GDS variable (key X'154D') can go to the
automation table attached to an alert or resolution major vector. The hardware
monitor converts certain other major vectors, such as many link events (key
X'0001"), into alert major vectors. In these cases, the original major vector and the
converted alert major vector go to the automation table.

NetView also enables you to send MSUs to the automation table directly without
sending them through the hardware monitor. This capability can help you if, for
example, you want to automate an MSU that does not contain a major vector that
is automatically sent through the automation table.

To send an MSU directly to automation, use the CNMAUTO service routine for
PL/I or C, or the DSIAUTO macro for assembler. Alternatively, use the MS
transport interface and direct an MSU to the generic automation receiver
(NVAUTO). The generic automation receiver is an application that simply presents
an MSU to the automation table and then discards the MSU.

[Figure 15 on page 102 shows the interfaces for sending problem records to the
hardware monitor, the interfaces for sending MSUs to automation, and the path
the data takes in each case. In the figure, each multiple domain support message
unit (MDS-MU) going into the hardware monitor must contain a control point
management services unit (CP-MSU). CP-MSUs going from the hardware monitor
to the automation table must contain a major vector that is supported for
automation. A description of the major steps is illustrated in [Figure 15 on page 102}

Chapter 9. NetView Information Routing for Automation 101

MS

Another application
NetView (such as Operator or Local
program EP-ALERT) Application VTAM application hardware
LUcC MS E}r_°9rga':‘a;m CNM GENALERT Local device
session transport t0-prog interface command records
interface
I I I I I
MDS-MU CP-MSU NMVT, NMVT or System Format
or NMVT RECMS, RECFMS (OBR, MDR, MCH,
| or RECFMS CWR, or SLH)
‘ NMVT v NMVT in MDR v Other system format
CP-MSU XITCI exit
for DSICRTR MS application Application
A 4 \ i y
ALERT-NETOP CNM router MS ngD“ASﬁxago
MS application (DSICRTR Task) Transport function
MDS-MU NMVT, CP-MSU
or MDS-MU
\ i
XITCI exit Generic
for BNUDSERV receiver
(NVAUTO)
v NMVT, CP-MSU, MDS-MU, I—
Initial Hardware Monitor Processing RECMS, or RECFMS
- A CP-MSU with more than one major vector is split up.
- Alert attributes, such as filtering and highlighting .
options, receive initial settings based on SRFILTER - Aler'fclg rli/IuStU
i ina CP- .
commands you have issued. Forwarded alert CP-MSU
originally
in an NMVT,
System format or forwarded CP-MSU, MDS-MU, - AIFR is
alert originally of one of RECMS, or RECFMS built.
these types
Automation
table
Y VY
DSIEX16B
Continued Hardware Monitor Processing exit
- Depending on a record's current filter settings, the
hardware monitor can record an event and an alert. P
Viewing filters determine who can view the alert. o
i ¢ - Processing for the MDS-MU ends. <€—

- NetView program generat
amd BNJO30I messages,
alert's filter settings now
specify message generat

- The alert goes to another NetView
program if the alert's filter settings
now specify forwarding and the alert
has not been previously forwarded.

es BNJ146l
if the

ion.

Figure 15. Flow of Data to the Hardware Monitor and MSUs to Automation

102 Automation Guide

- Control returns to the application. ¢——

ALERT-NETOP Application

ALERT-NETOP, which is an MS application that is supplied with the NetView
program, receives MSUs and passes them to the hardware monitor.

XITCI Processing

NetView calls installation exit XITCI for the BNJDSERV task whenever the
hardware monitor receives an MSU or other problem record. If the problem record
comes through the CNM router, NetView also calls exit XITCI for the DSICRTR
task.

Either XITCI installation exit can change, replace, or delete the problem record.
Any alert forwarded by an LUC session from another NetView domain is in a
special forwarding format at this point. For more information about the XITCI exits
or the forwarding format, refer to [[BM Tivoli NetView for z/OS Programming.|

and to [[BM Tivoli NetView for z/OS Programming: PL/I and C}

Initial Hardware-Monitor Processing

When you send a CP-MSU through the ALERT-NETOP application to the
hardware monitor, either alone or in an MDS-MU, the CP-MSU can contain more
than one major vector. If so, the hardware monitor first splits the data into separate
CP-MSUs containing one major vector each. Thereafter, NetView processes each
major vector separately. If the CP-MSU being split is in an MDS-MU, each of the
new CP-MSUs goes in an MDS-MU with the same header information as the
original. There are two exceptions:

* Basic encoding rules (BER)-encoded data that does not go through automation

Specifically, major vector X'000F' followed by a X'130F' major vector, and major
vector X'1330' followed by a X'132F' major vector, do not go through automation.

* Routing and targeting instructions GDS variables (X'154D")

Routing and targeting information stays in the CP-MSU with the major vector
that immediately follows it, but NetView moves the routing and targeting
information to the end of the new CP-MSU.

A user-written application can submit record maintenance statistics (RECMSs) and
record formatted maintenance statistics (RECFMSs) to automation just as you
might submit a X'0000" major vector to automation. An application can encapsulate
a RECMS in a X'1044' major vector or a RECFMS in a X'1045' major vector, and
then encapsulate them again in a X'1212' CP-MSU.

You can send a RECEMS record through the ALERT-NETOP application by
encapsulating the record in a X'132E' major vector within a CP-MSU in an
MDS-MU. The RECEMS is then extracted and processed as normal by the
hardware monitor.

Next, for all alert-type data coming to the hardware monitor, the NetView program
initially sets filter and highlighting attributes based on your SRFILTER settings.

Automation-Table Processing
All MSUs processed by the hardware monitor are subject to automation-table
processing if they contain X'0000', X'0001', X'0002', X'0025', X'1332', RECMSs, or
RECFMSs. Forwarded alerts that were originally in MSUs on a distributed
NetView system return to MSU format for automation. The hardware monitor
places these alerts in CP-MSUs. System-format records, such as outboard record

Chapter 9. NetView Information Routing for Automation 103

(OBR), machine check handler (MCH), channel recovery word (CWR), and second
level interrupt handler (SLIH), do not go to the automation table.

The automation table can check or set any of these conditions:
* Color

* Highlighting

* Filtering attributes hardware monitor for MSUs

MSUs that do not come through the hardware monitor can come directly to
automation through the CNMAUTO service routine of PL/I and C, the DSIAUTO
macro of assembler, or the generic automation receiver MS application (NVAUTO),
which invokes the automation table. Setting highlighting or filtering attributes does
not work in these cases, because the hardware monitor does not process the MSU.
However, you can use the automation table to initiate automatic commands in
response to the MSU.

When automating the response to an MSU, route the command to an autotask. If
the hardware monitor data services task (DST) BNJDSERV sends an MSU to the
automation table and the matching statement in the table has an EXEC action
specifying a command to be run has no ROUTE specification, the command goes
to the OST that started BNJDSERV. If the OST is not active, NetView cannot route
the command and issues a message to the network log to indicate the problem.
Therefore, either start BNJDSERV from a stable autotask or always use ROUTE
when applying an EXEC action to an MSU from the hardware monitor.

DSIEX16B Processing

NetView invokes installation exit DSIEX16B after an MSU is considered for
automation. This exit enables you to change, replace, or delete an MSU. For more
information, see [Chapter 17, “Installation Exits,” on page 287}

Continued Hardware Monitor Processing

Problem records of the types processed by the hardware monitor can go into the
event and alert databases, depending on the final settings of the ESREC and AREC
filter attributes for the record.

If a record passes the ESREC or AREC recording filters and gets recorded as an
event or an alert, operators can view the event or alert on the hardware monitor
panels. Viewing filters determine which operators can view the event or alert. A
percent sign (%) on the right side of the hardware monitor console marks any
event or alert that matched at least one statement in the automation table.

If a record passes both the ESREC and the AREC recording filters, other filters
apply including ROUTE, OPER, TECROUTE, and TRAPROUTE. For more
information, see |“Filtering Alerts” on page 301

NetView Command Routing

104 Automation Guide

You can control the routing of commands to NetView tasks. These sections describe
which commands you can route to which tasks and the facilities for routing
commands.

Compatibility of Commands with Tasks

You must ensure that the command, command processor, or command list that you
are routing can run under the destination task. The different classes of tasks that
run under the NetView main task are:

¢ Tasks that can receive messages and control the processing of commands,
command processors, and command lists. These tasks include autotasks, other
operator station tasks (OSTs), NetView-NetView tasks (NNTs), and the primary
POI task (PPT). You can route commands, command lists, and command
processors that run as regular commands (TYPE=R) or immediate commands
(TYPE=I) to this type of task.

However, some restrictions apply. Autotasks cannot run commands that produce
full-screen panels. Also, use caution when having an autotask run a command
procedure that includes wait processing. To avoid the possibility of indefinite
waiting that ties up an autotask, use a timeout value on the WAIT instruction.
Some commands cannot run under the PPT. These include commands that
produce full-screen panels, commands that do wait processing, and several
others.

Refer to [IBM Tivoli NetView for z/OS Programming: REXX and the NetVieu)|
[Command List Language for information about wait processing.

» If the BNJDSERV DST or the CNMCSSIR task sends an MSU to the automation
table and the matching statement in the table runs a command but has no
ROUTE specification, the CMD action goes to the OST that started BNJDSERV or
CNMCSSIR.

e DSTs that provide services such as I/O operations for the user. You can route
commands that run as data services commands (TYPE=D) to DSTs.

* Hardcopy task. You cannot route commands to the hardcopy task. Route only
messages to this task.

Command Routing Facilities

The primary facilities for routing commands are:

¢ The automation table ROUTE keyword, for choosing a task when issuing a
command from the automation table

* The NetView EXCMD command, for sending a command from one task to
another

* The CNMSMSG service routine and the DSIMQS macro, for initiating commands
from command processors

e The NetView RMTCMD command, for sending commands to other NetView
domains

¢ Command label prefixes, which route commands in the same manner as
RMTCMD and EXCMD

Automation-Table ROUTE Keyword

You can route a command by putting a ROUTE keyword in the automation table
with an EXEC(CMD) action. When an incoming message or MSU matches the
entry and NetView issues a command in response, the command goes to the task
or tasks you specify with the ROUTE keyword. If you do not use ROUTE on an
EXEC(CMD) action, NetView uses the rules explained in Note to
select a task for the command.

CNMSMSG Service Routine and DSIMQS Macro
You can use the CNMSMSG service routine in PL/I or C and the DSIMQS macro
in assembler to send commands to specific tasks, logs, and other destinations.

Chapter 9. NetView Information Routing for Automation 105

EXCMD Command

Using the EXCMD command, you can route a command, command list, or
command processor to a designated task to be run. Ensure that the command can
run under the type of task to which you are routing. For example, data-services
command processors can run only under a DST.

In the LOGOFF command is routed to the AUTO1 task, which processes
the command. As a result, AUTOL1 is logged off.

EXCMD AUTO1 LOGOFF

Figure 16. EXCMD Command Example

Note: Do not queue commands to run under these server tasks: DSIIPLOG,
DSIRXEXC and DSIRSH. These tasks must be free to process TCP/IP
requests.

RMTCMD Command

The RMTCMD command sends system, subsystem, and network commands to
another NetView program elsewhere in the network. The commands are processed
by the other NetView program. Use the RMTCMD command instead of the
ROUTE command because the RMTCMD does not require you to start OST-NNT
sessions.

Command Label Prefixes

Using command label prefixes enables you to route commands as you would with
the NetView RMTCMD or EXCMD commands, and correlate the responses.
Correlation of responses is useful with the CORRCMD pipe stage. For a

descrii tion of labeled commands, refer to the [[BM Tivoli NetView for z/OS User’s|

Guide: NetVie

Command Priority

106 Automation Guide

Each of the NetView tasks that process regular commands (autotasks, other OSTs,
NNTs, and the PPT) recognize NetView command priority for queued commands.
Queued commands have a priority of either low or high. Priority helps to
determine how soon NetView runs a command.

You can set the command priority globally with the DEFAULTS command. You can
set the priority for a task with the OVERRIDE command and for a single
command with the CMD command. Other means of queuing commands have
rules for setting the priority.

Command priority affects regular commands issued by an operator, including:
* Operators entering NetView commands from an MVS system console
e Commands relayed by means of the EXCMD command

Command priority does not affect:
¢ Commands in a command list
These commands are run sequence rather than being queued.
e Commands that you issue from the automation table
These commands are always queued at low priority.
Do not use the CMD prefix from the automation table to change the priority to
high. When you schedule a command with an AT, EVERY, or AFTER timer

command, the DEFAULTS and OVERRIDE settings that apply to the scheduled
command are those in effect when the timer expires.

If your automation application queues commands at both low and high priority, be
aware that the high-priority commands can run out of sequence before the

low-priority commands. Low-priority commands run in order with respect to each
other; the first command queued for a task runs first. High priority commands also
run in order with respect to each other, except in the case of command procedures.

Command procedures give up control at several points to enable service for the
task’s high-priority queue; so a high-priority command can interrupt a command
procedure, even if the command procedure itself had a high priority. Command
procedures enable interruption when running long-running commands and when
performing wait or pause processing (for example, a WAIT or PARSE PULL in
REXX). In addition, procedures in REXX or the NetView command list language
enable interruption immediately upon invocation (before the first instruction) and
after each command in the command list.

To process command procedures in the order issued, queue them all at low
priority. Command procedures allow interruption by low-priority commands only
when processing long-running commands.

For more information about command priority, along with the syntax of the CMD,
DEFAULTS, and OVERRIDE commands, refer to the NetView online help or the
[IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N)|

Chapter 9. NetView Information Routing for Automation 107

108 Automation Guide

Part 4. NetView Automation Facilities

Chapter 10. Command Lists and Command Processors .
Available Languages . .
Obtaining Messages and MSUs
Message Functions .
MSU Functions .
Saving Information
Global Variables
Task Global Variables.
Common Global Variables .
Choosing a Type of Variable
MVS Data Sets . .
Waiting for a Specific Event
NetView Command List Language Waltlng
REXX Waiting . .
PL/I and C Waiting . .
Additional Command-List Capablhtles for MVS .
Sending Messages to an MVS Console .
Allocating Disk, Tape, and Print Files
Loading Command Lists into Storage

Chapter 11. Timer Commands .
Overview of Timer Commands

AFTER

AT . .

EVERY

TIMER

CHRON .
Choosing a Task .
Saving and Restoring Timer Commands
LIST TIMER and PURGE TIMER .

LIST TIMER.

PURGE TIMER.

Chapter 12. Autotasks .
Defining Autotasks
Activating Autotasks .
Using the AUTOTASK Command
Associating Autotasks with Multiple Console Support Consoles
Deactivating Autotasks . e e e
Automating with Autotasks
Managing Subsystems .o
Processing Unsolicited Messages .
Processing Commands
Starting Tasks
Sending Commands to an Autotask Usmg the EXCMD Command

Chapter 13. The Message Revision Table .
What Is the Message Revision Table?
Elements of Message Revision Table Statements
Message Revision Table Processing .
Message Revision Table Searches .
Coding a Message Revision Table .
Changing Route Codes and Descriptor Codes
DoForeignFrom Statement . o
END Statement.
EXIT Statement.

© Copyright IBM Corp. 1997, 2009

. 113
. 113
. 113
. 114
. 114
. 114
. 114
. 115
. 115
. 115
. 115
. 116
. 116
. 116
. 117
. 117
. 117
. 118
. 118

. 119
. 119
. 119
. 120
. 120
. 120
. 120
. 121
. 121
. 122
. 122
. 122

. 123
. 123
. 123
. 124
. 124
. 124
. 125
. 125
. 125
. 126
. 126
. 126

. 129
. 129
. 129
. 130
. 130
. 130
. 131
. 131
. 131
. 132

109

NETVONLY Statement .

OTHERWISE Statement .

REVISE Statement .

SELECT Statement

UPON Statement .

WHEN Statement . .

Example of a Message Rev151on Table
Usage Reports for Message Revision Tables
Message Revision Table Testing

Chapter 14. The Command Revision Table.
What Is the Command Revision Table? .

Elements of Command Revision Table Statements .

Command Revision Table Processing

Command Revision Table Searches .
Coding a Command Revision Table .
Command Revision Table Statements

TRACKING.ECHO Statement .

ISSUE.IEE295I Statement

UPON Statement .

SELECT Statement

WHEN Statement .

OTHERWISE Statement .

END Statement.

REVISE Statement.

NETVONLY Statement .

WTO Statement

Edit Orders . . .
Command Revision Table Example .
Usage Reports for Command Revision Tables
Command Revision Table Testing.

Chapter 15. The Automation Table
What Is the Automation Table?
Elements of Automation-Table Statements
Automation-Table Processing .
Automation-Table Searches . .
Types of Automation-Table Statements .
Determining the Type of Statement .
Statement Types and Processing .
Coding an Automation Table .
BEGIN-END Section .
IF-THEN Statement
Condition Items .
Bit Strings as Compare Items .
Parse Templates as Compare Items .
Literals .
Variable Names
Variable Values.
Placeholders.
Nulls .
Actions
ALWAYS Statement
%INCLUDE Statement
SYN Statement . . .
Design Guidelines for Automatlon Tables .
Limit System Message Processing
Streamline the Automation Table . -
Group Statements with BEGIN-END Sections.
Isolate Complex Compare Items .
Include Other Automation Tables.

110 Automation Guide

. 132
. 132
. 132
. 133
. 133
. 134
. 134
. 135
. 135

. 137
. 137
. 137
. 138
. 138
. 138
. 138
. 139
. 139
. 140
. 141
. 141
. 142
. 142
. 142
. 143
. 143
. 144
. 145
. 146
. 147

. 149
. 149
. 149
. 150
. 150
. 150
. 151
. 151
. 151
. 152
. 154
. 158
. 206
. 207
. 207
. 208
. 209
. 210
. 210
.21
. 229
. 230
. 231
. 232
. 233
. 233
. 233
. 235
. 235

Tailor Automation Tables for Your Operation .

Use Synonyms .

Place Statements Carefully

Use Automation-Table Listings

Use the ALWAYS Statement .

Use the CONTINUE Action Carefully .

Set Automation-Table Defaults.

Limit Automation of Command Responses

Automation as the NetView Program Closes .
Example of an Automation-Table Listing .
Automation-Table Usage Reports.

The AUTOCNT Command .

Example of Usage Reports Output

Assumptions of Message and MSU Processmg for ThlS Example .

Detailed Automation-Table Usage Report .
Summary Automation-Table Usage Report . .
General Reminders about Automation-Table Usage Reports
Managing Multiple Automation Tables .
Getting Started . .o .
Using Automation-Table Management .
Using Commands for Selected Tables
Inserting an Automation Table. . .
Using the Display Options Pop-up wmdow .
Using Global Commands .
Using the Global Display Panel . .
Enabling and Disabling Automation-Table Statements
Displaying the Labels/Blocks/ Groups Panel .
The Confirmation Panel . . .

Chapter 16. Policy Services Overview
Using Policy Services.
Customizing DSITBLO1 (optlonal)
Defining Your Policy Files .
Required NetView Tasks.
Policy File Syntax .
Policy File Management .
Using the Policy API .
POLICY Syntax. .
Determining Which Pohcy Flles are Loaded .
Syntax Testing the Policy Files. .o
Loading Policy Files . .
Querying a Policy Definition .
Querying a Group of Policy Def1n1t10ns
Modifying a Policy Definition . .
Deleting a Policy Definition
Adding a Policy Definition .
REXX API Usage .
Timer APIs .
EZLETAPI
EZLEQAPI .
EZLEDAPIT .
EZLEQCAL .

Chapter 17. Installation Exits

What Are Installation Exits?

Installation Exit DSIEX02A . .
Installation Exit XITCI for BNJDSERV . .
Installation Exits DSIEX16 and DSIEX16B .

Part 4. NetView Automation Facilities

. 236
. 236
. 236
. 237
. 237
. 237
. 238
. 238
. 238
. 238
. 240
. 240
. 241
. 243
. 244
. 247
. 250
. 250
. 250
. 251
. 252
. 253
. 255
. 256
. 257
. 257
. 259
. 260

. 263
. 263
. 264
. 264
. 264
. 264
. 266
. 267
. 267
. 269
. 269
. 269
. 270
. 270
. 271
. 272
. 272
. 273
. 273
. 273
. 282
. 284
. 285

. 287
. 287
. 287
. 287
. 287

111

Installation Exit DSIEX17 .28

112 Automation Guide

Chapter 10. Command Lists and Command Processors

To perform complex actions when you issue a single command, use command lists
and command processors to create automation procedures.

Command lists are sets of commands and special instructions written in either
REXX or the NetView command list language. Command lists written in the
NetView command list language are interpreted, and command lists written in
REXX can be either interpreted or compiled. Command processors are modules
written in assembler, PL/I, or C. Command processors (written in PL/I or C) and
command lists are also known collectively as command procedures. You can issue a
command list or command processor as if it were a NetView command.

Those who can use command lists and command processors to simplify the job of
the operator and to assist in automation are:

* Operators

¢ The automation table

* Timer commands

¢ The EXCMD command

¢ Other command lists

¢ Other command processors

You can also designate initial command lists to be processed during NetView
initialization and OST initialization. These are functions that can be done by
command lists and command processors:

* Use a single command to replace a series of queries, replies, and commands
normally issued by an operator.

¢ Issue different replies based on input criteria.
* Ensure consistency among operator responses for lengthy or complex functions.
* Run under an autotask.

Available Languages

The languages available for writing NetView command lists and command
processors are:

* NetView command list language
* REXX

* PL/I

« C

¢ Assembler

For a discussion of the capabilities of each language, see the [[BM Tivoli NetView for]
[z/OS Customization Guide

Obtaining Messages and MSUs

To automatically issue command procedures when the automation table receives a
message or management services unit (MSU), use the NetView automation table.
When issued in this way, the command procedure has access to information
pertaining to the message or MSU that issued the command procedure. When

© Copyright IBM Corp. 1997, 2009 113

NetView receives an MSU over an LU 6.2 transport, NetView can issue a specified
command procedure. This command procedure also has access to information for
the MSU that was received.

Because the message or MSU information is available to the command procedure,
much of the data associated with the message or MSU does not need to be parsed
in the automation table statement and then sent explicitly to the command
procedure. The attributes for the message or MSU are accessed using various
functions in the command procedure. For more information, refer to IIBM Tivolz'
[NetView for z/OS Programming: REXX and the NetView Command List Languagel

You can also use the EDIT action in the automation table to make changes to
automated messages and MSUs. The changes are made using the syntax and
functions provided by the PIPE EDIT stage. For more information about the EDIT
specifications, refer to the online help for PIPE EDIT.

Message Functions

The command-procedure languages provide keywords for obtaining access to
various message attributes. For example, you can examine the message ID,
message type (HDRMTYPE), and message text. For MVS system messages, you can
also examine the job name or reply ID.

MSU Functions

Command procedures can also examine and work with MSUs. In REXX, an HIER
function gives the hardware monitor resource hierarchy of an alert. An MSUSEG
function gives the contents of an MSU, which can include an MDS-MU’s header
information. The HIER and MSUSEG REXX functions are similar to the HIER and
MSUSEG compare items in the automation table, although the syntax details differ.
The NetView command list language offers similar &HIER and &MSUSEG control
variables. In addition, REXX provides a CODE2TXT function that can translate
hardware monitor generic alert code points into the text strings they designate.
This function is also available in PL/I and C with the CNMC2T (CNMCODE2TXT)
service routine.

Saving Information

You can save information with either global variables or MVS data sets.

Global Variables

114 Automation Guide

Command lists and command processors offer functions that enable you to
automate operating procedures. One function is the ability to create and update
global variables, which you can use to pass information between command lists,
command processors, and the automation table. Global variables are useful in
creating automation procedures for purposes such as:

* Maintaining the current status of system and network elements when
automation monitors your environment

 Eliminating the need to code system names into automation procedures, which
enables you to adapt the procedures to other systems by redefining the global
variables rather than by making coding changes in numerous places

* Eliminating the need to code specific parameter values when automating
parameter-driven processes, which enables you to change the parameter values
without re-coding your command lists and command processors

* Maintaining job names and subsystem commands to be issued as required

The two types of global variables are Task and Common.

Use the QRYGLOBL command to view the number of your common global and
task global variables and their values. Refer to the NetView online help for
information about the QRYGLOBL command.

Task Global Variables

Each command list or command processor running under the task can set, inspect,
or update a task global variable. Other NetView tasks do not have direct access to
the variables. Therefore, several NetView tasks can use the same names for task
global variables without referring to the same variables. NetView gives no
indication that two tasks are using the same names.

For a task to inspect or update a task global variable belonging to another task, it
must issue a request to the owning task. Therefore, tasks can maintain control of
their own variables. Each task has its own task global dictionary for storing task
global variables. You can save, restore, and purge task global variables.

Common Global Variables

Any task that can run a command list or a command processor can also use
common global variables. One common global dictionary exists for storing all
common global variables.

You can save, restore, and purge common global variables. When you save a global
variable, NetView places it in a VSAM database. Later, you can restore the
variables to the global dictionary from which they were saved. If you no longer
need a global variable you have saved, purge it from the database. Saving critical
global variables can facilitate recovery from a failure or from a planned outage.

Choosing a Type of Variable

Task global variables are the best choice for data used in a single, local frame of
reference. If only one task needs a variable, you can avoid potential naming
conflicts with other tasks by using a task global variable. However, use common
global variables for information that you want to check or update from more than
one task. If you want to pass information to the automation table, common global
variables are best, because you do not need to be concerned with which task uses
the automation table.

For more information about global variables, refer to the [[BM Tivoli NetView for]
2/OS Programming: REXX and the NetView Command List Languagd, the [[BM Tivol{
NetView for z/OS Programming: Assembler] and IBM Tivoli NetView for

z/OS Installation: Getting Started.

For a description of how to read the value of a global variable from the automation
table with ATF('DSICGLOB') and ATF('DSITGLOB'), see DSICGLOB [“DSICGLOB”

MVS Data Sets

Another way of saving data from command lists and command processors is to
use a data set. REXX EXECIO and PIPE QSAM can read from and write to
sequential data sets. You can use this ability for a wide variety of purposes.

Command processors written in PL/I and C can use high-level language service
routines that provide read access to NetView partitioned data sets (CNMMEMO,
CNMMEMR, CNMMEMC) and request VSAM I/0 (CNMKIO). You can also use
PL/I and C I/O services to read from and write to data sets.

Chapter 10. Command Lists and Command Processors 115

Command processors written in assembler can use NetView macros that provide
read access to NetView files (DSIDKS) and request VSAM 1/0 (DSIZVSMS).

Waiting for a Specific Event

NetView enables you to wait for the receipt of messages and other events and to
modify processing based on the information received. For best performance, use
the CORRWAIT stage of the PIPE command. Refer to |[BM Tivoli NetView for]
[z/OS Programming: Pipes| for more information.

NetView also enables you to solicit input from an operator, such as &PAUSE in the
NetView command list language, PARSE PULL and PARSE EXT in REXX, and
WAIT FOR OPINPUT in high-level languages. However, because autotasks are
unattended, avoid using input-soliciting facilities in automation command lists and
command processors running under an autotask.

The commands used in waiting for events differ between the languages for
command lists and command processors. The differences are described in the
following sections. For automation command lists and command processors
running under an autotask, try to avoid having the autotasks wait for events. If
you use a wait facility, ensure that you specify a time-out value to prevent the
autotask from waiting endlessly.

NetView Command List Language Waiting

The basic form of the &WAIT control statement causes a command list to suspend
processing until a specified event occurs. The &WAIT control statement is made up
of two parts. The first part, which is optional, specifies a command or another
command list that is to be processed when the &WAIT statement is reached in the
processing of the command list. The second part is a list of event-label pairs that
specify where processing is to be transferred when specified events occur. The
events you can specify include:

* Receipt of messages that are displayed to the NetView console

* Receipt of a nonzero return code from the called command or command list

* The expiration of a specified amount of time

* The operator’s entry of a GO command

If receipt of a message satisfies the &WAIT statement, use NetView control
variables to obtain the contents of the message.

For more information about waiting for events in the NetView command list
language, refer to [[BM Tivoli NetView for z/OS Programming: REXX and the NetView|
[Command List Languagel

REXX Waiting

116 Automation Guide

REXX uses several instructions that interact to provide a method of waiting for
messages and analyzing messages and other events. The TRAP instruction specifies
messages to be trapped and specifies whether messages that are trapped are
displayed to the operator. Messages that are trapped are placed in a message
queue, so more than one message can be processed. The WAIT instruction causes a
command list to suspend processing until a specified event occurs. Possible events
include:

* Messages that you trap

* A time-out value in seconds or minutes

* The operator’s entry of a GO command

The MSGREAD instruction causes NetView to read a trapped message from the
messages currently trapped. The command list can then take action based on the
message received. The FLUSHQ instruction is used to discard all trapped messages
from the message queue.

For more information about waiting for events in REXX, refer to |IBM Tivolzl
[NetView for z/OS Programming: REXX and the NetView Command List Language

PL/I and C Waiting

The high-level language application program interface (API) provides several
commands and service routines that interact to create a method of waiting for
messages and analyzing messages and other events similar to the method used by
REXX. The TRAP command specifies messages to be trapped and specifies whether
trapped messages are displayed to the operator. Messages that you trap go into a
message queue for the command processor, enabling you to work with more than
one message. The WAIT command causes a command processor to suspend
processing until a specified event occurs. The possible events follow:

* Messages are displayed to the NetView console.

* The interval set for the time-out value, in seconds or minutes, elapses.

* The operator enters a GO command.

 Data is sent by the CNMSMSG service routine.

The CNMGETD service routine provides access to data queues, one of which is a
message queue that contains all messages trapped using the TRAP and WAIT
commands. The CNMGETD service routine provides equivalent functions to the
REXX MSGREAD and FLUSHQ instructions and other functions.

For more information about waiting for events in high-level language command
processors, refer to [[BM Tivoli NetView for z/OS Programming: PL/I and

Additional Command-List Capabilities for MVS

On MVS systems, command lists can send messages to MVS consoles. Command
lists can also allocate disk, tape, or print files. Command lists can also save
commands and text for later manipulation by operators.

Sending Messages to an MVS Console

To send messages to and remove messages from an MVS console, use these
NetView commands in automation command lists:

WTO Sends a message to an MVS console. For example, you can use the
WTO command if operator intervention (such as adding paper to a
printer or choosing among processing alternatives) is required.

WTOR Sends a message to an MVS console and requests a reply.
Command lists that use WITOR are not completed until the
operator replies.

DOM Removes a WTO message from an MVS console. You can use DOM
to remove action messages when you know that the action has
already been taken.

For more information about these commands, refer to [[BM Tivoli NetView for|
[z/OS Programming: REXX and the NetView Command List Languagel

Chapter 10. Command Lists and Command Processors 117

Allocating Disk, Tape, and Print Files

Use the ALLOCATE command with REXX EXECIO or the data set access
capabilities of command processors to allocate disk, tape, print files, and the
internal reader. These abilities enable you to build JCL from an automated
procedure and submit it. For example, if NetView receives the message indicating
that a system management facilities (SMF) data set is full, define the automation
table to pass the SMF data set name to the appropriate command list or command
processor. The data set name is embedded in the JCL and the job is submitted to
dump the data set using the NetView SUBMIT command.

Note: You cannot allocate a Job Entry Subsystem (JES) data set (internal reader or
SYSOUT) if running under a NetView program that started before JES
started.

Loading Command Lists into Storage

118 Automation Guide

To promote better performance of your system, you can load command lists into
main storage before processing. When you invoke a command list that was not
preloaded, it is loaded into main storage, processed, and then dropped from main
storage. Therefore, every time the command list is processed, it is retrieved from
the auxiliary storage device where it resides. If you preload the command list, it
can be processed several times without having to be retrieved from auxiliary
storage each time.

These NetView commands move command lists into and out of main storage and
identify command lists that are currently in main storage:

LOADCL Loads command lists into main storage shared by all operators.

DROPCL Drops a command list that was previously loaded into main
storage using the LOADCL command.

MAPCL Identifies command lists that currently reside in main storage.

NetView provides a sample command list (CNMS8003) that can help you manage
the command lists that have been loaded into storage using the LOADCL
command. The sample uses the MAPCL and DROPCL commands to conditionally
drop command lists from main storage. You can also use the MEMSTORE
command to manage command lists and other NetView data set members that are
loaded into storage.

For more information about these commands, refer to the NetView online help and
to IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command List|

|£tmguaggl

Chapter 11. Timer Commands

In NetView automation, you can use timer commands to schedule the processing
of other commands. Any command or command list that can be issued from a task
can be scheduled using a timer command. This chapter describes the timer
commands and some related commands.

Overview of Timer Commands

Timer commands inform NetView that you want to issue other commands,
including command lists and command processors. You can issue timer commands
to schedule activities many days in advance or to schedule an activity that takes
place once a day or once a month. Use a timer command to schedule another
command:

* After the lapse of a specified time

* At a specified time

* Repeatedly at specified intervals

The timer commands are AFTER, AT, EVERY, and CHRON. Two related
commands, LIST TIMER and PURGE TIMER, can help you manage command
scheduling.

This section describes the AFTER, AT, EVERY, and CHRON commands. An
operator can issue them directly, or you can use them in other automation
facilities, such as command lists and command processors. Refer to the NetView
online help for the syntax and parameter descriptions of these commands.

Note: The AFTER, AT, EVERY, and CHRON commands support customized date
and time formats. All examples shown in this chapter assume default
formats.

Note: Avoid scheduling interactive commands unless they are to be run on an
operator’s task with an operator present.

AFTER

The AFTER command enables you to schedule a command or command procedure
to run after a specified period of time.

The AFTER command can be useful for waiting a certain amount of time for
something that is expected to happen and then checking to ensure that it did
happen. For example, if you use NetView to initialize a product and the product is
to be initialized within 5 minutes, you can schedule a command list to run after 5
minutes to check whether the product started successfully.

The AFTER command, shown in schedules the MVS D A,L command to
be issued after 5 minutes to solicit status information about system elements.

AFTER 00:05:00,ID=DISPSTAT,MVS D A,L

Figure 17. Sample AFTER Command

Consider using the AFTER command instead of the DELAY command. When the
DELAY command is issued from a command list or command processor, the

© Copyright IBM Corp. 1997, 2009 119

AT

command list or command processor and the task on which it is executing wait the
specified amount of time, thus preventing other work from executing on that task.
In contrast, the AFTER command schedules a command and then frees the
command list or command processor and the task to do other work during the
specified time interval.

The AT command schedules a command or command procedure to be run at a
specific time.

For example, the AT command in schedules the STOPSYS command list
to shut down the system at 6:00 p.m. on December 24 and saves the command in

the Save/Restore database.

AT 12/24 18:00:00,ID=EVESAVE,SAVE,STOPSYS

Figure 18. Sample AT Command

AT is useful for scheduling commands that you want to happen once, at a specific
time or on a specific day.

EVERY

TIMER

The EVERY command schedules a command or command procedure to be
processed repeatedly at a timed interval. The intervals can be specified in seconds,
minutes, hours, or days. The command or command procedure is processed at the
indicated interval until the EVERY command is purged.

The EVERY command in schedules the command list CHEKSTAT every
hour, starting one hour after the timer command is run.

EVERY 01:00:00,ID=CHEKST,CHEKSTAT AUTOVTAM

Figure 19. Sample EVERY Command

Use an EVERY command similar to the one in to check the status of your
autotasks to ensure that they are logged on and are not in a wait condition that
prevents other work from executing. The automation sample set provided with
NetView includes an example of a method for checking on autotasks. This example
method uses timer commands as well as the automation table and command lists.
The sami les are described in|Appendix I, “The Sample Set for Automation,” on|
page 579,

The TIMER command displays a panel that enables you to display, add, change,
test, or delete scheduled timers. The command operates in fullscreen mode only.

CHRON

120 Automation Guide

The CHRON command provides efficient timed command scheduling by
decreasing the amount of code in REXX procedures that are used in determining
exception cases and time shifts. CHRON also reduces the number of timer
elements by combining criteria that previously required multiple timers or
combinations of AT and EVERY commands.

The CHRON EVERY command provides the ability to specify starting times that
are earlier than the current time. This is useful for scheduling timed events for

multiple days during a shift, and starting the first timer during the shift. This also
helps when using CHRON EVERY in a procedure, because the intervals start with
the next one in the sequence.

For example, you can schedule a command to be issued on certain days. The
CHRON command in issues the LOGTSTAT command once every hour
from 8:00 a.m.. until 5:00 p.m. on all weekdays except holidays, from now until the
last day of the year 2000. The LOGTSTAT command runs on the PPT task. If this
CHRON is entered between 8:00 A.M. and 5:00 PM., LOGTSTAT runs at the next
hour. This enables you to specify a shift for following days and have a partial shift
run today. This is an example of such a command:

CHRON AT=(08:00:00) EVERY=(INTERVAL=(01:00:00 OFF=17:00:00)
REMOVE=(12/31/00 00:00:00) DAYSWEEK=(WEEKDAY)
CALENDAR=(NOT HOLIDAY)) COMMAND=LOGTSTAT ROUTE=PPT

Figure 20. Sample CHRON Command

Choosing a Task

A scheduled command runs on the same task that issued the timer command,
unless you use the primary program operator interface task (PPT) option to specify
the PPT. If the task that issued the timer command is no longer active, the
scheduled command cannot run. Therefore, it is a good practice to issue timer
commands from autotasks. You can do this by using a command-routing facility,
such as EXCMD, to send the timer command (AT, EVERY, or AFTER) to an
autotask.

By running your scheduled commands on a continuously available autotask, you
ensure that the scheduled command is able to run. By using an autotask instead of
the PPT, you avoid overburdening the PPT. You also avoid the restrictions about
commands that can run on the PPT.

Saving and Restoring Timer Commands

If NetView ends, you lose all scheduled timer commands that you have not saved.
You can save timer commands in a database to ensure that critical scheduled
commands are not lost when you stop and restart NetView. You do not have to
re-enter the saved timer commands. You can restore them with the RESTORE
command. Issue the RESTORE command after the DSISVRT (Save/Restore) task is
activated.

When you issue the RESTORE command, any scheduled command or command
list that ran while NetView was down results in a multiline message CNM4651.
You, or your automation, can use the message to get information about the
scheduled command. You can then decide whether to run the scheduled command
that was skipped because NetView was down.

shows a multiline message you might get for a skipped timer command
when you issue RESTORE.

CNM4651 TIMER EVENT CANNOT BE RESTORED - CURRENT TIME PAST EXECUTION

TYPE: AFTER TIME: 12/15/98 16:42:17
COMMAND: MAJNODES
OP: OPER1 ID: AFTMAJ

Figure 21. Message Resulting from a Skipped TIMER Command

Chapter 11. Timer Commands 121

The message in the sample code contains the following information:

* Line one contains the message ID and text, including the reason NetView cannot
restore the timer event.

* Line two gives the type of timer command (AT, EVERY, or AFTER), along with
the date and time the command was to run.

* Line three gives the scheduled command.

* Line four gives the ID of the operator who issued the command.

If the operator had used the PPT parameter with the command, lines two and four
indicate that fact as well.

After the DSISVRT task is activated, a command procedure can issue a RESTORE

command and wait for CNM465I messages. If any arrive, the command procedure
can examine the information in each message to determine whether to reissue the

timer command.

LIST TIMER and PURGE TIMER

The LIST TIMER and PURGE TIMER commands can help you manage timer
commands. With LIST TIMER, you can display a list of pending timer commands.
With PURGE TIMER, you can cancel them. Refer to the NetView online help for
the syntax and parameter descriptions of these commands.

LIST TIMER

LIST TIMER lists all commands and command procedures currently timed for

processing, along with associated information. For example, the first command in
displays the command or command procedure scheduled by operator
OPER1 using AT, EVERY, and AFTER with a timer ID of DISPSTAT (if it exists).

The second command in displays a list of all commands and command
procedures scheduled by AT, EVERY, or AFTER on your system regardless of
scheduling operator or timer ID.

LIST TIMER=DISPSTAT,0P=0PER1
LIST TIMER=ALL,OP=ALL

Figure 22. LIST TIMER Command Examples

PURGE TIMER

122 Automation Guide

PURGE TIMER cancels currently scheduled timer commands. For example, the

first command in purges the command scheduled by OPER1 with a timer
ID of DISPSTAT (if it exists).

The second command in cancels all AT, EVERY, and AFTER commands
scheduled by OPER1. Use all-inclusive purges with caution.

PURGE TIMER=DISPSTAT,0P=0PER1
PURGE TIMER=ALL,0P=0PER1

Figure 23. PURGE TIMER Command Examples

Chapter 12. Autotasks

Autotasks are a special kind of operator station task (OST) that require neither
operators nor NetView terminals. Like other operator OSTs, autotasks can receive
messages, process commands and command procedures, and establish
NetView-NetView sessions. Autotasks can run full screen commands using the
NetView full screen automation function. Because autotasks are not associated with
a terminal, they can run when VTAM is not active. For this reason, and because
they can perform tasks similar to those that an operator can perform, autotasks are
ideal for performing much of your system and network automation.

Defining Autotasks

The requirements for defining autotask IDs are the same as those for defining
NetView operator IDs. Autotasks are OSTs, and you can dynamically define
autotask OSTs to NetView by editing DSIOPF or system authorization facility
(SAF) definitions and then using the REFRESH command.

Sample DSIOPF shows sample definition statements for NetView OSTs, including
autotasks. The statements define each operator’s profile. The definition statement
for AUTOI, an autotask used in the NetView initialization process, is shown in
- igure 24

AUTO1 OPERATOR PASSWORD=AUTO1
PROFILEN DSIPROFC

Figure 24. Definition Statements for AUTO1

The password for an autotask prevents intruders from gaining access to the
NetView program by logging on to an autotask operator ID. You can use an SAF
product, such as Resource Access Control Facility (RACF), to require a password or
password phrase before logging on to an MVS system. If you do not use an SAF
product, you can use DSIOPF to define a password for each autotask.

Define a password or password phrase and keep it confidential to protect your
autotask IDs. If you are not using an SAF product for password or password
phrase checking, you can also prevent someone from logging on to an autotask
operator ID by not defining a password in DSIOPF. If you do not define a
password, only an AUTOTASK command can start that operator ID. You can then
use command authorization on the NetView AUTOTASK command to limit its use.

Activating Autotasks

An autotask is differentiated from other NetView OSTs by the way an operator
starts it. An operator OST starts when a NetView operator logs on at a terminal,
but autotasks start when an operator issues the AUTOTASK command. Because
either an operator or an autotask can start a single operator ID, it is important to
maintain the proper level of security for all IDs defined in the NetView program.
Refer to the [[BM Tivoli NetView for z/OS Security Referencd for an explanation of
security issues.

© Copyright IBM Corp. 1997, 2009 123

You can use the AUTOTASK statement in the CNMSTYLE member to start an
autotask when the NetView program initializes. For more information, refer to the
[IBM Tivoli NetView for z/OS Administration Referencel

Using the AUTOTASK Command

A single primary program operator interface (POI) task (PPT) is started when you
start NetView. During NetView initialization, the PPT can start automation tables
and AUTOTASKS if they are specified in the CNMSTYLE member. For more
information, refer to the [I[BM Tivoli NetView for z/OS Administration Referencel

An operator with the proper level of authority can also issue the AUTOTASK
command, either at the terminal or with a command list or command processor.

Associating Autotasks with Multiple Console Support Consoles

You can associate an autotask with a multiple console support console when using
the AUTOTASK command or AUTOTASK statement in the CNMSTYLE member.
This can also be done later after the task is active. Association enables the console
to display all messages that the autotask receives and to accept NetView
commands and forward them to the autotask.

For example, if you want the autotask AUTOMYVS to act as the interface between
MVS and NetView:

1. Determine which MVS console name to use to access NetView. In our example,
the console name is netvsys2.

2. To associate the autotask with console netvsys2, issue this command:
AUTOTASK OPID=AUTOMVS,CONSOLE=netvsys2

You can associate the autotask with the console even when the multiple console
support console is not online. If the console is not already active, the
association is completed when the console is varied online.

If you define an autotask for this purpose and also use the autotask for other
automation, remember that all messages sent to the autotask appear on the
console.

If a write-to-operator (WTO) message comes from MVS to NetView over the
subsystem interface and if you use an associated autotask to route the message
back to a multiple console support console, the message appears in the system log
twice: once in its original format and once as NetView sent it to the multiple
console support console. To avoid duplication, define dedicated autotasks that you
use for multiple console support consoles only.

For more information about the AUTOTASK command, see the NetView online
help or the [[BM Tivoli NetView for z/OS Command Reference Volume 1 (A-N)}

Deactivating Autotasks

124 Automation Guide

You can deactivate an autotask with one of these commands:
e EXCMD autoid,LOGOFF

* %LOGOFF (issued from a multiple console support console associated with the
autotask)

Here % is the default NetView subsystem descriptor. The subsystem address
space must be active for this command to work.

Note: Any command entered on the multiple console support console and
prefixed by the descriptor automatically restarts the autotask, unless you
use the AUTOTASK command to drop the console association.

If an autotask is stuck in an infinite loop, issue EXCMD autoid,RESET to stop the
command list that is running before attempting a logoff. If necessary, you can also
use STOP FORCE=agutoid to deactivate an autotask that is in an infinite loop. The
EXCMD and %LOGOFF commands simply queue the LOGOFF command under
the autotask along with other queued command lists and commands. STOP
FORCE is an immediate command.

Automating with Autotasks

This section describes some of the many ways you can use autotasks for
automation.

Managing Subsystems

Because they do not depend on the VTAM program, autotasks are useful when the
system is running without VTAM. For example, when NetView initializes, you can
start an autotask and have it manage the subsystems, including VTAM. The
autotask can help VTAM activate or recover from failure, as appropriate. Keep in
mind that although autotasks are not associated with an operator console, they still
require APPL statements in the VTAM definition, and they can issue commands to
VTAM.

Attention: If NetView is started before VTAM, any autotasks started while VTAM
is inactive are assigned a specific VTAM application identifier (APPLID) using the
hexadecimal numbering scheme. Because NetView does not know whether the
assigned APPLID is available when VTAM is started, it must assume that the
APPLID is available for use. Therefore, you must define consecutively numbered
VTAM APPL statements for each of these autotasks. Numbering uses the
hexadecimal scheme, starting after those reserved by any POS terminals. For
example, if 12 POS terminals have been defined, and 6 autotasks are started before
VTAM is started, and your domain name is CNMO1, you must define APPL names
CNMO0100C, CNM0100D, CNMO0100E, CNM0100F, CNM01010 and CNMO01011 for
these autotasks.

Processing Unsolicited Messages

Autotasks can process all of your unsolicited messages and the commands you
issue in response. This approach has two advantages related to processing
messages:

* Does not depend on a specific user being logged on
* Processing can be faster

For example, if an operator is executing a long-running command and receives an
unsolicited message, the command that the operator issues in response to the
message is queued until the long-running command ends. If autotasks receive an
unsolicited message, the command in response runs immediately.

To ensure that your autotasks are continually available, you can have automation

monitor the autotasks. The advanced automation sample set demonstrates one
technique for monitoring autotasks.

Chapter 12. Autotasks 125

See [“Using the Advanced Automation Sample Set” on page 587| for more
information.

Processing Commands

An autotask can process commands and command procedures sent by the
automation table. If you use the ROUTE keyword to explicitly choose a destination
for a command, you can use an autotask. A command might also go to an autotask
through default routing if you do not use the ROUTE keyword. This is the case,
for example, if the autotask solicited the message that is triggering the command.

An autotask can process commands and command procedures that are scheduled
under it by an AFTER, AT, CHRON, or EVERY command. You can define and start
several autotasks to monitor different resources or types of resources. Each
autotask can then use different time intervals for monitoring and different
collections of task global variables for storing information.

A NetView command procedure can wait for the receipt of a message or another
event before continuing processing. This is referred to as WAIT processing. Use
caution when running command procedures containing WAIT processing under an
autotask. If you must run such a command procedure under an autotask, ensure
that you specify a timeout value for the WAIT command within the procedure. In
addition, you might want to limit the autotasks that run such command
procedures.

For more information about WAIT processing, see [‘Waiting for a Specific Event”|

Starting Tasks

Consider starting the BNJDSERV task and the CNMCSSIR task from autotasks.
shows the destination of commands when messages or MSUs are
automated in the NetView automation table and you do not use a ROUTE
keyword or you specify a destination of *.

Table 4. Command Destinations When Using Autotasks to Start Tasks

Command in response to: Goes to:
Unsolicited subsystem interface message Task that started the CNMCSSIR task
MSU from BNJDSERV Task that started the BNJDSERV task

By having an autotask start these tasks, you can ensure that a task is ready to
process such commands and messages.

To define an autotask for a specific function during NetView initialization, use the
function.autotask statement in the CNMSTYLE member. For more information,
refer to the [IBM Tivoli NetView for z/OS Administration Reference

Sending Commands to an Autotask Using the EXCMD
Command
Other tasks can use the EXCMD command to send commands to an autotask.

* Operators can use autotasks to perform work that might otherwise require time
on their OSTs.

* Autotasks can send commands to each other to perform work that logically
requires serial processing.

126 Automation Guide

* You can send slow commands to an autotask to avoid interfering with the
throughput or response time of tasks that are performing more critical activities.

* An autotask can process commands that are sent to it by other operators using
the EXCMD command.

Used this way, an autotask creates a kind of background processor to support
work that:

* Logically requires serial processing under a single task
* Might interfere with more critical operator tasks

However, NetView does not automatically return the resulting messages to the
originating operator.

Chapter 12. Autotasks 127

128 Automation Guide

Chapter 13. The Message Revision Table

This chapter describes:

e The NetView message revision table (MRT)

* The statements you can use in a message revision table
* How to code a message revision table

* Message revision table statements

¢ Example of a message revision table listing

» Usage reports for message revision tables

* Managing multiple message revision tables

For information on testing the logic of the message revision table, see
[Revision Table Testing” on page 135.|

The WHEN and REVISE statements consist of PIPE EDIT orders. See the NetView
online help or [[BM Tivoli NetView for z/OS Programming: Pipes| for information
about how to use these edit orders.

What Is the Message Revision Table?

The message revision table (MRT) enables you to intercept MVS messages before
they are displayed, logged, automated, or routed through your sysplex. You can
make decisions about the message based on its message ID, job name, and many
other properties.

You can make changes to many aspects of the message, including these:
* Message text

¢ Color

* Route codes

* Descriptor codes

 Display and system log attributes

The MRT can remain active even while NetView is not, but the SSI address space
is required. However, loading or querying the MRT, or gathering statistics,
depends on the functional NetView address space being active.

Elements of Message Revision Table Statements

These elements comprise a message revision automation table:

« Use the DoForeignFrom statement (“DoForeignFrom Statement” on page 131) to
indicate that foreign messages are to be processed by the MRT.

* Use the END statement (“END Statement” on page 131) to close a section started
with a SELECT statement.

* Use the EXIT statement (“EXIT Statement” on page 132) to stop any further
message revision when an action is matched.

« Use the NETVONLY statement (“NETVONLY Statement” on page 132) to provide
for NetView automation, but suppress display, logging, and sysplex routing.

* Use the OTHERWISE statement (?OTHERWISE Statement” on page 132) to
provide for NetView automation, but suppress display, logging, and sysplex
routing.

+ Use the REVISE statement (“REVISE Statement” on page 132) to include revision
actions.

© Copyright IBM Corp. 1997, 2009 129

+ Use the SELECT statement (“SELECT Statement” on page 133) to introduce a
series of WHEN statements.

* Use the UPON statement (“UPON Statement” on page 133) to introduce each
section.

* Use the WHEN statement (“WHEN Statement” on page 134) or the OTHERWISE
statement to specify a condition.

* Use the %INCLUDE statement (“%INCLUDE Statement” on page 230) to include
separately coded and maintained sections of the message-revision table to divide
your message-revision table maintenance among several groups or individuals.
You can view your INCLUDE structure using the automation-table management
function (AUTOMAN). See sample CNMSMRT1 for additional information on
this function.

Message Revision Table Processing

You can use the REVISE MSG command to activate, deactivate, test, list, or check
the status of a message revision table. See the NetView online help or the
[Tivoli NetView for z/OS Command Reference Volume 1 (A-N)| for more information
about using the REVISE MSG command.

Message Revision Table Searches

When an MVS message is issued, the NetView SSI code employs a fast search
algorithm to locate the particular UPON statement that is relevant for that
message. Conditions and actions under that UPON are then applied sequentially. If
a message matches no particular UPON condition, this is quickly determined and
the message is then subject to conditions and actions under the
UPON(OTHERMSG) condition, if any.

You can include an UPON statement with no subordinate conditions or actions,
simply to cause your MRT report to contain a count of matching messages. An
UPON statement with no subordinate conditions or actions is called a null UPON.

Conditions subordinate to an UPON statement, including UPON(OTHERMSG), are
examined sequentially. Therefore, you might improve performance by including a
specific null UPON statement to match common messages, to prevent their being
examined by the UPON(OTHERMSG) conditions.

Coding a Message Revision Table

130 Automation Guide

These directions and restrictions apply to coding the message revision table:

¢ Comments can begin with an asterisk (*) in column 1 or following an
exclamation point (!) anywhere in the file.

* You can use blanks to indent lines and to separate keywords, logical operators,
and parentheses.

However, blanks used within a comparison string are considered characters in
that string.

* You must use single or double quotation marks as the delimiters for comparison
text and for synonym values. If a literal has one kind of quotation mark, use the
other as the delimiter.

* You can include actions such as REVISE and NETVONLY directly under an
UPON statement without any SELECT, WHEN, or OTHERWISE statement. Such
actions are labeled as type OTHERWISE in an MRT report.

| « WHEN and REVISE statements consist of PIPE EDIT orders. See the NetView
I online help or [[BM Tivoli NetView for z/OS Programming: Pipes| for information
| about how to use these edit orders.

* If the MVS Message Processing Facility (MPF) has suppressed a message or has
disabled system logging, then the DISPLAY order and the SYSLOG order can
neither detect nor override the suppression. This is a z/OS system limitation. To
overcome this restriction, use a REVISE statement to obscure the message ID,
and then use NETVONLY and NetView message automation to reissue the
disguised message.

 If any message is unnecessarily transmitted across your sysplex, you can
improve performance dramatically by using the NETVONLY and REVISE('N’
DELETE) MRT actions to prevent such a transmission.

Changing Route Codes and Descriptor Codes

There are 16 routing code FLG orders named FLGRTCD1 through FLGRTCD16
that correspond to the 16 bytes of extended routing codes defined in the WQE.
There are four descriptor code FLG orders named FLGDSCD1 through FLGDSCDA4.

ROUTEZERO can be used to set all route codes to zero. Here are some examples:

* zero out all route codes and set route codes 8 and 16

REVISE (ROUTEZERO "xxxxxxx1" FLGRTCD1 "00000001" FLGRTCD2)

* set descriptor code 2 meaning immediate action required and retain message
* in AMRF

REVISE ("xIxxxxxx" FLGDSCD1 'Y' AMRF)

| DoForeignFrom Statement

Foreign messages are not processed by the MRT by default (see
[Messages are Processed” on page 79| for additional detail on this topic). The

DoForeignFrom statement can be used to indicate that foreign messages are to be
processed by the MRT. When specified, the DoForeignFrom statement must occur
prior to any UPON statement. The format of the DoForeignFrom statement is as
follows:

DoForeignFrom = *ALL | *NONE

|

I

I

I

I

I

I

I * When DoForeignFrom is set to *ALL, the MRT processes foreign messages that
I originated at any other system in the sysplex (in addition to messages that

I originated at the local system). MRT processing can be limited to specific system
I names using the SYSNAME edit order on the WHEN statement. If MSGIFAC is
| set to a value other than SYSTEM, the value of AUTOMATE can be set to Y

I using a REVISE statement which will cause the message to be sent to the

I NetView address space.

I

I

I

[

* When DoForeignFrom is set to *NONE, the MRT processes only those messages
that originated at the local system. Note that the NetView SSI, and therefore the
MRT, does not receive foreign messages if they are disallowed by the FORNSSI
statement in the MPFLSTxx MVS PARMLIB member.

END Statement

An END statement closes a section started with the corresponding SELECT
statement.

Chapter 13. The Message Revision Table 131

EXIT Statement

Typically, a message is matched against everything in a given UPON group
(counting each SELECT-WHEN-END entry as one item). When an EXIT action is
matched, however, the remaining actions under the same WHEN or OTHERWISE
are performed, but subsequent SELECT statements in that UPON group are

bypassed.

NETVONLY Statement

The NETVONLY statement causes the message to be marked for suppression from
display, but allows the message to be sent to NetView. When the NETVONLY
statement is received in the NetView address space, the message is either
submitted to an automation task or is routed as a command response. The
NETVONLY statement always queues messages to NetView over the SSI and also
queues them when NetView is not active, regardless of the value of the MSGIFAC

statement.

OTHERWISE Statement

An OTHERWISE statement is like a WHEN statement, except that there is no
condition and it must follow all the WHEN statements under a given SELECT

statement.

REVISE Statement

A REVISE statement is followed by a set of parentheses enclosing a single edit
script. Such a script is called a revision script. For this case only (not for WHEN,
EDIT, or ACQUIRE conditions, for example), an exception is made for text
handling: if no output order changes the message text, then the entire text is
replicated into the output message (in other scripts, this results in null text).
Multiple REVISE statements can be in any group, with each acting on the result of
the previous revision. If a subsequent SELECT group reexamines the message, it
sees the result of the action of the preceding REVISE action.

Examples of the REVISE statement:

REVISE("Cr" COLOR)
REVISE("CY" COLOR
REVISE (ROUTEZEROQ)
REVISE (' 1xxxxxxx' FLGDSCD2)
REVISE('1xxxxxx0' FLGDSCD3)

"ABCDEFGH" autotoken)

REVISE('1xxxxxxx' FLGRTCD4)
REVISE("cr hr" color)
REVISE("ct hu" color)

* %k ok kX X

* ok kX X ok 3k %k X X

*

turn msg red

turn msg yellow and set autotoken
set all routecodes to false/zero

set descriptor
set descriptor
and descriptor

set route code
turn msg color
turn msg color

code 9 to true
code 17 to true
code 24 to false

25 to true
to red with reverse video
to turquoise and underline

do not automate this message
automate this message

retain Action message in AMRF

do not show message at the console
show message at the console

send message to all active consoles

for programmer

information (route code 11)

do not write this message to the system Tlog
* write this message to the system log
* totally delete message

REVISE ('N' automate)
REVISE ('Y' automate)
REVISE ('Y' AMRF)
REVISE ('N' DISPLAY)
REVISE ('Y' DISPLAY)
REVISE ('Y' BROADCAST)
REVISE ('Y' PROG)
REVISE ('N' SYSLOG)
REVISE ('80'x SYSLOG)
REVISE ('Y' DELETE)

* turn msg blue and append "SHOULD BE BLUE" to the end of message

REVISE("CB" COLOR 1.* 1 "SHOULD BE BLUE" NW)

132 Automation Guide

* same as previous example except using ALL
REVISE("CB" COLOR ALL 1 "SHOULD BE BLUE" NW)

REVISE (ALL UPCASE) % UPPER case the entire message

revise (MSGID 1 "changed message" NW) * Keep msgid and append "changed message"
REVISE("0000000x" FLGRTCD1) % turn off routecodes 1-7 leave 8 as before
REVISE ("WHOKNOWS" CONSNAME) % send message to console with the name WHOKNOWS

See the NetView online help or [IBM Tivoli NetView for z/OS Programming: Pipes| for
information about using PIPE EDIT orders.

Note: MVS imposes a limit of 127 characters in text output. The MRT does not
provide a warning or condition when longer messages are truncated.

SELECT Statement

A SELECT statement introduces a series of WHEN statements, followed by a
required OTHERWISE statement and an END statement. The SELECT statement
does not include any arguments.

UPON Statement

An UPON statement is a top-level conditional that introduces each section. There
are four types of conditions:

* MSGID, which can be in the range of 1 - 12 characters

¢ JOBNAME, which can be in the range of 1 - 8 characters

» PREFIX, which is always three characters

* OTHERMSG

They are tested in the order provided here and the first three conditions are always
compared with a literal. The MSGID literal can be in the range of 1 - 12 characters,
the JOBNAME literal can be in the range of 1 - 8 characters, and the PREFIX literal
is always three characters.

These are examples of the conditions:

UPON (msgid = 'CNM233I' | JOBNAME='VTAM' | prefix = 'IST')
UPON (MSGID="TST102A"

MSGID="TST102B"

MSGID="TST102C"

MSGID="TST102D")

If any message matches one type of an UPON statement, the message is not
compared with lower-ranking UPON statements. For example, if message
CNM233I is presented to the preceding table, it is not compared for the JOBNAME
or PREFIX conditions and it is not submitted to any statements listed under the
UPON(OTHERMSG) section. Note that MSGID is tested first even if that UPON
statement is not physically first in the table definition.

Limit your use of UPON(OTHERMSG) statements to avoid performance
degradation.

Within a given UPON statement, multiple conditions can be joined by an OR
symbol (1), but not AND.

Subordinate to each UPON statement, there can be zero or more statements of type

SELECT, REVISE, NETVONLY, and EXIT. This group of statements is called an
UPON group and it is evaluated in the same order that it is specified.

Chapter 13. The Message Revision Table 133

When a message has matched an UPON statement and acted on by the UPON
group, no further action is taken by the MRT. In particular, such a message is not
compared with other UPON conditions.

Note that only the first line of a MLWTO message is examined.

WHEN Statement

The WHEN statement is subordinate to a SELECT statement and is always
followed by an expression enclosed in parentheses. Each WHEN statement is
followed by a set of zero or more action statements preceding the next WHEN or
OTHERWISE statement. This is called a WHEN group. The expression is a pair of
edit scripts separated by either an equal sign (=) or a not equal set of symbols (-=).
The two scripts are run against a message and the results are compared, after the
leading and trailing blanks or null values are removed. If the two are equal (or not
equal, depending on the separator value), then the message is considered to have
matched that WHEN statement. Such a message is acted upon by the action
statements of the WHEN group and is not compared with other WHEN statements
under the same SELECT statement, and it is not matched to the OTHERWISE
statement.

Examples of the WHEN statement:

WHEN (msgid right 1 = 'A")

WHEN (MSGID SUBSTR 5.% RIGHT 1 = 'E')
WHEN (SYSLOG yesno = 'Yes')

WHEN (SYSLOG yesno = 'No')

WHEN (SYSLOG = '80'x)

WHEN (SYSLOG = '00'x)

WHEN (FLGRTCD1 SUBSTR 2.1 = '1")

when action message

when error message

when SYSLOG is on. 'Yes' is case sensitive.
when SYSLOG is off. 'No' is case senstive.
when SYSLOG is on

when SYSLOG is off

when routing code 2 is on

* % X Xk ok X

See the NetView online help or |[BM Tivoli NetView for z/OS Programming: Pipes| for
information about using PIPE EDIT orders.

Example of a Message Revision Table

134

This is an example of an MRT:

UPON (MSGID = 'IEA404A' ! SEVERE WTO BUFFER SHORTAGE - 100% FULL
MSGID = 'IRA200E' ! AUXILIARY STORAGE SHORTAGE
msgID = 'DSI1251') I CRITICAL STORAGE SHORTAGE FOR NCCF
REVISE('CR HR' COLOR) ! make msgs red/reverse
* note, when adding to text, be sure to put text in there first!
SELECT
WHEN (MSGID = 'DSI125I') !
REVISE("N" AUTOMATE) ! do not try to automate dsil25
EXIT I skip further revision, too.
OTHERWISE
END
REVISE('11xx0xxx' FLGRTCD1 ! send to Rt Cd 1,2 but not 4 ...

1. 1 "919-555-5677") ! and add my phone number to text

* Some VTAM related messages ...

UPON (MSGid = 'CNM233I' |MSGID = 'CNM234I' |MSGID = 'CNM235I'
MSGID = 'CNM385I' |MSgID = 'CNM386I' |MSGID = 'CNM435I'
MSGID = 'CNM4391'
JOBNAME = 'VTAM' | preFix = 'IST'")

SELECT
WHEN (MSGID LEFT 3 = 'CNM') I Tike "prefix" for WHEN statment
REVISE("CP" COLOR) ! nv msgs above turn pink
OTHERWISE

Automation Guide

REVISE("CP HR" COLOR) I others also underscored

NETVONLY I sys consoles not to see these
END
UPON (PREFIX = 'DSI' | prefix = 'CNM' | prefix = 'DWO')
revise ('xxxx1llxx' flgRtCdl) ! in addition to route codes already

! set, add 5 and 6

! Despite being specified first, the prefix condition above is
I evaluated AFTER all MSGID conditions. Due to the following,
! DSIB02A & 803A are not affected by the Rt Cd 5 & 6 revision.

UPON (MSGID = 'DSI802A' I changing text of these msgs
| MsgID = 'DSI803A')
revise(wl 1 msgid nw ! put in reply ID and msgid

"reply CLOSE or MSG" nw)! list valid cmds
! note: above revision sets text, so text placed by the edit is the
! ONLY text in the resulting message.

SELECT
WHEN(MSGID RIGHT 2 = '3A') ! for one of the above MSGIDs,...
REVISE(1.%* 1 'ONLY!') ! make addtional text changes
OTHERWISE

END

SELECT
WHEN (W3 -= '&DOMAIN.') ! msg from other NetView?

NETVONLY I steal msg from MVS, give only

I to this NetView, for automation
! Be sure your automation does something with these msgs!
OTHERWISE
END
UPON (OTHERMSG) I more performance cost for these tests...
SELECT
WHEN (MSGiD RIGHT 1 = 'A')
REVISE("HB" COLOR)

I action msg
!
WHEN (MSgid RIGHT 1 = 'E') !
!
!

keep same color, add blink

REVISE ('xx1xxxxx' FLGRTCD2
'CY' color)
OTHERWISE
END

add Rt Cd 11 to any present
and color

Usage Reports for Message Revision Tables

You can use the REVISE MSG REPORT command to gather statistics and usage
information about the active revision table. If successful, a BNHRVaaal message is
issued. When the REPORT keyword is specified with the MEMBER operand, the
information displayed is about the table being replaced and the time it was
replaced.

See the NetView online help or the [[BM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N)| for more information about using the REVISE MSG command.

Message Revision Table Testing

You can use these steps to test your message revision table and verify that the
route codes, descriptor codes, and console name specified on a REVISE statement
are working as expected:

1. Issue a message using the WTO command. For example:
WTO TST125A First test message

2. Allow the message to go through your message revision table and modify the
console name, a descriptor code, and a route code.

3. Use the NetView automation table to call a REXX routine to print the
descriptor code, route code and console name information. This is an example

Chapter 13. The Message Revision Table 135

136 Automation Guide

of an example of an automation table entry, a section of the Message Revision
Table, and a REXX example that the Automation Table entry calls:

* Automation table entry

IF MSGID = 'TST' . THEN
HOLD(N) EXEC(CMD('RexxExec') ROUTE(ONE ConsoleName)); +* where ConsoleName
*is the NetView console name obtained using GETCONID

A section of the Message Revision Table

UPON (MSGID="TST125A")

SELECT

When (MSGID="TST125A")

REVISE('1xxxxxxx' FLGDSCD1)

REVISE('xxxxxxx1' FLGRTCD2)

REVISE ("ConsoleName" CONSNAME) * where ConsoleName is a valid Console Name
Otherwise

END

REXX example called by the Automation table entry

/* RexxExec =/

say ROUTCDE()

say "desc code =" DESC()
say "CONSNAME=" SYSCONID()
exit

See the NetView online help or the |[BM Tivoli NetView for z/OS Command Referencd
Volume 2 (O-Z) for more information about the WTO command.

Chapter 14. The Command Revision Table

This chapter describes:

* The NetView command revision table (CRT)

* How to code a command revision table

* Command revision table statements

* Example of a command revision table listing

* Usage reports for command revision tables

* Testing the logic of the command revision table

Note: The MVS Command Revision function replaces the existing MVS Command
Management function. For information on migrating to the MVS Command
Revision function, see the [[BM Tivoli NetView for z/OS Installation: Migration|

What Is the Command Revision Table?

The command revision table (CRT) enables you to intercept MVS commands before
they are processed. Command sources include the MVS console and the NetView
MVS command.

The CRT intercepts any text entered on an MVS console command line, as an SDSF
system command, using the JCL COMMAND parameter, or by any program using
the MGCRE macro or direct SVC 34. The text entered might or might not be a
valid MVS command before being altered or redirected by CRT processing.
However, any MVS commands that you issue as part of the CRT processing will be
exempt from CRT action (see |'NETVONLY Statement” on page 143). You can make
decisions about the command based on its source, command verb, and command
parameters.

You can make changes to the command text, write a message to the command
issuer, and then run the command or suppress the command. You can also transfer
the command to the NetView program for more involved actions. The CRT can
remain active even while the NetView program is not, but the SSI address space is
required. However, loading or querying the CRT, or gathering statistics, depends
on the functional NetView address space being active.

Elements of Command Revision Table Statements

These elements comprise a command revision automation table:

* Use the UPON statement to introduce each section.

* Use the SELECT statement to introduce a series of WHEN statements.

* Use the WHEN statement or the OTHERWISE statement to specify a condition.
» Use the END statement to close a section started with a SELECT statement.

* Use the REVISE statement to include revision actions.

* Use the EXIT statement to stop any further command revision when an action is
matched.

* Use the NETVONLY statement to provide for NetView automation.

* Use the WTO statement to generate a message to the console from which the
command was issued. If the command originated from an INTERNAL,
INSTREAM, INTIDS, or HC console, the message is written to SYSLOG only.

© Copyright IBM Corp. 1997, 2009 137

* Use the %INCLUDE statement to include separately coded and maintained
sections of the command-revision table to divide your command-revision table
maintenance among several groups or individuals. You can view your INCLUDE
structure using the automation-table management function (AUTOMAN). See
sample CNMSCRT1 for additional information.

Command Revision Table Processing

You can use the REVISE CMD command to activate, deactivate, test, list, or check
the status of a command revision table. See the NetView online help or the
[Tivoli NetView for z/OS Command Reference Volume 1 (A-N)| for more information
about using the REVISE CMD command.

Command Revision Table Searches

When an MVS command is issued, the NetView SSI code employs a fast search
algorithm to locate the particular UPON statement that is relevant for that
command. Conditions and actions under that UPON are then applied sequentially.
If a command matches no particular UPON condition, this is quickly determined
and the command is then subject to conditions and actions under the
UPON(OTHERCMDS) condition and then the UPON(ALLCMDS) condition.

You can include an UPON statement with no subordinate conditions or actions,
simply to cause your CRT report to contain a count of matching commands. An
UPON statement with no subordinate conditions or actions is called a null UPON.

Conditions subordinate to an UPON statement are examined sequentially.
Therefore, you might improve performance by including a specific null UPON
statement to match common commands, to prevent their being examined by the
UPON(OTHERCMDS) or UPON(ALLCMDS) conditions.

Coding a Command Revision Table

These directions and restrictions apply to coding the command revision table:

¢ Comments can begin with an asterisk (*) in column 1 or following an
exclamation point (!) anywhere in the file.

* You can use blanks to indent lines and to separate keywords, logical operators,
and parentheses.
Blanks used within a comparison string are considered characters in that string.

* You must use single or double quotation marks as the delimiters for comparison

text and for synonym values. If a literal has one kind of quotation mark, use the
other as the delimiter.

* You can include actions such as REVISE, NETVONLY, and WTO directly under
an UPON statement without any SELECT, WHEN, or OTHERWISE statement.
These actions are labeled as type OTHERWISE in an CRT report.

e PIPE EDIT orders can be used with the WHEN, REVISE, and WTO statements.
See [“Edit Orders” on page 144| for more information.

138 Automation Guide

Command Revision Table Statements

You can use the following statements in a CRT:
+ ["'TRACKING.ECHO Statement” on page 139
+ |“ISSUE.IEE295I Statement” on page 139

+ ["UPON Statement” on page 140

[‘SELECT Statement” on page 141]
["WHEN Statement” on page 141|

[OTHERWISE Statement” on page 142|
[“END Statement” on page 142|
['REVISE Statement” on page 142|
["'NETVONLY Statement” on page 143|
[“WTO Statement” on page 143|

TRACKING.ECHO Statement

By default, the z/OS operating system issues an additional command echo when

the CRT makes a change to a command. This will appear in your system log. This

new message reflects the command as it was changed by the CRT.

Notes:

1. System APAR OA28464 is required for this statement to be in effect.

2. If specified, the TRACKING.ECHO statement must precede any UPON
statement.

The TRACKING.ECHO statement uses the following syntax:
TRACKING.ECHO

YES
»>—TRACKING.ECHO = |_ —l

Lno—!

A\
A

Parameter Description
YES Specify YES to allow the extra echo. This is the default.
NO Specify NO to suppress the extra echo.

ISSUE.IEE295I] Statement

By default, the z/OS operating system issues an additional IEE295], a multi-line
message, to document changes made directly in your CRT. This will appear in
your system log. The message is not issued when you specify the NETVONLY
action. This new message reflects the command as it was prior to and after the
changes made by the CRT.

Notes:

1. System APAR OA28464 is required for this statement to be in effect.

2. If specified, the ISSUE.IEE295] statement must precede any UPON statement.
The ISSUE.IEE295] statement uses the following syntax:

ISSUE.IEE295I

YES
»—ISSUE.IEE2951 = |_ —l ><

Lno—!

Parameter Description
YES Specify YES to allow the tracking message. This is the default.
NO Specify NO to suppress the tracking message.

Chapter 14. The Command Revision Table 139

UPON Statement

140 Automation Guide

An UPON statement is a top-level conditional statement that introduces each
section.

The UPON statement uses the following syntax:

UPON
| 1
»>—UPON (—X-CMDCONS="console_name’) ><
| 1
(—~-CMDVERB="first_token’ ——)—
(OTHERCMDS)
(ALLCMDS)
Parameter Description

CMDCONS="console_name'
Name of the console issuing the command.

CMDVERB-='first_token'
Value of the first token delimited by a blank or comma, which can
be in the range of 1 - 12 characters. Command synonyms are not
resolved.

OTHERCMDS
All commands not matched by the preceding conditions.

ALLCMDS All commands.

Usage Notes®:

1. The CMDCONS and CMDVERB conditions can accept multiple values or can
be coded multiple times with different values.

2. Code the OTHERCMDS and ALLCMDS conditions only once in a table.

3. The parameters are examined in the following order:

a. CMDCONS

b. CMDVERB

c. OTHERCMDS
d. ALLCMDS

4. If any command matches one type of an UPON statement, the command is not
compared with lower-ranking UPON statements.

5. Limit your use of UPON(OTHERCMDS) and UPON(ALLCMDS) statements to
avoid performance degradation.

6. Within a given UPON statement, multiple conditions can be joined by an OR
symbol (1), but not AND.

7. Subordinate to each UPON statement, there can be zero or more statements of
type SELECT, REVISE, NETVONLY, and WTO. This group of statements is
called an UPON group and it is evaluated in the same order that it is specified.

8. OTHERCMD is a synonym for OTHERCMDS. ALLCMD is a synonym for
ALLCMDS.

Examples:

These are examples of the UPON conditions:

UPON (CMDVERB ='CONTROL' | CMDVERB='K' | CMDCONS='SAMSOWN')
UPON (CMDVERB="FORCE ")
UPON (OTHERCMDS)

SELECT Statement

A SELECT statement introduces a series of WHEN statements, followed by a
required OTHERWISE statement and an END statement. The SELECT statement
does not include any arguments.

The SELECT statement uses the following syntax:
SELECT

»»—SELECT ,e

WHEN Statement

The WHEN statement is subordinate to a SELECT statement and is always
followed by an expression enclosed in parentheses. Each WHEN statement is
followed by a set of zero or more action statements preceding the next WHEN or
OTHERWISE statement. This is called a WHEN group. The expression is a pair of
edit scripts separated by either an equal sign (=) or a not equal set of symbols (-=).
The two scripts are run against a command and the results are compared, after the
leading and trailing blanks or null values are removed. If the two are equal (or not
equal, depending on the separator value), then the command is considered to have
matched that WHEN statement. Such a command is acted upon by the action
statements of the WHEN group and is not compared with other WHEN statements
under the same SELECT statement, and it is not matched to the OTHERWISE
statement.

The WHEN statement uses the following syntax:

WHEN
»»—WHEN — (-action_statement-) ><
Parameter Description

action_statement
Edit orders that you can specify. See [Table 5 on page 144 for a list
of the edit orders that you can specify.

Examples:

These are examples of the WHEN statement:

WHEN (CONSAUTH = 'I") ! console's authority is "I/0"

WHEN (CONSNAME 1eft 3 = 'MST') ! console's name begins with "MST"
WHEN(WORD 2 = '') I command entered with no arguments
WHEN (ASTYPE = 'D') I command from USS persistent procedure
WHEN (CMDVERB = 'SWITCH') ! switch command issued -- or
WHEN(CMDVERB = 'I') I switch command issued

See the NetView online help or [IBM Tivoli NetView for|
lz/OS Programming: Pipes| for information about using PIPE EDIT orders.

Chapter 14. The Command Revision Table 141

OTHERWISE Statement

An OTHERWISE statement is like a WHEN statement, except that there is no
condition and it must follow all the WHEN statements under a given SELECT
statement.

The OTHERWISE statement uses the following syntax:
OTHERWISE

»>—O0THERWISE ><

END Statement

An END statement closes a section started with the corresponding SELECT
statement.

The END statement uses the following syntax:
END

»»—END

v
A

REVISE Statement

142 Automation Guide

The REVISE statement modifies the command string (text).

The REVISE statement uses the following syntax:

REVISE
»»—REVISE —(-action_statement-) >
Parameter Description

action_statement
Edit orders that you can specify. See [Table 5 on page 144 for a list
of the edit orders that you can specify.

Usage Notes:

1. A REVISE statement is followed by a set of parentheses enclosing a single edit
script. This script is called a revision script. If no output order changes the
command text, the entire text is replicated into the output command.

2. Multiple REVISE statements can be in any group, with each acting on the result
of the previous revision. If a subsequent SELECT group reexamines the
command, it sees the result of the action of the preceding REVISE action.

Restriction:

MVS imposes a limit of 126 characters per command. The CRT does
not provide a warning or condition when longer commands are
truncated.

Examples:

These are examples of the REVISE statement:

REVISE(ALL 1 ",AREA=BLD410" N) ! adding a parameter to a command
REVISE('Y' DELETE) I command is deleted (forbidden)
REVISE(ALL 1 ",L" NEXT) ! adding a parameter

See the NetView online help or [[BM Tivoli NetView for|
lz/OS Programming: Pipes|for information about using PIPE EDIT orders.

NETVONLY Statement

The NETVONLY statement specifies the REXX procedure (command) that is to be
run in the NetView address space. The parameters of the procedure will be the
command text submitted to the CRT and includes any revisions made in the CRT
prior to the NETVONLY action.

The NETVONLY statement uses the following syntax:
NETVONLY

A\
A

»»—NETVONLY=procedure

Parameter Description
procedure 1 to 8 character REXX procedure name

Usage Notes:

1. When the procedure (command) is received by the NetView address space, it is
submitted to the command revision environment automation task. The
automation task is identified by the ?ZMVSCmdRevision statement in the
CNMSTYLE member. The NETVONLY statement queues commands to the
NetView program over the SSI.

2. Only one NETVONLY statement can be specified in each WHEN or
OTHERWISE statement.

3. Review the CNMSRVMC sample for example coding techniques.

WTO Statement

The WTO statement creates text for a WTO message that is sent to the console
from which the command was issued.

The WTO statement uses the following syntax:

WTO
»»>—WT0 — (—action_statement—) ><
Parameter Description

action_statement
Edit orders that you can specify. See [Table 5 on page 144 for a list
of the edit orders that you can specify.

Restrictions:
1. You cannot set route codes, descriptor codes, or other parameters of the WTO.
2. Text exceeding 126 characters is truncated.

Chapter 14. The Command Revision Table 143

Edit Orders
lists the edit orders that you can use with the WHEN or REVISE

144 Automation Guide

specifications.

Table 5. Edit Orders

Edit Order Description
ALL Indicates to use the entire text of the command. This is the same as "1.*".
ASID Indicates the address space ID of the MVS originator of the command
(2-byte binary value).
ASTYPE Indicates how the address space was started (job type):
Value Description
D USS persistent procedure.
The address space has a name for initiated programs, appropriate
for a JOB. However, the existence of an OpenMVS address space
block indicates a special purpose USS persistent procedure.
J The address space is a JOB.
N The address space is a system address space started during
operating system initialization (NIP) processing.
S The address space is a Started Task (STC).
T The address space is a Time-Sharing User (TSO).
U The address space is a USS forked or spawned procedure.
* Error: the address space where the command originated has
closed.
? Error: inconsistent data (might be a transient condition).
! Error: inconsistent data.
> Error: should not occur.
C2B Converts input binary to a Boolean string (EBCIDC "0” and "1” values)
C2D Converts input to a string representing a decimal number.
c2X Converts input to a string representing its hexadecimal notation.
CMDX Inputs the first 88 (X'58") bytes of the IEZVX101 control block.
CONSAUTH |Indicates authority of the console issuing the command:
Value Description
M Master
I 1I/0
S SYS
C CONSOLE
CONSNAME |Returns the issuing console name.
D2C Converts a signed integer number into a full-word.
D2X Converts a signed decimal number to a hexadecimal representation
DELETE Output order, binary input "Y” or "1” indicates that the command is to be
deleted.
JOBNAME Input order, specifies the 8-character JES job name of the originator of the
command.

Table 5. Edit Orders (continued)

Edit Order Description

LEFT Truncates or pads the input to the length specified. Characters are counted
from the beginning, or left, of the input.

NEXT Specifies that the input is to be placed into the output without an
intervening blank.

NEXTWORD | Specifies that the input is to be placed into the output with an intervening
blank.

NVABLE Returns "Yes” if a NETVONLY action can succeed, otherwise returns an
HNO”.

ONTO Sets the logical end of command text for all input order.

PAD Specifies the padding character to be used by subsequent orders. Examples
of orders which use the padding character include the LEFT conversion
order and the position output order.

PARSE Specifies how the WORD input order counts words.

PREFIX Conversion order; adds a literal string to the beginning of input text.

RESET Cancels all previous SKIPTO and UPTO orders. The original input line is
made available to input orders specified subsequent to RESET.

RIGHT Truncates or pads the input to the length specified. Characters are counted
from the end, or right, of the input.

RVAR From the input revision variable name, returns the current value or a null
string.

SKIPTO Sets the logical start of the line for input orders position length and WORD
to be a point other than the first character in the line.

STRIP Specifies that padding characters at the start or end of the data are to be
removed.

STRIPL Specifies that padding characters at the beginning of the data are to be
removed.

STRIPR Specifies that any padding characters at the end of the data are to be
removed.

SUBSTR Specifies that a subset of the input data is to be selected.

SYSNAME Specifiees the 8-character name of the system from which the command
originated.

UPTO Redefines the logical end of the input line.

WORD Specifies the subset of the input line to be processed. The subset is defined
by specifying a starting word and the total number of words.

X2C Converts a hexadecimal EBCIDC string into binary notation.

YESNO Converts a 1-byte field to the character string Yes or No.

See the NetView online help or [[BM Tivoli NetView for z/OS Programming: Pipes| for
more information on the PIPE EDIT orders.

| Command Revision Table Example

This is an example of an CRT (CNMSCRT1 sample):

UPON(CMDVERB = 'V' | CMDVERB = 'VARY')
SELECT
WHEN(WORD 2 = 'NETVIEW') 1V NetView, (anytext)
NETVONLY=CNMSRVMC I handle in NetView

Chapter 14. The Command Revision Table 145

OTHERWISE ! all other VARY cmds untouched
END

UPON (CMDVERB='T' | CMDVERB="SET"')
SELECT
WHEN (W2 next W3 = 'MPF NO') I SET MPF=NO ?
WTO("What do you think you're doing, Dave?") ! Think about it
OTHERWISE
END
UPON (CMDCONS='ROOT"') ! For special console...
* Note this "empty" UPON is tested first by cmd revision. For this
* special console is thus exempt from all CMDVERB & OTHERCMD actions
UPON (ALLCMD) I THIS applies even to console ROOT
SELECT
WHEN (CMDVERB -= 'SEND')
* The above means that the following is only for the SEND cmd.

WHEN (SKIPTO /USER=/ 1 FOUND -= 'Yes') I default = "ALL"
WTO("TLH447E Please do not broadcast to all.") ! explain to op
REVISE('Y' DELETE) ! disallow default

OTHERWISE

END
SELECT ! Note: second, independent SELECT under the ALLCMD
WHEN (CMDVERB -= 'IMSTDIS') I special to IMS cmd

WHEN (W2 = 'CCTL')
WTO("TLH851I Please review guidelines for SYSTAR1.")
Il Adding a message to the command response
OTHERWISE
END
NOTE: The following depends on NetView having set a CHRON command
to issue SETRVAR (or clist containing SETRVAR) to establish a
value for SHIFT: NORMAL (working hours), NIGHT (other times of
day, or HOLIDAY (non work days)
UPON (CMDVERB='S' | CMDVERB='START')

EIEE I .

SELECT
WHEN (W2 -= /STATCOMP/) ! starting special proc? see next WHEN
WHEN ("SHIFT" RVAR = "NORMAL") !
NETVONLY=CNMSRVMC ! double use of sample clist!

WHEN ("SHIFT" RVAR = "HOLIDAY")
I ¢cmd is allowed, no action here

WHEN (SKIPTO "LIMIT=" 1 FOUND = 'Yes') ! Timit keyword present?
I at NIGHT, proc is allowed with LIMIT keyword specified
OTHERWISE I SHIFT assumed to be NIGHT, no LIMIT

WTO('TLH722E Do not start' 1 WORD 2 NW
'without LIMIT keyword, except holidays.')
REVISE('Y' DELETE)
END
* START TH40EESS.SS,SUB=MSTR,MSGIFAC='SSIEXT',DSIG="'%"',PPIOPT="PPI"

Usage Reports for Command Revision Tables

You can use the REVISE CMD REPORT command to gather statistics and usage
information about the active revision table. If successful, a CNM014I message is
issued. When the REPORT keyword is specified with the MEMBER operand, the
information displayed is about the table being replaced and the time it was
replaced.

See the NetView online help or the |[BM Tivoli NetView for z/OS Command Referencd
Volume 1 (A-N)| for more information about using the REVISE CMD command.

146 Automation Guide

Command Revision Table Testing

You can use these steps to test your command revision table:

1.

Issue a command using the MVS command. For example:
MVS SET MPF=NO

Use the NetView command revision table to issue a WTO instead of running
the command. A section of the command revision table to do this is:

UPON (CMDVERB='T"' | CMDVERB="SET")
SELECT
WHEN (W2 next W3 = 'MPF NO') I SET MPF=NO ?
WTO("This command has been blocked by the NetView program.")
OTHERWISE
END

Chapter 14. The Command Revision Table 147

148 Automation Guide

Chapter 15. The Automation Table

This chapter describes:

e The NetView automation table

* The statements you can use in an automation table
* How to code an automation table

* The syntax of automation-table statements

* Design guidelines for automation tables

* Usage reports for automation tables

For information on using the automation table to automate messages and MSUs,
see |Chapter 22, “Automating Messages and Management Services Units (MSUs),”|

|0n page 319.|

For information on testing the logic of the automation table, see [Chapter 34,
[“Automation Table Testing,” on page 473

What Is the Automation Table?

The automation table enables you to respond automatically to messages and
management services units (MSUs). This table contains statements that define
actions that the NetView program takes when it receives specific messages and
MSUs. For example, you can issue a response in the form of a command,
command list, or command processor.

You can also set attributes and processing options. For example, you can suppress,
log, or route messages and block, record, or highlight MSUs.

The automation table also processes commands that are echoed to the screen,
treating them as messages. To stop the automation table from processing
commands, add a statement at the top of the table that ends processing if the
message type is an asterisk (HDRMTYPE = *') or another command-related
message type.

Elements of Automation-Table Statements

These elements comprise an automation table:

* An IF-THEN statement enables you to specify messages and MSUs that you want
the NetView program to automate. An IF-THEN statement contains a set of
conditions followed by a set of actions that the NetView program is to perform
when a message or MSU meets those conditions.

* A BEGIN-END section enables you to group statements together for processing.
A BEGIN-END section starts with a BEGIN option on an IF-THEN statement
and ends with an END statement.

e An ALWAYS statement enables you to specify actions to take place for all
messages and MSUs that reach that statement in the table.

* A %INCLUDE statement enables you to include separately coded and maintained
sections of the automation table to divide your automation-table maintenance
among several groups or individuals. You can view your INCLUDE structure
using the automation-table management function (AUTOMAN).

* A SYN statement enables you to define synonyms for use later in the table. Each
SYN statement includes a name and an associated value.

© Copyright IBM Corp. 1997, 2009 149

You store automation-table statements in member DSIPARM. You can store the
statements that make up an automation table in a single member or in a set of
members that you include in a main automation-table member with the
%INCLUDE statement.

Automation-Table Processing

You can use either the AUTOMAN or AUTOTBL command to activate, deactivate,
test, list, or check the status of an automation table or set of tables. You can also
enable or disable individual statements or groups of statements in an automation
table that has been defined to provide this functionality.

For more information on AUTOMAN, see [“Managing Multiple Automation Tables”]

For the syntax of the AUTOTBL command and detailed information, refer to the
NetView online help. [“Example of an Automation-Table Listing” on page 238
shows the results of using the AUTOTBL command to list an automation table.

When you activate an automation table, NetView first resolves all %INCLUDE and
SYN statements by incorporating all included members and substituting synonym
values for synonym names. Only IF-THEN statements, BEGIN-END sections, and
ALWAYS statements directly affect the processing of messages and MSUs.

Automation-Table Searches

When the NetView program receives a message or MSU and an automation table
is active, the NetView program searches the active automation table sequentially,
looking for:

* Conditions that match the received message or MSU
* An ALWAYS statement, which matches unconditionally

When a match is found, the NetView program performs the actions that the
matching statement specifies. If the matching statement specifies CONTINUE(Y),
the NetView program continues searching for an additional match. If the matching
statement does not specify CONTINUE(Y), the NetView program ends its search of
the automation table for the message or MSU.

Types of Automation-Table Statements

150 Automation Guide

Not all of your automation-table statements apply to all incoming data. When a
message is processed, the NetView program checks only the automation statements
that apply to messages. When an MSU is processed, the NetView program checks
only the automation statements that apply to MSUs.

An IF-THEN or ALWAYS statement must be one of three types: message, MSU, or
both.

* A message-type statement applies only to messages.

* An MSU-type statement applies only to MSUs.

e A both-type statement applies to either messages or MSUs

The type of an IF-THEN statement depends on the types of condition items and
actions the statement contains. The type of an ALWAYS statement depends on the
types of actions the statement contains.

A condition item or an action can be of three types: message, MSU, or both. To
determine the types of condition items or actions, see the descriptions of the

specific items or actions in this chapter. [‘Condition Items” on page 158| describes
condition items, and [“Actions” on page 211| describes actions.

Determining the Type of Statement

The rules for determining the type of an IF-THEN or ALWAYS statement are:

* If all condition items and actions are of type message, the statement type is
message.

* If all condition items and actions are of type MSU, the statement type is MSU.

* If all condition items and actions are of type both, the statement type is both.

* If some condition items and actions are of type both and some are message, the
statement type is message.

* If some condition items and actions are of type both and some are MSU, the
statement type is MSU.

* If some condition items and actions are of type message and some are of type
MSU, the statement is not valid.

* A statement with no condition items or actions, such as ALWAYS, is of type both.

 If any parts of a statement are not valid, the statement is not valid.

Statement Types and Processing

The statement type also affects the processing of BEGIN-END sections. A
BEGIN-END section is the same type as the statement that contains the BEGIN
keyword and begins the section.

* A BEGIN-END section that starts with a message statement type is type message
and can contain statements or other BEGIN-END sections whose types are
message or both.

¢ A BEGIN-END section that starts with an MSU statement type is type MSU and
can contain statements or other BEGIN-END sections whose types are MSU or
both.

* A BEGIN-END section that starts with a both statement type is type both and
can contain statements or other BEGIN-END sections whose types are message,
MSU, or both.

* A message-type BEGIN-END section containing MSU-type statements or an
MSU-type BEGIN-END section containing message-type statements is not valid.

You cannot activate an automation table that contains statements or BEGIN-END
sections that are not valid.

When the automation table receives a message, the NetView program processes
only statements and BEGIN-END sections of type message or both. When the
automation table receives an MSU, the NetView program processes only statements
and BEGIN-END sections of type MSU or both.

Coding an Automation Table

These directions and restrictions apply to coding the automation table.

* You must store the automation table in a member that has a fixed 80-character
format. You can code statements in columns 1-72.

* Columns 73-80 are for sequence numbers.
Sequence numbers are optional, but if they are used they:
— Must begin in column 73

Chapter 15. The Automation Table 151

— Must consist of alphanumeric characters, but can also include the characters
@, $, and #

* You must code a semicolon (;) at the end of each statement except the
%INCLUDE statement.

* The automation table can be coded in mixed case. The case is preserved for:
— Comments
— Character literals (quoted strings)
- Synonym names
— Synonym values
— The member name on a %INCLUDE statement

Other statement components are internally changed to uppercase during
processing of the table. This might result in error messages displayed as
uppercase statements.

* You can use blanks to indent lines and to separate keywords, logical operators,
and parentheses.

However, blanks used within a comparison string are considered characters in
that string.

* You can continue a statement on as many lines as needed, using columns 1-72.

You can stop a line after any logical operator, a parenthesis, a completed
condition, or an operand, and resume the statement anywhere in the first 72
columns of the next line.

* You must use single quotation marks as the delimiters for comparison text and
for synonym values.

— If a synonym value or comparison text contains a single quotation mark ('),
you must represent it as two consecutive single quotation marks (").

— Do not substitute a double quotation mark for two single quotation marks.
* Place comments on separate lines for automation-table members.

— Do not put comment lines between the beginning and end of a continued
automation-table statement.

— Each comment line must contain an asterisk (*) in the first column.
e System symbolic substitution is performed on automation-table statements read
from an automation-table member in the DSIPARM data set.

The &DOMAIN symbolic that is supplied with the NetView program is also
included in the substitution process. The substitution is performed after

comment removal but before record processing. Comments are also removed
after substitution. Substitution is always performed on the &DOMAIN symbolic
(unless substitution was disabled when NetView was started).

For MVS and user-defined system symbolics, substitution is not performed if
you are running on an MVS system prior to MVS Version 5 Release 2.

* Japanese double-byte characters are not supported in the automation table.

BEGIN-END Section

152 Automation Guide

BEGIN-END sections contain a series of automation-table statements. An END
statement ends a series of statements started with the BEGIN option on an
IF-THEN or ALWAYS statement. You can use BEGIN-END sections to logically
segment an automation table or to help improve the performance of
automation-table processing.

The syntax for a BEGIN-END section is:

BEGIN-END Section

A\
A

IF conditions THEN BEGIN; |_ _| END—;
ALWAYS g statements;

Where:
IF Starts an IF-THEN statement, as described in [“IF-THEN Statement” on|

conditions
Are the conditions that determine whether the actions indicated by THEN
are to be processed, as previously described.

THEN Starts the THEN part of an IF-THEN statement, as described previously.

ALWAYS
Starts an ALWAYS statement, as described in [YALWAYS Statement” on|
Starting a BEGIN-END section with the ALWAYS statement is
equivalent to simply coding statements without a BEGIN-END section.

BEGIN
Indicates the beginning of a series of statements. A BEGIN statement
cannot be on the same line as an END statement.

statements
Indicates any series of statements, which can include SYN, %INCLUDE,
IF-THEN, and ALWAYS statements and other BEGIN-END sections.

END Indicates the end of a series of statements. An END statement cannot be on
the same line as a BEGIN statement.

Usage notes:

1. You cannot combine BEGIN with actions on a single IF-THEN statement.

2. You must provide a matching END statement for each BEGIN statement.

3. If the conditions are true, automation-table processing continues with the first
statement within the section (the statement after BEGIN).

If the conditions are not true, automation-table processing continues at the next
statement after the END statement that ends the section.

4. You can nest BEGIN-END sections. That is, a BEGIN-END section can contain
other BEGIN-END sections.

5. The types of statements used within a BEGIN-END section must be consistent
with each other and, for an IF-THEN statement, with the conditions specified
in the IF part of the statement.

You cannot mix MSU-type and message-type statements, although you can mix
both-type statements with either MSU-type or message-type statements.

See |“Types of Automation-Table Statements” on page 150| for more information.

6. A variable set (in the conditions part of an IF-THEN statement that starts a
BEGIN-END section) is accessible for use in EXEC actions throughout the
BEGIN-END section.

The conditions portion (of a lower-level IF-THEN statement within the section)
can assign a value to the same variable name, temporarily overriding the value.
At the end of the lower-level IF-THEN statement (or its BEGIN-END section),

the variable reverts to the value defined in the higher-level IF-THEN statement.

Chapter 15. The Automation Table 153

IF-THEN Statement

154 Automation Guide

The IF-THEN statement enables you to specify messages and MSUs you want
NetView automation to intercept and process. You can use the statement to code
the conditions that a message or MSU must meet to be selected for automation,
and the actions you want the NetView program to take if a message or MSU meets
those conditions.

NetView evaluates the expressions stated before and after the operator in an IF
statement. If the condition is true, NetView processes the THEN part of the
statement. You can combine more than one condition with a logical-AND (&)
operator, logical-OR () operator, and parentheses.

The syntax of the IF-THEN statement is:
IF-THEN Statement

»»—IF condition_item —operator >
(LABEL:labelname)
(ENDLABEL: Labelname)—
(GROUP:groupname)
»— compare_item THEN ctions 5 »><
BEGIN
Where:

IF The keyword you code at the beginning of each IF-THEN statement.

LABEL:labelname
The LABEL keyword identifies an automation-table statement or a
BEGIN-END section to be specified with the DISABLE or ENABLE
function of the AUTOTBL command.

The labelname must be specified with alphanumeric characters, and can
contain @, #, and $.

ENDLABEL:labelname
The ENDLABEL keyword identifies an automation-table statement or a
BEGIN-END section to be specified with the DISABLE or ENABLE
function of the AUTOTBL command.

Note:

* The labelname value must match the value on a previous LABEL
keyword that is in the same member.

e If ENDLABEL is within a BEGIN-END section, the associated
LABEL must be located within the same BEGIN-END section.

* The name used on the LABEL-ENDLABEL pair must be unique
within the automation table.

* ENDLABEL must be specified with alphanumeric characters, and
can contain @, #, and $.

The labelname value must match the value on a previous LABEL
keyword which is in the same member.

GROUP:groupname
The GROUP keyword identifies an automation-table statement or a
BEGIN-END section to be specified with the DISABLE or ENABLE
function of the AUTOTBL command.

Note:

* One or more automation-table statements can be part of a named
group of statements to be specified with the DISABLE or
ENABLE function of the AUTOTBL command.

* The statements identified by a GROUP name can be in multiple
members if desired.

* The labelname must be specified with alphanumeric characters,
and can contain @, #, and $.

condition_item
The item being compared can be a bit string, character string, or a parse
template.

See |[“Condition Items” on page 158| for more information about condition
items.

operator
Indicates how the condition item is to be compared to the compare item.

= Indicates that if the condition item equals the compare item, the
condition is true.

= Indicates that if the condition item does not equal the compare
item, the condition is true.

< Indicates that if the condition item is less than the compare item,
the condition is true.

Note:
* Variables and placeholders are not supported.
* Comparison values can differ in length.
* A null string is considered less than any other string.

<= Indicates that if the condition item is less than, or equal to, the
compare item, the condition is true.

Note:
* You can specify => for the operator.
* Variables and placeholders are not supported.
* Comparison values can differ in length.
* A null string is considered less than any other string.

> Indicates that if the condition item is greater than the compare
item, the condition is true.

Note:
* Variables and placeholders are not supported.
* Comparison values can differ in length.
* A null string is considered less than any other string.

>= Indicates that if the condition item is greater than, or equal to, the
compare item, the condition is true.

Chapter 15. The Automation Table 155

156 Automation Guide

Note:
* You can specify =< for the operator.
* Variables and placeholders are not supported.
* Comparison values can differ in length.
* A null string is considered less than any other string.
compare_item

The item to which NetView compares the condition item can be a bit
string, character string, or a parse template.

See [“Bit Strings as Compare Items” on page 206 for more information.

THEN The keyword coded on the second part of an IF-THEN statement.

actions Specifies actions for NetView to take when the IF conditions of the
IF-THEN statement are true.

See [“Actions” on page 211| for more information.

BEGIN
Specifies the start of a BEGIN-END section.

See ["BEGIN-END Section” on page 152| for information.

Notes for IF-THEN Syntax:
1. You can include more than one condition in a statement. Link conditions with
either a logical-AND (&) or a logical-OR () operator.
* Ensure that there is a blank space proceeding and following the logical-AND
(&).
If the logical-AND (&) concatenates with other data, SYSCLONE support
might change the logic of your IF-THEN statement.

* When you link conditions with the logical-AND operator, all of the linked
conditions must be true for the specified actions to be taken.

* When you link expressions with the logical-OR operator, at least one of the
linked conditions must be true for the specified actions to be taken.

The IF-THEN statement in shows two conditions linked with the

logical-AND operator. For the conditions to be true, the message must originate

in domain CNMO01, and its text must be PURGE DATE IS LATER THAN TODAY'S

DATE.

IF DOMAINID='CNMO1' &
TEXT='PURGE DATE IS LATER THAN TODAY''S DATE' THEN
EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 25. Example of Using the Logical-AND Operator

shows another example of two conditions linked with the
logical-AND operator. In this example, the domain ID must be CNMO02 and the
MSU major vector key must be X'0000' (indicating an alert).

IF DOMAINID='CNMO2' & MSUSEG(0000) -= '' THEN
COLOR(YEL)
CONTINUE(Y);

Figure 26. Additional Example of Using the Logical-AND Operator

The IF-THEN statement in [Figure 27 on page 157 shows two conditions linked
with the logical-OR operator. If the message ID is IST0O51A, the NetView

program takes the specified action.

MSGID="ISTO51A"
THEN EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 27. Example of Using the Logical-OR Operator

2. The NetView program groups expressions linked with a logical-AND operator
before those linked with a logical-OR operator.

For example, the IF-THEN statement in has three conditions linked
with logical-OR and logical-AND operators.

IF DOMAINID='CNMO1' |
TEXT='PURGE DATE IS LATER THAN TODAY''S DATE' &
SYSID="MVS1' THEN
EXEC (CMD('CLISTA') ROUTE (ONE = OPER1));

Figure 28. Example of Using the Logical-OR and Logical-AND Operator

The NetView program evaluates the TEXT and SYSID conditions together
(because a logical-AND operator links these two conditions). The TEXT and
SYSID conditions must both be true or the DOMAINID condition must be true.
The program then combines the result with the DOMAINID condition.

3. You can control the order in which the NetView program groups conditions by
using parentheses around comparisons that you want the NetView program to
evaluate together.

This example presents the grouping of logical operators. If you want the
NetView program to evaluate the DOMAINID and TEXT conditions together,

place code parentheses around them, as shown in

IF (DOMAINID='CNMO1' |
TEXT='PURGE DATE IS LATER THAN TODAY''S DATE') &
SYSID="MVS1' THEN
EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 29. Example of Grouping Logical Operators

When processing the IF-THEN statement in the previous example, the NetView
program evaluates the DOMAINID and TEXT conditions together (because
they are grouped within parentheses). The NetView program then combines the
result with the SYSID condition. Either the DOMAINID or the TEXT condition
must be true; and the SYSID condition must also be true.

The NetView program ignores blank lines if they appear at the beginning of a
MLWTO (multiline write-to-operator) message. The blank lines are retained for
display purposes and can affect the location of lines when using GETMLINE in
a command procedure.
An MLWTO message presented to MVS can have a control line (IEE932I), a
sequential message identifier, or both appended to the message. The NetView
program removes IEE932] to make the message more useful, but does not
remove the sequential message identifier.

4. The series of IF--THEN statements in the next example shows automation-table
statements that make up a block named VTAM.
You can enable or disable the various statements by using the AUTOTBL
ENABLE or DISABLE command with:

¢ LABEL=VTAM to specify only the first statement in [Figure 30 on page 158|

« ENDLABEL=VTAM to specify only the last statement in [Figure 30 on page|
158

Chapter 15. The Automation Table 157

* BLOCK=VTAM to specify the entire block (all three statements) in

This series of IF-THEN statements is an example of using LABEL and
ENDLABEL keywords.

IF (LABEL:VTAM) MSGID = 'ISTO51A

THEN EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));
IF MSGID = 'ISTO52A"

THEN EXEC (CMD('CLISTB') ROUTE (ONE % OPER1));
IF (ENDLABEL:VTAM) MSGID = 'ISTO53A

THEN EXEC (CMD('CLISTC') ROUTE (ONE % OPER1));

Figure 30. Example of Using LABEL and ENDLABEL Keywords

which presents the use of the GROUP keyword, includes several
automation-table statements, some of which are part of a group of statements
named VTAMX. You can use the AUTOTBL command to enable or disable all
statements in the automation table that are part of this group by specifying a
keyword of GROUP=VTAMX. In this example, the first and third statements

are affected.

IF (GROUP:VTAMX) MSGID = 'ISTO54A'

THEN EXEC (CMD('CLISTX') ROUTE (ONE * OPER1));
IF MSGID = 'ISTO55A'

THEN EXEC (CMD('CLISTY') ROUTE (ONE * OPER1));
IF (GROUP:VTAMX) MSGID = 'ISTO56A'

THEN EXEC (CMD('CLISTZ') ROUTE (ONE * OPER1));

Figure 31. Example of Using the GROUP Keyword

5. An MVS message issued by an unauthorized program has a plus sign added.
The NetView program removes the plus sign and sets a field in the automation
internal function request (AIFR) to indicate that the message was issued by an
unauthorized program.

6. You can use the THEN keyword without either actions or a BEGIN-END
section to indicate that the automation table is to take no further action for the
message or MSU. presents the use of the THEN keyword without
actions or a BEGIN-END section.

IF HDRMTYPE = 'x' THEN ;

Figure 32. Example of Using THEN Keyword Without Actions

Condition Items

This section describes the condition items that you can use in an IF-THEN
statement. Three tables show the condition items by type:

* [Table 6 on page 159| for messages

* [Table 7 on page 160 for MSUs

* [Table 8 on page 161| for messages and MSUs

With these exceptions, the text in these tables describes each condition item in

alphabetical order:

* Display actions for messages are ignored unless the message is sent to the
command facility for display.

* Display actions for MSUs are ignored unless the MSU contains an alert that is
sent to the hardware monitor for display.

158 Automation Guide

There are five types of MSUs:

* Control point management services units (CP-MSUs)

* Multiple domain support message units (MDS-MUs)

* Network management vector transports (NMVTs)

* Record maintenance statistics (RECMSs)
* Record formatted maintenance statistics (RECFMSs)

Table 6. IF Condition Items for Messages

Condition Item

Compare Item

Maximum Length Description

ACTIONDL Parse template 7 char Tells why message was deleted

ACTIONMG Bit String 1 bit Indicates action message

AREAID Parse template 1 char MVS message area ID

AUTOTOKE! Parse template 8 chars MVS message processing facility automation token

CART! Parse template 8 bytes Command and response token

CORRELATED Bit String 1 bit Indicates the message is correlated

CORRFAIL Bit String 1 bit Indicates the correlation failed

DESC Bit string 16 bits MYVS message descriptor codes

IFRAUWF1 Bit string 32 bits MVS WTO information

JOBNAME Parse template 8 chars MVS originating job

JOBNUM Parse template 8 chars MVS assigned job number

KEY? Parse template 8 chars Key associated with a message

MCSFLAG Bit string 16 bits MVS multiple console support flags

MSGAUTH Bit string 2 bits Authorized program indicator

MSGCATTR!? Bit string 16 bits MVS message-attribute flags

MSGCMISC? Bit string 8 bits MVS miscellaneous routing flags

MSGCMLVL!? Bit string 16 bits MVS message-level flags

MSGCMSGT? Bit string 16 bits MVS message-type flags

MSGCOJBN* Parse template 8 chars Originating job name

MSGCPROD! Parse template 16 chars MVS product level

MSGCSPLX Parse template 8 chars Name of sysplex sending message

MSGDOMFL? Bit string 8 bits MVS delete operator message (DOM) flags

MSGGBGPA? Parse template 4 bytes Background presentation attributes

MSGGDATE! Parse template 7 chars Date associated with a message

MSGGFGPA! Parse template 4 bytes Foreground presentation attributes

MSGGMFLG* Bit string 16 bits MVS general message flags

MSGGMID? Parse template 4 chars MVS message 1D

MSGGTIME! Parse template 11 chars Time that the message was issued

MSGID Parse template 255 chars Message ID

MSGSRCNM! Parse template 17 chars Source name from source object

MVSRTAIN Bit string 3 bits MVS automation message retention facility (AMRF)
AMREF retain flags

NVDELID Parse template 24 char NetView deletion ID

ROUTCDE Bit string 128 bits MVS routing codes

Chapter 15. The Automation Table

159

Table 6. IF Condition Items for Messages (continued)

Condition Item

Compare Item

Maximum Length Description

SESSID Parse template 8 chars Terminal access facility session 1D

SYSCONID Parse template 8 chars System console name

SYSID Parse template 8 chars ID of originating MVS system

TEXT Parse template 255 chars Message text

TOKEN Parse template 255 chars In a message text, a string delimited by blanks

Note: ! This condition item does not have a value unless the message being processed was originally a message
data block (MDB).

Table 7. IF Condition Items for MSUs

Condition Item

Compare Item

Maximum Length Description

CORRELATED Bit String 1 bit Indicates the MSU is correlated

CORRFAIL Bit String 1 bit Indicates the correlation failed

HIER Parse template See |"HIER” o Resource hierarchy associated with an MSU

[page 170,

HMASPRID?2 Parse template 9 chars Returns the alert sender product ID

HMBLKACT? Parse template 5 chars Returns the block ID and action code of an MSU

HMCPLINK? Bit string 1 bit Returns an indicator that specifies whether a complex
link exists

HMEPNAU?2 Parse template 16 chars Returns the network addressable unit (NAU) name of
the entry point node where the MSU originated for
MSUs forwarded using the SNA-MDS/LU 6.2 alert
forwarding protocol or the NV-UNIQ/LUC alert
forwarding protocol.

HMEPNET? Parse template 16 chars Returns the netid name of the entry point node where
the MSU originated for MSUs forwarded using the
SNA-MDS/LU 6.2 alert forwarding protocol.

HMEPNETV?2 Bit String 1 bit Returns an indicator that specifies whether the entry
point node where the MSU originated was a remote
node NetView program. This function applies only to
MSUs forwarded using the SNA-MDS/LU 6.2 alert
forwarding protocol.

HMEVTYPE? Parse template 4 chars Returns the event type of an MSU

HMFWDED?2 Bit string 1 bit Returns an indicator that specifies whether an MSU
was forwarded from another node over the
NV-UNIQ/LUC alert forwarding protocol

HMFWDSNA2 Bit string 1 bit Returns an indicator that specifies whether an MSU
was forwarded from a remote entry point node using
the SNA-MDS/LU 6.2 alert forwarding protocol

HMGENCAU?2 Parse template 1 char Returns the general cause code of an MSU, in
hexadecimal

HMONMSU?2 Bit string 1 bit Returns an indicator that specifies whether an MSU
was submitted to automation by the hardware monitor

HMORIGIN? Parse template 8 chars Returns the name of the resource sending the MSU

HMSECREC?2 Bit string 1 bit Returns an indicator specifying whether the hardware

monitor performs secondary recording

160 Automation Guide

Table 7. IF Condition Items for MSUs (continued)

Condition Item

Compare Item

Maximum Length Description

HMSPECAU? Parse template 2 chars Returns the specific component code of an MSU, in
hexadecimal

HMUSRDAT? Parse template 5 chars Returns the user data from subvector 33 of an MSU

MSUSEG Parse template or See ['MSUSEG” on] MSU data

bit string

lpage 197]

Note: 2 This condition item returns a null value if the MSU was not submitted for automation by the hardware

monitor.

Table 8. IF Condition Items for Messages and MSUs

Condition Item

Compare Item

Maximum Length Description

ACQUIRE Parse template See Value determined by the edit specification
ATF Parse template or See Value determined by a specified ATF program
bit string [page 163.
ATF(DSICGLOB) Parse template See ['DSICGLOB”] Value of a common global variable
lon page 165
ATF(DSITGLOB) Parse template See m Value of a task global variable
|0n page 165.|
ATTENDED Bit string 1 bit Attended task indicator
AUTOMATED Bit string 1 bit Significant action indicator
AUTOTASK Bit string 1 bit Autotask indicator
CURRDATE Parse template 8 chars Current date
CURRTIME Parse template 8 chars Current time of day
CURSYS Parse template 8 chars Current MVS operating system name
DISTAUTO Bit string 1 bit Distributed autotask indicator
DOMAIN Parse template 5 chars Current NetView domain name
DOMAINID Parse template 8 chars Originating NetView domain
HDRMTYPE Parse template 1 char Message type
IFRAUIND Bit string 16 bits AIFR indicator flags
IFRAUIN3 Bit string 8 bits Indicator-bit field
IFRAUI3X Bit string 32 bits Indicator bits
IFRAUSB2 Parse template 2 chars AIFR user field
IFRAUSC2 Bit string 128 bits AIFR user field
IFRAUSDR Parse template 8 chars Name of originating NetView task
IFRAUSRB Bit string 16 bits AIFR user field
IFRAUSRC Parse template 16 chars AIFR user field
IFRAUTA1 Bit string 48 bits AIFR control flags
INTERVAL Bit string 1 bit Occurrence interval detection
LINEPRES Parse template 4 bytes Presentation attributes of first text buffer
LINETFLG Bit string 16 bits Presentation override flag (bit 16) and other flags
MVSLEVEL Parse template 8 chars Current MVS product level
NETID Parse template 8 chars VTAM network identifier

Chapter 15. The Automation Table

161

Table 8. IF Condition ltems for Messages and MSUs (continued)

Condition Item

Compare Item

Maximum Length Description

NETVIEW Parse template 4 chars NetView version and release
NUMERIC Parse template 255 chars Numeric value of a variable
NVCLOSE Bit String 1 bit NetView CLOSE processing flag
OPID Parse template 8 chars Operator or task ID
OPSYSTEM Parse template 7 chars Operating system

SYSPLEX Parse template 8 chars Local MVS sysplex name
TASK Parse template 3 chars Type of task

THRESHOLD Bit string 1 bit Occurrence threshold detection
VALUE Parse template 255 chars Value of a variable

VTAM Parse template 4 chars VTAM level

VTCOMPID Parse template 14 chars VTAM component identifier
WEEKDAYN Parse template 1 char Day of the week

162 Automation Guide

This is an alphabetical list of the condition items.

ACQUIRE (‘edit_specification')

A condition item that enables you to extract AIFR data using the syntax
and function provided by the PIPE EDIT stage.

Only the first line of the returned message buffer is used for comparison.
The AIFR path) continues unaltered through the automation process.

While edit_specification must be enclosed in single quotation marks (in the
form ‘edit_specification’), you cannot use single quotation marks (") within
the edit_specification itself.

For specific information about the edit_specification, refer to the [BM Tivoli
[NetView for z/OS Programming: Pipes|

ACTIONDL [(pos [len]]

The reason for deleting the NetView action message. The reason is
expressed in an EBCDIC string that is from 1 to 8 characters in length.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

If the value of ACTIONDL is not null ("), the automation table is
processing a DOM (Delete Operator Message), as contrasted to a message
or an alert.

Valid values are as follows:
" Null; the message is not a DOM.

ASID The message was deleted because the address space ended that
issued the message.

INVALID
The DOM contained an unrecognizable combination of bit settings.

LOCAL
The message was deleted by an operator overstrike or by the
CONSOLE DELETE stage.

NETVIEW
The message was deleted by the NetView DOM command using
the NVDELID option, or internally by NetView.

SMSGID
The message was deleted by an MVS DOM-by-SMSGID. A single
message was deleted by its specific identifier.

TCB The message was deleted because the task ended that issued the
message.

TOKEN
The message was deleted by an MVS DOM-by-token.

Maximum length: 7 characters

Type: Message

Notes for ACTIONDL:

* MVS might convert TCB and ASID conditions to DOM-by-SMSGID.

¢ SMSGID is the most frequent type of MVS DOM.

* Related condition items are ACTIONMG and NVDELID. Also see
["“DOMACTION” on page 214

ACTIONMG

Indicates whether the message is treated by NetView as an MVS action
message. Values for ACTIONMG are:

1 The message is an action message.

0 The message is not an action message.

Maximum length: 1 bit
Type: Message
Notes for ACTIONMG:

* Action messages are WTORs or those marked with a Descriptor code
that matches one of those specified on the MVSPARM.ActionDescCodes
CNMSTYLE statement.

* Related condition items are ACTIONDL and NVDELID. Also see
["DOMACTION” on page 214.|

AREAID [(pos [len]]

The one-letter identifier (A-Z), on the multiple console support console
that displays the message.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of AREAID evaluates to null (") if the value is B'0' or blank. You

can test for these cases by comparing to the null (") keyword.

Maximum length: 1 character

Type: Message

Chapter 15. The Automation Table 163

164 Automation Guide

ATF ([BIT] 'cmdstring')

Identifier for a program that is called to perform an automation-table
function (ATF).

For a description of how to write your own ATF programs, refer to the
[[BM Tivoli NetView for z/OS Programming: Assembler

The condition item is a value that the program returns.
The compare item is either a bit string or a parse template.

BIT Indicates that the compare item is a bit string. If you do not specify
BIT, the compare item is a parse template.

cmdstring
The command string that calls the program.

The text of the string up to the first blank (or the whole string, if
there are no blanks) is the program name. Any text after the first
blank is passed as parameters to the called program.

The program name must be specified with a literal quoted string.
However, variable values can be passed as ATF program
parameters using the VALUE (varname) syntax.

After the program name is specified, the parameters can be
specified by any combination of literals and VALUE specifications.
Variables that are passed must meet these criteria:

* Variables that were passed as ATF must be previously defined in
the statement or BEGIN hierarchy.

e Variables that have not been set are treated as a null literal.
* A variable cannot be subscripted with position or length.

Maximum length: 256 bytes
Type: Both

Notes for ATF:
1. These criteria apply to ATF and cmdstring:

* The length of cmdstring with its parameters is limited to 256 bytes
(less the length of BUFHDR).

* The ATF program name in cmdstring has a maximum length of 8
characters.

* The length of the value returned by the ATF is limited to 256 bytes
(minus the length of BUFHDR).

2. The interface is based on a parameter list whose address is in register 1.

The register contains pointers to the control work block (CWB) and to
the AIFR being automated.

3. The ATF return codes in register 15 are:
Code Meaning

0 Normal
1-8 Indicates an error that causes the comparison to be evaluated as
false

9 or greater
Indicates an error that results in error message CNM588E and a
comparison evaluation of false

4. When you successfully activate an automation table with the AUTOTBL
command, the NetView program loads all of the ATF programs your
table uses.

The NetView program does not reload the ATF program into main
storage every time a message or MSU goes through the automation
table.

5. The NetView samples provide OPERID (CNMS4295) as an example of
an ATF program.

6. ATF does not support a length specification.

You can assign ATF to a variable and then use that variable (including
pos and len) in a VALUE conditional statement.

ATF ([BIT] 'DSICGLOB varname")
DSICGLOB is an ATF program that is supplied with the NetView program.
If a command list or command processor has previously established a
value for the common global variable, DSICGLOB returns that value. If the
value is longer than 256 characters minus the length of BUFHDR, the value
is truncated. If no value has been established for the variable, DSICGLOB
does not return a variable value.

The compare item is either a bit string or a parse template. Use a parse
template because the value of a global variable is a string of EBCDIC
characters.

For information on how to specify varname, see the description of cmdstring
for generic ATFs.

Any error encountered by the ATF program forces the condition item to
evaluate as false and elicits a CNM588E message containing a return code:

Code Meaning

100 A variable name is not valid.

104 The variable name used is too long.
108 No variable name is specified.

112 A NetView storage failure.

116 A NetView internal error.

BIT Indicates that the compare item is a bit string. If you do not specify
BIT, the compare item is a parse template.

varname
The name of the common global variable. The length of the name
is from 1 to 31 characters, and the name must be a valid global
variable name. Refer to the [[BM Tivoli NetView for]
[z/OS Programming: REXX and the NetView Command List Language]
for restrictions on variable names.

Maximum length: 256 characters

Type: Both

Note: If the automation table calls DSICGLOB for a NetView message sent
to the immediate message area of the operator’s screen (TVBINXIT
bit is on), DSICGLOB does not return a variable value, and the
condition evaluates as false.

ATF ([BIT] 'DSITGLOB varname')
DSITGLOB is an ATF program that is supplied with the NetView program.
If a command list or a command processor has previously established a
value for the task global variable, DSITGLOB returns that value. If the

Chapter 15. The Automation Table 165

value is longer than 256 characters minus the length of BUFHDR, the value
is truncated. If no value has been established for the variable, DSITGLOB
does not return a variable value.

The compare item is either a bit string or a parse template. Use a parse
template because the value of a global variable is a string of EBCDIC
characters.

For information on how to specify the varname, see the description of
cmdstring for generic ATFs.

Any error encountered by the ATF program forces the condition item to
evaluate as false and elicits a CNM588E message containing a return code:

Code Meaning

100 A variable name is not valid.

104 The variable name used is too long.
108 No variable name is specified.

112 A NetView storage failure.

116 A NetView internal error.

BIT Indicates that the compare item is a bit string. If you do not specify
BIT, the compare item is a parse template.

varname
The name of the task global variable. The length of the name is
between 1 and 31 characters, and the name must be a valid global
variable name. Refer to the [[BM Tivoli NetView for]
[z/0S Programming: REXX and the NetView Command List Languagel
for restrictions on variable names.

Maximum length: 256 characters
Type: Both

Notes for ATF:

1. The task global variable returned by DSITGLOB is the one for the task
that invoked the automation table. If you cannot predict which task
invokes the automation table and causes the evaluation of the ATF, use
a common global variable and the DSICGLOB ATF instead.

2. If the automation table calls DSITGLOB for a NetView message sent to
the immediate message area of the operator’s screen (TVBINXIT bit is
on), DSITGLOB does not return a variable value, and the condition
evaluates as false.

ATTENDED [(pos [len])]
Describes the NetView task that is automating a message or MSU. It is a
bit string with a value of 1 or 0. The values for ATTENDED are:
1 Indicates that the task is one of the following situations:

B - An OST with a display
* An NNT with a corresponding OST

* An autotask with an associated MVS console assigned using the
AUTOTASK command

e A distributed autotask
0 Indicates that the task is one of the following situations:

* An autotask without an associated MVS console assigned using
the AUTOTASK command

* Another type of task, such as a DST or an OPT task

166 Automation Guide

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit
Type: Both

Notes for ATTENDED:

1. If the associated operator is an autotask, the presentation data is not
eligible for display unless the autotask is associated with an active MVS
console.

2. You can use ATTENDED in conjunction with DISTAUTO or
AUTOTASK condition items to further define the characteristics of the
task that is automating the message or MSU. For example, if
ATTENDED is 1, DISTAUTO is 0, and AUTOTASK is 1, the task is an
autotask with an associated MVS console.

AUTOMATED [(pos [len])]
Describes the automation indicator of the AIFR containing the message or
MSU.

It is a one-bit indicator that specifies whether the AIFR has been
automated by a previous significant action. Values for AUTOMATED are as

follows:

1 The AIFR has been automated.

0 The AIFR has not yet been automated.
pos

The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Automation treats an AIFR as AUTOMATED if a match occurs other than
the ALWAYS or CONTINUE(YES) statements, unless the AUTOMATED
action is used to override these defaults.

Maximum length: 1 bit
Type: Both

AUTOTASK [(pos [len])]
Condition item which describes the NetView task that is automating the
message or MSU. This is a one-bit indicator that specifies whether a task is
an autotask. Values for AUTOTASK are:

1 The task is an autotask.
0 The task is not an autotask.
pos

The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit
Type: Both

Chapter 15. The Automation Table 167

AUTOTOKE [(pos [len]]
Indicates the 1 to 8 character name of the MVS message processing facility
(MPF) automation token.

If you specify AUTO(YES) or AUTO(NO) in the MPF table, the values YES
and NO are not automation tokens.

AUTOTOKE has a value only if the message was originally a message data
block (MDB).

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters
Type: Message

CART [(pos [len])]
Specifies the 8-byte MVS command and response token (CART). The CART
might contain characters that cannot be displayed.

pos

The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of CART evaluates to null (") if the field contains only binary
zeros. You can test for this case by comparing the null (') keyword.

Maximum length: 8 bytes
Type: Message

CORRELATED
Condition item that checks if a message or MSU is correlated. This is a
one-bit indicator. Values for CORRELATED are:
1 The message or MSU is correlated.
0 The message or MSU is not correlated.

Maximum length: 1 bit
Type: Both

CORRFAIL
Condition item that checks if correlation failed. This is a one-bit indicator.
Values for CORRFAIL are:
1 An internal error prevented correlation.

0 A problem was not encountered with correlation.
Maximum length: 1 bit
Type: Both

CURRDATE [(pos [len])]
Indicates the 1-8 character current date (yyyy/mm/dd).

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

168 Automation Guide

Maximum length: 8 characters
Type: Both

CURRTIME [(pos [len])]
Indicates the 1-8 character current time of day (hh:mm:ss).

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters
Type: Both

CURSYS [(pos [len])]
Indicates the 1-8 character current MVS operating system name.

The system name returned by CURSYS can be different than the system
name returned by SYSID:

¢ CURSYS is the name of the system where the automation table is
processing.

* SYSID is the name of the system where the message originated.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters
Type: Both

DESC [(pos [len])]
Identifies from 1-16 MVS descriptor codes assigned to the message. Refer
to the MVS library for information about code values.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 bits
Type: Message

DISTAUTO [(pos [lenD]
Indicates whether a task is a distributed autotask started with the
RMTCMD command. The DISTAUTO condition item describes the task
that is automating the message or MSU. The values for DISTAUTO are as

follows:

1 The task is a distributed autotask.

0 The task is not a distributed autotask.
pos

The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Chapter 15. The Automation Table 169

170

Maximum length: 1 bit
Type: Both

DOMAIN [(pos [len])]
Specifies the 1-5 character name of the current NetView domain.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 5 characters
Type: Both

DOMAINID [(pos [len])]
Specifies the 1-8 character domain name of NetView that originated the
message or MSU.

For messages, DOMAINID gives the name of NetView that first processed
the message. Note that for messages BNJ030I and BNJ146I, which are
generated based on alerts, the DOMAINID indicates the name of NetView
that generated these messages.

For forwarded alerts from a hardware monitor to another NetView
program, DOMAINID gives the name of the distributed NetView program
that originally processed and forwarded the alert. For other MSUs,
DOMAINID gives the name of the local NetView program that is doing
the automation-table search.

pos

The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters
Type: Both

HDRMTYPE [(pos [len])]
Specifies the 1-character buffer type of the received message or MSU.
Buffer types are described in[Appendix G, “NetView Message Type]
[HDRMTYPE) Descriptions,” on page 559 |

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 character

Type: Both

HIER [(indexnum)]
Specifies the NetView hardware monitor hierarchy data associated with an
MSU. The compare item is a parse template.

indexnum
The index number (1-5) of a specific resource name-type pair.

Automation Guide

HIER is set only if the MSU is received from the hardware monitor. If you
specify an indexnum, the value of HIER is the single, specified name-type
pair in the form aaaaaaaallll, where aaaaaaaa is the 8-character name and
1111 is the 4-character type. The names and types are padded on the right
with blanks, if necessary. If an alert has fewer than indexnum resources, the
value is null. If you do not specify an indexnum, the value of HIER is equal
to a concatenation of all existing name-type pairs. For example, if there are
three name-type pairs, the value is in this format:

aaaaaaaallllbbbbbbbb2222cccccccc3333
There can be up to five name-type pairs. If an MSU does not have

hierarchy information, the value of HIER is null. See [“Using the Resource|
[Hierarchy” on page 333| for HIER examples.

HIER does not support a length specification. You can assign HIER to a
variable, and then use that variable (including pos and len) in a VALUE
conditional statement.

Maximum length: 60 characters
Type: MSU

HMASPRID [(pos [len]]
Returns the 9-character alert-sender product ID. This is the same
alert-sender product ID returned with the prodid parameter on the
SRFILTER command. The ID can be either of these items:
* A hardware product ID that has from 1 to 4 characters
* A software product ID has from 1 to 9 characters

Trailing blanks are not truncated.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

HMASPRID returns a null if an MSU is either:

* Not a generic record

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
— Alerts that contain subvector 92
— Resolutions, which contain subvector 92

* Not submitted to automation by the hardware monitor

Maximum length: 9 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Searching for a Device
IF HMASPRID = '3745' THEN

EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));
This example specifies that if a hardware monitor MSU is generic and from
a 3745 device, the automation table calls the CLISTA command list and
routes it to operator AUTOL1.

Example 2: Specifying a Generic MSU

IF HMASPRID -= '' THEN
EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Chapter 15. The Automation Table 171

172 Automation Guide

This example specifies that if a hardware monitor MSU is generic, the
automation table calls the CLISTA command list and routes it to operator
AUTOL.

HMBLKACTI(pos [len])]

Returns a 5-character value, including a 3-character block ID and a
2-character action code. This value is identical to the code value of the
SRFILTER command. Values are returned only for nongeneric alerts
(X'0000") and RECMSs and RECEMSs that are not statistics-only.

Refer to the NetView online help for information about the SRFILTER
command.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

HMBLKACT returns a null if an MSU is:

A generic alert (X'0000')

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
— Alerts that contain subvector 92
— Resolutions, which always contain subvector 92

* A resolution (X'0002")

* A PD statistic (X'0025")

* Link configuration data (X'1332')
* A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

* A statistics-only RECFMS

Note: Statistics-only RECEMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

* Not submitted to the automation table by the hardware monitor
Maximum length: 5 characters

Type: MSU

Applies to: All MSUs except those that cause a null value to be returned

Example 1: Checking for a Block ID and Action Code That is Not Null
IF HMBLKACT —= '' THEN COLOR(RED);

This example checks for MSUs with a block ID and action code that is not
null, and colors them red.

Example 2: Checking for a Specific Block ID and Action Code
IF HMBLKACT = HEX'FFDO3' THEN COLOR(RED);

This example checks for MSUs with a block ID of X'FFD' and an action
code of X'03', and colors them red.

Example 3: Checking for a Specific Block ID

IF HMBLKACT = HEX('FFD') . &
HMBLKACT = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example checks for MSUs with a block ID of X'FFD'. It does not check
for a specific action code. The automation table calls the CLISTA command
list for MSUs with a block ID of X'FFD'. The block ID and action are
passed to the CLISTA command list in variable MYVAR, and the command
list is routed to operator AUTOL.

HMCPLINKI[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether a complex
link exists.

Indicator Description

1 Indicates that a complex link exists. If a complex link

exists, there might be resource levels that do not appear in
the resource hierarchy returned by the HIER condition
item. Use a system schematic to determine the complete
hierarchy configuration when a complex link is present.
For more information about the HIER condition item, see
["HIER” on page 170

Hardware monitor panels, such as the Most Recent Events
panel, indicate a complex link exists by placing an asterisk
(*) in the pictorial resource hierarchy at the top of the
panel, and displaying message BNJ1538I on the message
line near the bottom of the panel.

0 Indicates that a complex link does not exist or that the
hardware monitor did not submit the MSU to automation.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit
Type: MSU
Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Checking for a Complex Link
IF HMCPLINK = '1' THEN COLOR(RED);
This example specifies that hardware monitor MSUs with a complex link
are colored red.
Example 2: Checking for an MSU with No Complex Link
IF HMONMSU = '1' &
HMCPLINK = 'O' THEN COLOR(RED);

This example checks for an MSU that was forwarded by the hardware
monitor and that has no complex link, and colors it red.

HMEPNAUI(pos [len])]
Returns the network addressable unit (NAU) name of the entry point node
where the MSU originated. For local MSUs, HMEPNAU returns the local
NAU (domain) name. For MSUs that were forwarded from a remote node

Chapter 15. The Automation Table 173

174 Automation Guide

entry point, the NAU name of the remote entry point is returned. This is
true for both alert forwarding mechanisms: LU 6.2 and LUC.

For LU 6.2 forwarded alerts, the NAU name returned is the NAU name of
the entry point node in which the MS application resides which first sent
(forwarded) the alert to the ALERT-NETOP application. If NetView cannot
determine with complete certainty that the NAU name returned is the
entry point NAU name (for example, it might be an intermediate node
name) then the NAU name returned is preceded by an * (asterisk), for
example, *nauname.

See |Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 characters
Type: MSU
Applies to: All MSUs submitted to automation by the hardware monitor

Example: Searching for MSUs Forwarded from a Remote Entry Point
Checking for an MSU Forwarded from NETA.CNMO01 Using LU 6.2
IF HMFWDSNA = '1' &

HMEPNET '"NETA' &
HMEPNAU = 'CNMO1' THEN COLOR(RED);

This example specifies that hardware monitor MSUs that have been
forwarded from remote entry point node NETA.CNMO1 using the
SNA-MDS/LU 6.2 alert forwarding protocol are to be colored red.

HMEPNET((pos [len])]

Returns the netid name of the entry point node where the MSU originated.
For local MSUs, HMEPNET returns the local netid name. For MSUs that
were forwarded using LUC alert forwarding, HMEPNET returns an
asterisk (*), because NetView cannot determine the netid name.

For MSUs that were forwarded using LU 6.2 alert forwarding, the netid
name returned is the name of the entry point node where the MS
application resides. If NetView cannot determine a netid name, HMEPNET
returns an asterisk (*). If NetView can determine the netid name, but
cannot with complete certainty determine that the netid name is the entry
point netid name (for example it might be an intermediate node netid
name) then HMEPNET returns the netid name preceded by an asterisk (*),
for example *netidnam.

See |Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor
Example: Checking for an MSU Forwarded from NETA.CNMO01 Using

LU 6.2
IF HMFWDSNA = '1' &
HMEPNET = 'NETA' &

HMEPNAU = 'CNM@1' THEN COLOR(RED);

HMEPNET V[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether the entry
point node where the MSU originated was a remote node NetView
program. This function applies only to MSUs forwarded using the
SNA-MDS/LU 6.2 alert forwarding protocol.

Indicator Description
1 Indicates that the entry point was a NetView program.
0 Indicates that the entry point was not a NetView program

or that the MSU was not forwarded using the
SNA-MDS/LU 6.2 alert forwarding protocol.

See |Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit
Type: MSU
Applies to: All MSUs submitted to automation by the hardware monitor

Example: Searching for MSUs Forwarded from a Remote Node Entry
Point Using LU 6.2

IF HMEPNETV = '1' THEN COLOR(RED);

This example specifies that hardware monitor MSUs, which have been

forwarded from a remote entry point NetView program using the
SNA-MDS/LU 6.2 alert forwarding protocol, are to be colored red.

HMEVTYPEI[(pos [len])]
Returns a 4-character event type of the MSU. Trailing blanks are not
truncated from the returned value.

The event types are:

AVAL BYPS CUST DLRC
HMV HELD IMPD IMR
INST INTV NTFY PAFF
PERF PERM PROC REDL
RSLV RSNT SCUR SNA
TEMP UNKN USER

Refer to the NetView online help (HELP NPDA ’event_type’) for more
information.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Chapter 15. The Automation Table 175

176 Automation Guide

HMEVTYPE returns a null if an MSU is:

* Not submitted to automation by the hardware monitor
* A PD statistic (X'0025")

* Link configuration data (X'1332')

* A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

A statistics-only RECEMS

Note: Statistics-only RECEMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

Maximum length: 4 characters
Type: MSU
Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Searching for Event Type PERM
IF HMEVTYPE = 'PERM' THEN COLOR(RED);

This example specifies that MSUs with an event type of PERM are colored
red.

Example 2: Searching for Event Type SNA
IF HMEVTYPE = 'SNA' . THEN COLOR(RED);

These examples specify that MSUs with an event type of SNA are colored
red. You do not have to check for the trailing blank.

Example 3: Extracting an Event Type

IF HMEVTYPE -= '' &
HMEVTYPE = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example extracts the event type from the hardware monitor MSU,
passes it to the CLISTA command list in variable MYVAR, and routes the
command list to operator AUTO1.

HMFWDED(pos [len])]

Returns a one-bit indicator, either 1 or 0, that specifies whether an MSU
was forwarded from another node.

Indicator Description

1 Indicates an MSU was forwarded from another node
through one of these alerts:
* NV-UNIQ/LUC alert forwarding protocol
* SNA-MDS/LU 6.2 alert forwarding protocol

0 Indicates that the MSU was not forwarded through another
node, was forwarded over LU 6.2, or that the hardware
monitor did not submit the MSU to automation.
An indicator of 0 is returned in these instances:
* Local MSUs are received through the CNM interface.

¢ Local MSUs are received from the operating system.

* MSUs are received through the program-to-program
interface.

* MSUs are received through the SNA-MDS/LU 6.2 alert
forwarding protocol.

Note: RECMSs and RECFMSs that are forwarded from
entry points over LUC or LU 6.2 are not submitted
to automation at the receiving focal point. RECMSs
and RECFMSs are submitted to automation at the
entry point, but not at the receiving focal point.

See |Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit
Type: MSU
Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Searching for MSUs Forwarded from an Entry Point

IF HMFWDED = '1' THEN COLOR(RED);

This example specifies that hardware monitor MSUs that have been
forwarded from an entry point NetView program are to be colored red.
Example 2: Searching for MSUs Not Forwarded from an Entry Point

IF HMONMSU = '1' &
HMFWDED = 'O' THEN COLOR(RED);

This example checks for an MSU, which was forwarded by the hardware
monitor but not from an entry point NetView program, and colors it red.

HMFWDSNAI[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether an MSU
was forwarded from a remote entry point node using the SNA-MDS/LU
6.2 alert forwarding protocol.

Indicator Description

1 Indicates that an MSU was forwarded from a remote entry
point node using the SNA-MDS/LU 6.2 alert forwarding
protocol.

0 Indicates that an MSU was not forwarded from a remote

entry point node using the SNA-MDS/LU 6.2 alert
forwarding protocol or that the hardware monitor did not
submit the MSU to automation.

Refer to [Chapter 26, “Centralized Operations,” on page 375| for more
information about forwarding mechanisms.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Chapter 15. The Automation Table 177

178 Automation Guide

Type: MSU
Applies to: All MSUs submitted to automation by the hardware monitor
Example: Checking for an MSU Forwarded from NETA.CNMO01 Using

LU 6.2

IF HMFWDSNA = '1' &
HMEPNET '"NETA' &
HMEPNAU = 'CNMO1' THEN COLOR(RED);

HMGENCAUI(pos [len])]

Returns the 1-character hexadecimal general cause code of an MSU.

The general cause code indicates:
* The general classification
* The exception condition that caused the MSU to be created

For more information about general cause codes, refer to the information
about basic alert (X'91') MS subvectors in the Systems Network
Architecture library.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

HMGENCAU returns a value only for nongeneric alerts (X'0000') and
RECMSs and RECFMSs that are not statistics-only. HMGENCAU returns a
null if an MSU is:

* A generic alert (X'0000")

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
— Alerts that contain subvector 92
— Resolutions, which always contain subvector 92

* A link event (X'0001")

* A resolution (X'0002")

* A PD statistic (X'0025")

 Link configuration data (X'1332')
* A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

* A statistics-only RECFMS

Note: Statistics-only RECEMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

* Not submitted to automation by the hardware monitor

Maximum length: 1 hexadecimal character

Type: MSU

Applies to: All MSUs except those that cause a null value to be returned
Example 1: Checking for a General Cause Code That is Not Null

IF HMGENCAU —-= '' &
HMGENCAU = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example checks for a general cause code that is not a null, passes it to
the CLISTA command list variable MYVAR, and routes the command list
to operator AUTOL1.

Example 2: Checking for a Specific General Cause Code
IF HMGENCAU = HEX('01') THEN COLOR(RED);

This example specifies that a hardware monitor MSU with a general cause
code of X'01" is to be colored red.

HMONMSUI(pos [len])]
Returns 0 or 1 to indicate whether an MSU was forwarded to automation
from the hardware monitor.

Indicator Description

1 Indicates an MSU was forwarded from the hardware
monitor.

0 Indicates that an MSU was not forwarded from the

hardware monitor. It might have been submitted to
automation by the generic receiver (NVAUTO), or by a
user application that issued DSIAUTO or CNMAUTO.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: MSU

Applies to: All MSUs

Example 1: Checking for MSUs Submitted by the Hardware Monitor
IF HMONMSU = '1' THEN COLOR(RED);
IF HMONMSU == '' THEN COLOR(RED);

These examples specify that MSUs submitted by the hardware monitor are
to be colored red.
Example 2: Checking for MSUs Not Submitted by the Hardware Monitor

IF HMONMSU = '' THEN ;
IF HMONMSU = 'O' THEN ;

These examples specify that MSUs not submitted by the hardware monitor
are not sent to automation.

HMORIGINI(pos [len])]
Returns the name of the resource sending the MSU.

pos The position where the comparison begins. The default is 1.
len The length of the string to be compared. The default value is the

remaining portion of the string beginning with pos.

Trailing blanks are not truncated from the value returned. The resource
name returned by HMORIGIN is the same name displayed on the
hardware monitor Alerts-Dynamic, Alerts-Static, and Alerts-History panels
when ALT_ALERT=ORIGIN is specified in BNJMBDST.

Chapter 15. The Automation Table 179

180 Automation Guide

Refer to the [[BM Tivoli NetView for z/OS Administration Referencd for more
information about the ALT_ALERT statement.

If a complex link does not exist in a resource hierarchy, the resource name
returned with HMORIGIN is the same as the resource name returned with
the HIER condition item. If a complex link does exist, the resource names
might not be the same. Use the HMCPLINK condition item to determine
whether a complex link exists. For more information, see ["HMCPLINK” on|
[page 173|and [“HIER” on page 170

HMORIGIN returns a null if the hardware monitor does not submit the
MSU to automation.

Maximum length: 8 characters
Ty