
Tivoli® IBM Tivoli NetView for z/OS

Automation Guide

Version 5 Release 4

SC31-8853-05

���

Tivoli® IBM Tivoli NetView for z/OS

Automation Guide

Version 5 Release 4

SC31-8853-05

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 617.

This edition applies to version 5, release 4 of IBM Tivoli NetView for z/OS (product number 5697-ENV) and to all
subsequent versions, releases, and modifications until otherwise indicated in new editions.

This edition replaces SC31-8853-04.

© Copyright International Business Machines Corporation 1997, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . xxi

About this publication . xxv
Intended audience . xxv
Publications . xxv

IBM Tivoli NetView for z/OS library . xxv
Related publications . xxvii
Accessing terminology online . xxvii
Using NetView for z/OS online help . xxviii
Using LookAt to look up message explanations . xxviii
Accessing publications online . xxviii
Ordering publications . xxix

Accessibility . xxix
Tivoli technical training. xxix
Downloads . xxix
Support for problem solving . xxx
Conventions used in this publication . xxx

Typeface conventions. xxx
Operating system-dependent variables and paths . xxxi
Syntax diagrams . xxxi

Part 1. Introducing Automation . 1

Chapter 1. Introducing NetView Automation . 3
What Does NetView Automation Mean? . 3
Benefits of Automation . 3

Improving System and Network Availability. 3
Removing Constraints to Growth . 4
Increasing Operator Productivity . 4
Ensuring Consistent Operating Procedures . 4

Classes of Automation . 4
System and Network Automation . 5

System Automation . 5
Network Automation . 6

Single-System or Multiple-System Automation . 6
Single-System Automation . 6
Multiple-System Automation . 6

Stages of Automation . 7
Single-System Automation Stages . 7

Suppressing or Revising Messages and Blocking Alerts 8
Consolidating Consoles . 8

Reducing Consoles . 8
Consolidating Consoles through Message Collection 9
Dedicating a NetView Console . 9

Consolidating Commands . 9
Scheduling Commands . 10
Responding Automatically to Messages and MSUs . 10
Establishing Coordinated Automation . 10
Consolidating Automation with RODM . 11

Improving Operator Interfaces . 11
Presenting Information in Messages . 12
Presenting Information in Hardware Monitor Alerts . 12

Deciding How to Use the Hardware Monitor . 13
Generating Alerts . 13

© Copyright IBM Corp. 1997, 2009 iii

Presenting Information in Beeper/E-mail Actions . 13
Presenting Status Information . 13
Displaying Information on Full-Screen Panels . 13
Propagating Single-System Automation . 14
Centralizing Operations . 15
Use of Focal Points in Centralized Operations . 15
Establishing Remote Operation . 16

Automating Non-NetView Systems and Non-SNA Devices 18
Example of a Staged Approach . 18

Stage 1: Suppress Messages and Filter Alerts . 18
Stage 2: Consolidate Consoles . 18
Stage 3: Consolidate Commands . 18
Stage 4: Schedule Commands . 19
Stage 5: Create Automated Responses to Messages and MSUs 19
Stage 6: Coordinate Monitoring and Reactivating . 19
Stage 7: Improve Operator Interfaces . 19
Stage 8: Implement Multiple-System Automation . 19
Stage 9: Centralize Operations . 19
Stage 10: Extend Automation to Additional Machines and Devices 19

Chapter 2. Overview of Automation Products 21
NetView Automation Facilities . 21

Command Lists and Command Processors . 21
Choosing a Language . 22
Automating with Command Procedures . 22

Obtaining Message and Management Services Unit (MSU) Information 22
Using Global Variables . 22
Accepting Parameters . 22
Obtaining Environment Information . 23
Interacting with the System and Network . 23
Waiting . 23

Timer Commands . 23
Autotasks . 23
Automation Table . 24
Message Revision Table . 25
Resource Object Data Manager . 25
Installation Exits. 25

Using DSIEX02A . 26
Using DSIEX16 or DSIEX16B . 26
Using DSIEX17 . 26
Using XITCI . 26

MVS Command Revision . 26
Automated Operations Network (AON) . 26
Status Monitor . 27

Operating-System Automation Facilities and Interactions with NetView 27
Automation on MVS Systems . 27

Automating Responses to Messages . 27
Setting Options for Automating with either the Message Processing Facility (MPF) or the Message Revision
Table (MRT) . 31
Automating a Sysplex . 31
Automating Responses to MSUs . 32
Issuing NetView Commands from Multiple Support Consoles 32

Issuing NetView Commands with the MVS MODIFY Command 32
Issuing NetView Commands with the Designator Character 32

Issuing MVS Commands from NetView . 33
Automating MVS Commands . 33
Issuing MVS System Messages and Delete Operator Messages (DOMs) 33

System Automation/390 Programs . 33
Examples of Using NetView Interfaces . 33

NetView Service Points . 34
Tivoli Networks . 34

iv Automation Guide

||

IP Networks Using SNMP . 34
Non-IBM Networks. 35

Automation-Related Functions and Services . 35
Managing Workload . 35
Managing Network Performance . 35
Managing Input/Output . 36
Managing Storage . 36
Management Reporting . 37

Part 2. Achieving an Automated Environment 39

Chapter 3. Defining an Automation Project . 41
Project Definition Tasks . 41
Assembling an Automation Team . 42

Choosing an Approach . 42
Involving Operation Groups . 42

Creating a Project Plan . 43
Identifying the Goals of Your Organization . 43

Identifying Business Goals . 43
Identifying Data-Processing Requirements . 43

Understanding Your Operating Environment . 44
MVS System and Network Logs . 45
Operation Procedure Books . 45
Problem-Management Reports . 45
Help-Desk Logs . 46
Service-Level Agreements . 46
Users . 46
Other Data-Processing Plans . 46
Interpreting the Information . 46

Developing Goals and Objectives for Automation. 46
Developing Goals for Automation . 47
Developing Measurable Objectives. 47
Quantifying Costs and Benefits . 47

Securing Commitment . 49

Chapter 4. Designing an Automation Project 51
Project Design Tasks . 51

Identify Procedures and Functions to Automate . 51
Prioritize Procedures and Functions . 51
Schedule Stages for Implementation . 51
Establish Standards . 51

Design Guidelines . 52
Designing for Expansion and Propagation . 52
Designing for Auditability . 53
Designing Automation Security. 53
Designing for Availability. 54
Automating Close to the Source . 54
Using Multiple NetView Programs on a Single System . 54
Providing Operator Interfaces . 55
Educating Your Staff . 55
Anticipating Changing Staff Roles . 56
Providing for Testing . 56
Providing for Problem and Change Management . 56
Choosing Focal Points . 57
Using a Backup Focal Point . 58
Defining Operator Sphere-of-Control . 59

Chapter 5. Implementing an Automation Project 61
Implementation Tasks . 61
Production Tasks . 61

Contents v

Part 3. Planning for Automation in Selected Environments 63

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles . . . 65
Using EMCS Consoles with NetView . 65
Advantages of Using EMCS Consoles with NetView. 65
Planning for Extended Multiple Console Support Consoles 66

Enabling Extended Multiple Console Support Consoles. 66
Developing Console Naming Conventions . 66
Acquiring Extended Multiple Console Support Consoles 67
Defining Task Names for CNMCSSIR Tasks . 67
Defining Consoles in Groups . 68
Using the MRT or the MPF Table to Direct Messages to NetView Automation 68
Using Attribute Values for Extended Multiple Console Support Consoles 68

Defaults for a Console Obtained by the CNMCSSIR Task 68
Defaults for a Console Obtained by an Operator . 69

Using Route Codes . 69
Case 1 . 69
Case 2 . 70
Understanding Effects of Attributes . 70

Implementing Security Access . 70
Avoiding Message Loss because of a Full MVS Message Data Space 70
Avoiding Message Loss because of an Exceeded Queue Limit 70
Balancing MVS Message Storage and Message Queue Limit 71

Comparing Extended Multiple Console Support Consoles with Subsystem Allocatable Consoles 71
Migrating from the Subsystem Interface to Extended Multiple Console Support Consoles 73

Establish Unique Names . 73
Migrate to a Later Release NetView Program at Each Host 73
Continue Using the Subsystem Interface If Needed . 73
Use the RMTCMD Command and LU 6.2 Sessions for Cross-Domain Communication 74
Restrict Operator Access to the MVS VARY Command . 74
Restrict AUTO Attribute of EMCS Consoles . 74
Define Each NetView Program to Use Extended Multiple Console Support Consoles 74

Chapter 7. Automation in an MVS Sysplex . 77
MVS Sysplex . 77
Using NetView Automation in a Sysplex . 77
Planning for Automation in a Sysplex . 78

Stage 1. Become Familiar with EMCS Consoles and How Their Attributes Affect Message Routing in a Sysplex 78
Stage 2. Coordinate MPF Actions with the Definitions of EMCS Consoles. 78
Stage 3. Decide Whether to Centralize Your NetView Automation on One System of the Sysplex 79

How Foreign Messages are Processed. 79

Chapter 8. Automation with the Resource Object Data Manager 81
Introducing the Resource Object Data Manager . 81

Interactions with RODM . 81
Using RODM in Automation . 82

Advantages of Using RODM . 82
Planning for Using RODM in Automation . 82

Determining the Types of Events to Produce Automated Responses from RODM 83
Understanding RODM Automation Capabilities . 83

Chapter 9. NetView Information Routing for Automation 85
NetView Interfaces . 85

Interfaces to the Operating System . 86
Interfaces to Other NetView Programs . 87
Other Message and Command Facilities . 87
Interfaces for Hardware-Monitor Data and MSUs. 87

NetView Message Routing . 87
Solicited Messages . 88

vi Automation Guide

||

Unsolicited Messages . 88
The Authorized Receiver . 88
Unsolicited Messages from a DST . 89
Unsolicited Messages from MVS . 89

Message Routing Facilities . 89
Routing Messages with the ASSIGN Command . 90

Assigning Messages to Operators . 90
Assigning Operators to Groups . 90
Using ASSIGN to Route Unsolicited Messages . 90
Using ASSIGN to Drop Unsolicited Messages . 92
Using ASSIGN to Route Solicited Messages. 92
Using ASSIGN to Route Messages to Autotasks . 92
Using ASSIGN with Automation Logic . 93
Using the REFRESH and ASSIGN Commands for Dynamic Operator Control 93
ASSIGN Command Versus Automation Table Routing 93

Routing Messages with the MSGROUTE Command . 94
Routing Messages to EMCS Consoles Based on Route Codes 94

Specifying the Route Codes . 94
Eliminating Duplicate Automation of Messages . 95

Message Routing Flow . 95
DSIEX17 Processing . 96
PIPE CORRWAIT . 96
ASSIGN PRI/SEC Processing . 97
Authorized Receiver Processing . 97
DSIEX02A Processing . 97
Wait Processing . 97
Automation-Table Processing . 98

Routing Messages . 98
Setting Message Attributes . 99

DSIEX16 Processing . 99
ASSIGN COPY Processing . 99
Discard or Display Processing . 100

NetView Hardware-Monitor Data and MSU Routing . 100
ALERT-NETOP Application . 103
XITCI Processing . 103
Initial Hardware-Monitor Processing . 103
Automation-Table Processing . 103
DSIEX16B Processing . 104
Continued Hardware Monitor Processing . 104

NetView Command Routing . 104
Compatibility of Commands with Tasks . 105
Command Routing Facilities . 105

Automation-Table ROUTE Keyword. 105
CNMSMSG Service Routine and DSIMQS Macro . 105
EXCMD Command . 106
RMTCMD Command. 106
Command Label Prefixes . 106

Command Priority . 106

Part 4. NetView Automation Facilities . 109

Chapter 10. Command Lists and Command Processors 113
Available Languages . 113
Obtaining Messages and MSUs . 113

Message Functions . 114
MSU Functions . 114

Saving Information . 114
Global Variables . 114

Task Global Variables . 115
Common Global Variables . 115

Contents vii

Choosing a Type of Variable . 115
MVS Data Sets . 115

Waiting for a Specific Event . 116
NetView Command List Language Waiting . 116
REXX Waiting . 116
PL/I and C Waiting . 117

Additional Command-List Capabilities for MVS . 117
Sending Messages to an MVS Console . 117
Allocating Disk, Tape, and Print Files . 118

Loading Command Lists into Storage . 118

Chapter 11. Timer Commands . 119
Overview of Timer Commands . 119

AFTER . 119
AT . 120
EVERY . 120
TIMER . 120
CHRON . 120

Choosing a Task . 121
Saving and Restoring Timer Commands . 121
LIST TIMER and PURGE TIMER . 122

LIST TIMER . 122
PURGE TIMER . 122

Chapter 12. Autotasks. 123
Defining Autotasks . 123
Activating Autotasks . 123
Using the AUTOTASK Command . 124
Associating Autotasks with Multiple Console Support Consoles 124
Deactivating Autotasks . 124
Automating with Autotasks . 125

Managing Subsystems . 125
Processing Unsolicited Messages . 125
Processing Commands . 126
Starting Tasks . 126
Sending Commands to an Autotask Using the EXCMD Command 126

Chapter 13. The Message Revision Table . 129
What Is the Message Revision Table? . 129

Elements of Message Revision Table Statements . 129
Message Revision Table Processing . 130
Message Revision Table Searches . 130

Coding a Message Revision Table . 130
Changing Route Codes and Descriptor Codes . 131
DoForeignFrom Statement . 131
END Statement . 131
EXIT Statement. 132
NETVONLY Statement . 132
OTHERWISE Statement . 132
REVISE Statement . 132
SELECT Statement . 133
UPON Statement . 133
WHEN Statement . 134
Example of a Message Revision Table . 134
Usage Reports for Message Revision Tables . 135
Message Revision Table Testing . 135

Chapter 14. The Command Revision Table . 137
What Is the Command Revision Table? . 137

Elements of Command Revision Table Statements . 137

viii Automation Guide

||

||
||
||

Command Revision Table Processing . 138
Command Revision Table Searches . 138

Coding a Command Revision Table . 138
Command Revision Table Statements . 138

TRACKING.ECHO Statement . 139
ISSUE.IEE295I Statement . 139
UPON Statement . 140
SELECT Statement . 141
WHEN Statement . 141
OTHERWISE Statement . 142
END Statement . 142
REVISE Statement . 142
NETVONLY Statement . 143
WTO Statement . 143
Edit Orders . 144

Command Revision Table Example . 145
Usage Reports for Command Revision Tables . 146
Command Revision Table Testing. 147

Chapter 15. The Automation Table . 149
What Is the Automation Table? . 149

Elements of Automation-Table Statements . 149
Automation-Table Processing . 150
Automation-Table Searches . 150

Types of Automation-Table Statements . 150
Determining the Type of Statement . 151
Statement Types and Processing . 151

Coding an Automation Table . 151
BEGIN-END Section . 152
IF-THEN Statement . 154
Condition Items . 158

Bit Strings as Compare Items . 206
Parse Templates as Compare Items . 207

Literals . 207
Variable Names . 208
Variable Values . 209
Placeholders . 210
Nulls . 210

Actions . 211
ALWAYS Statement . 229
%INCLUDE Statement . 230
SYN Statement . 231
Design Guidelines for Automation Tables . 232

Limit System Message Processing . 233
Streamline the Automation Table . 233
Group Statements with BEGIN-END Sections. 233
Isolate Complex Compare Items . 235
Include Other Automation Tables. 235
Tailor Automation Tables for Your Operation . 236
Use Synonyms . 236
Place Statements Carefully . 236
Use Automation-Table Listings . 237
Use the ALWAYS Statement . 237
Use the CONTINUE Action Carefully . 237
Set Automation-Table Defaults. 238
Limit Automation of Command Responses . 238
Automation as the NetView Program Closes . 238

Example of an Automation-Table Listing . 238
Automation-Table Usage Reports . 240

The AUTOCNT Command . 240
Example of Usage Reports Output . 241

Contents ix

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

||

Assumptions of Message and MSU Processing for This Example 243
Detailed Automation-Table Usage Report . 244

Summary Automation-Table Usage Report . 247
General Reminders about Automation-Table Usage Reports 250

Managing Multiple Automation Tables . 250
Getting Started . 250
Using Automation-Table Management . 251

Using Commands for Selected Tables . 252
Inserting an Automation Table. 253
Using the Display Options Pop-up window . 255

Using Global Commands . 256
Using the Global Display Panel . 257
Enabling and Disabling Automation-Table Statements 257
Displaying the Labels/Blocks/Groups Panel . 259

The Confirmation Panel . 260

Chapter 16. Policy Services Overview . 263
Using Policy Services . 263

Customizing DSITBL01 (optional) . 264
Defining Your Policy Files . 264

Required NetView Tasks. 264
Policy File Syntax . 264
Policy File Management . 266
Using the Policy API . 267

POLICY Syntax. 267
Determining Which Policy Files are Loaded . 269
Syntax Testing the Policy Files. 269
Loading Policy Files . 269
Querying a Policy Definition . 270
Querying a Group of Policy Definitions . 270
Modifying a Policy Definition . 271
Deleting a Policy Definition . 272
Adding a Policy Definition . 272
REXX API Usage . 273

Timer APIs . 273
EZLETAPI . 273
EZLEQAPI . 282
EZLEDAPI . 284
EZLEQCAL . 285

Chapter 17. Installation Exits. 287
What Are Installation Exits? . 287
Installation Exit DSIEX02A . 287
Installation Exit XITCI for BNJDSERV . 287
Installation Exits DSIEX16 and DSIEX16B . 287
Installation Exit DSIEX17 . 288

Part 5. Single-System Automation . 289

Chapter 18. Automation Setup Tasks . 293
Establishing Communication between NetView and the Operating System 293

Preparing MVS for System Automation. 293
Defining NetView to MVS as a Subsystem. 297
Ensuring That MVS Forwards System Messages to NetView. 297

Using the Subsystem Interface. 297
Using EMCS Consoles . 297

Dynamically Defining EMCS Consoles . 298
The GETCONID Command . 298
The SETCONID Command . 299
The RELCONID Command. 299

x Automation Guide

Reviewing the NetView Start-up Procedures . 299
Adding CMDDEF Statements to Allow System Commands from NetView 300

Defining and Activating Autotasks . 300

Chapter 19. Suppressing Messages and Filtering Alerts 301
Suppressing System Messages . 301
Suppressing Network Messages . 301
Filtering Alerts . 301

Recording Filters . 302
Statistics, Events, and Alerts . 304
COLOR and OPER Filters . 304
Other Recording Filter Information . 305

Viewing Filters . 305
Bypassing Filters . 306

Chapter 20. Consolidating Consoles . 307
How to Consolidate Consoles . 307
Differences between NetView and Multiple Console Support Consoles 307

Screen Handling and Message Placement . 307
Message Line Format . 308
Display Area Capability . 308
Screen Refresh . 308
Prefix Command Name . 308
Message Holding . 309
Color and Other Highlighting Attributes . 309

Benefits of NetView Command Facility Screens . 310
Using Multiple-Support-Console Consoles with Autotasks 311

Chapter 21. Consolidating Commands. 313
Writing Simple Command Procedures . 313
Anticipating Additional Automation. 314
Modifying Command Procedures. 314
Documenting Command Procedures. 315

Chapter 22. Automating Messages and Management Services Units (MSUs) 319
Deciding Which Messages and MSUs to Automate . 319
Writing Automation Table Statements to Automate Messages 320

Checking by Message ID . 320
Automating Action Messages . 320
Checking Other Specific Criteria . 320

Checking Messages by Domain ID . 321
Checking Messages with Tokens . 321
Checking Messages by Position . 321
Checking Messages by a Placeholder . 322

Checking General Criteria . 322
Checking Criteria with Logical-AND Logic . 322
Checking Criteria with Logical-OR Logic . 322
Checking Criteria Using Placeholders . 322

Comparing Text with Parse Templates . 323
Using Placeholders in a Parse Template . 323
Using Variables in a Parse Template . 323
Using Parse Templates with Multiline Messages . 324

Writing Automation Table Statements to Automate MSUs 324
Checking for Field Existence . 326

Checking Subvectors . 326
Checking Subfields . 327

Checking Field Contents. 327
Checking for RECMSs and RECFMSs . 328

RECMS 82 . 328
Encapsulated RECMS . 328

Contents xi

Example: Checking for a RECMS with a Recording Mode of X'82' 329
MSU Actions . 329
Hexadecimal, Character, and Bit Notations . 330

Using Hexadecimal Notation . 330
Using Character Notation . 330
Using Bit Notation . 330

When a Field Occurs More than Once . 331
Using Header Information . 331
Using Major Vectors Other than Alerts . 332

Checking Resolution Major Vectors . 332
Checking R&TI GDS Variables. 332

Using the Resource Hierarchy . 333
Using the Domain ID. 334

Automating Other Data by Generating Messages . 334
Automating Hardware Monitor Records . 334
Automating Status Changes . 335

Putting Your Automation Statements into Effect . 335
Correlating Messages and MSUs Using the Correlation Engine 336

Correlation Overview . 336
Storage Considerations . 337
Correlation Processing . 338

Creating Correlation Events Using COREVENT and CNMCRMSG 338
Message and MSU to Event Mapping . 339

Filtering with State Correlation . 341
Creating Rules . 342

Predicates . 344
Actions . 345
Attributes common to all rules . 345
Matching rules . 345
Duplicates rules . 345
Threshold rules. 346
Collector rules . 348
Passthru rules . 349
Reset on match rules . 351

Cloning state machines . 352
Writing custom actions . 353

Event objects . 353
Action structure . 354
Working with events . 355

Chapter 23. Establishing Coordinated Automation 357
The State-Variable Technique . 357
Automating Initialization, Monitoring, Recovery, and Shutdown 359

Automating Initialization . 360
Automating Monitoring . 360

Passive Monitoring . 360
Proactive Monitoring . 360
Combining Active and Passive Monitoring . 361

Automating Recovery . 361
Automating Shutdown . 361

Chapter 24. Enhancing the Operator Interface 363
Displaying Messages . 363
Displaying Status Information . 363

Tracking Status with the Status Monitor . 364
Tracking Status with the NetView Management Console Display 364

Monitoring Alerts with the Hardware Monitor . 364
Sending Alerts with the Program-to-Program Interface 365
Sending Alerts with the GENALERT Command . 365
Sending Alerts with the MS Transport . 366

xii Automation Guide

Monitoring Alerts with the NMC . 366
Creating Full-Screen Panels. 366
Sending E-mail or Alphanumeric Pages . 367

Part 6. MultiSystem Automation . 369

Chapter 25. Propagating Automation to Other NetView Systems 371
Automating Close to the Source . 371
Distinguishing between Automation Procedures . 371
Defining Responsibilities . 371
Defining Autotasks Consistently . 371
Developing Generic Automation Command Procedures . 372
Developing a Portable Automation Table . 372
Including Forwarding . 372
Installing and Testing Before Distribution . 373
Logging Intrasystem Automation . 373

Chapter 26. Centralized Operations . 375
Data Transports . 375

LU 6.2 Transports . 375
LUC . 377
OST-NNT . 377

NetView Architected Focal Point Support . 377
The MS-CAPS Application . 378

MS-CAPS in the Advanced Peer-to-Peer Networking Environment 379
Failure Processing . 380
Focal Point Nesting . 380

Sphere-of-Control with Architected Focal Points . 380
Sphere-of-Control Functions at the Focal Point . 381

MS-CAPS Management of the Sphere-of-Control 381
Operator Management of the Sphere-of-Control . 381

Sphere-of-Control Types . 381
Sphere-of-Control States . 382
Setting Up the Sphere-of-Control Environment . 383

Updating or Changing the Sphere-of-Control Environment 383
Restoring the Sphere-of-Control Environment . 383

How to Define an Architected Focal Point (DEFFOCPT) 384
The ALERT-NETOP Application . 384

Displaying Alerts Forwarded with LU 6.2 . 385
Specifying Architected Alert Forwarding with LU 6.2 385
Forwarding Alerts to a Non-NetView Focal Point . 385

Non-NetView Focal Points and Architected Alerts 386
Non-NetView Focal Points and Unarchitected Alerts 386

Forwarding Alerts from User-Defined Applications . 386
Defining a NetView Intermediate Node Focal Point 387
Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts 388
Queueing Alerts When the Focal Point Is Unavailable 389
Distributed Database Retrieval for SNA-MDS/LU 6.2 Forwarded Alerts 390
Secondary Recording for SNA-MDS/LU 6.2 Forwarded Alerts 390
XITCI Exits and SNA-MDS/LU 6.2 Forwarded Alerts 390
Services Provided by MS-CAPS and FOCALPT Command 390

The LINK-SERVICES-NETOP Application . 390
The OPS-MGMT-NETOP and EP-OPS-MGMT Applications 390
User-Defined Categories and User-Defined Applications 391

NetView-Unique Focal Point Support . 392
Alert Forwarding with LUC . 392
Command and Message Forwarding . 392

Forwarding with the RMTCMD Command . 392
Flexibility in Communication . 393
Nesting RMTCMD Commands . 393

Contents xiii

Forwarding with OST-NNT Sessions . 394
Using an Intermediate Focal Point for Message Forwarding 394

Message/Alert Forwarding with OST-NNT . 395
Full-Screen Functions and the Terminal Access Facility . 395

Using the SDOMAIN Command While Monitoring. 395
Using a TAF Session to Shift Domains . 395
Logging on to a Distributed System Directly . 395
Limitations . 395

Choosing a Forwarding Method . 395
Choosing a Configuration . 397

Leased and Switched Lines . 397
Persistent and Nonpersistent Sessions . 398
Using More Than One Focal Point . 399

Changing, Dropping, and Listing Focal Points . 399

Part 7. Additional NetView Automation Topics 401

Chapter 27. Automating Other Systems, Devices, and Networks 405
Tivoli NetView for UNIX Service Point . 405
Event/Automation Service . 406

Forwarding Alerts . 406
Forwarding Messages . 407

NCP Frame Relay Switching Equipment Support . 408

Chapter 28. Automation Using the Resource Object Data Manager 409
Managing Multiple RODM Data Caches . 409

Managing RODM Using the DSIQTSK Task . 409
Defining RODM Using the DSIQTSKI Initialization Member. 410
Managing RODM Using the ORCNTL Command . 411

Issuing Commands from RODM Methods . 411
Verifying Commands Issued from RODM Methods. 412
Accessing RODM from NetView . 412

The ORCONV Command . 413
Accessing RODM from High-Level Language and Assembler Language Programs 413

A RODM Automation Scenario . 413
The Scenario Events . 414
The Scenario Entities . 414
Setting Up the Scenario . 415
Running the Scenario. 417
Key Sections of Change Method EKGCPPI . 421

Procedure Statement . 422
Local Variables . 423
Constants . 425
Initialization. 426
Changing a Subfield . 427
Querying a Field . 427
Querying an Object Name . 428
Triggering an Object-Independent Method. 429

Chapter 29. Automation Using the Terminal Access Facility 431
Overview. 431
How TAF Works . 432
Setting Up TAF. 432

Adding VTAMLST Definitions. 432
Adding CICS Terminal Definitions . 433
Adding IMS Terminal Definitions . 434

NetView Commands Used for TAF . 434
Automating Applications Using TAF . 435

xiv Automation Guide

Chapter 30. Automation Involving Common Base Events 437
Introducing Common Base Events . 437
Creating Common Base Events . 437

Creating Common Base Events by Automating Messages and MSUs 437
Creating Common Base Events by Setting Hardware Monitor Filters 438

Using Common Base Events in Automation . 438
Correlating Common Base Events . 439

Chapter 31. Using Automated Operations Network 443
Understanding AON Automation and Recovery . 443

Automation Table . 443
The Control File . 443

Understanding Automated Operators . 444
Understanding Notifications . 444
Understanding Automation Tracking . 445
Understanding Automation Notification Logging in the Hardware Monitor 445
Resource Recovery and Thresholds . 445
AON/SNA Automation . 447

Understanding the AON/SNA Options. 448
Using the AON/SNA Tutorials . 448
Using the AON/SNA Help Desk . 448
Using SNAMAP . 449
Managing VTAM Options . 449
Using NetStat . 449
Issuing VTAM Commands . 449
Monitoring X.25 Switched Virtual Circuits . 449
Displaying NCP Recovery Definitions . 449

AON/SNA Subarea VTAM Resource Automation Support 450
Monitoring Advanced Peer-to-Peer Networking Resources 450
AON/SNA X.25 Monitoring Support . 450

AON/TCP Automation . 451
Passive Monitoring in AON/TCP for Tivoli NetView (AIX) 452
Proactive Monitoring . 453
Recovery Monitoring . 453
Threshold values for AON/TCP with Tivoli NetView (AIX) 453
MIB Polling and Thresholding (TCP/IP for z/OS only) 454
Operator Awareness . 454

Chapter 32. Running Multiple NetView Programs Per System 457
Installing Multiple NetView Programs . 458
NetView Interfaces and Functions . 458

Program Operator Interface (POI) . 458
Communications Network Management Interface (CNMI) 459
Hardware Monitor Local-Device Interface . 459
MVS Subsystem Interface . 460
GENALERT . 461
Status Monitor and Log Browse . 461

Using the Interfaces . 461
Separating Network Functions from System Functions 462
Separating Problem Determination Functions from Automation Functions 462
Migration . 463
Communication between Two NetView Programs . 463

LUC Alert Forwarding . 463
Command and Message Forwarding . 463
LU 6.2 Transports . 463
MVS Subsystem Interface . 464

Automated Recovery of NetView. 464
Priorities . 464

Chapter 33. Automation Tuning. 465

Contents xv

Log Analysis Program . 465
Resource Controls, Task Priorities, and Multitasking . 468

Resource Controls . 468
CPU Usage . 468
Storage Usage . 468
Message Queuing . 468
Input/Output Usage . 469

Task Priority. 469
Multiple Autotasks . 469
Multiple NetView Programs . 469

Automation-Table Processing . 470
Hardware Monitor Alerts . 470

Chapter 34. Automation Table Testing . 473
Automation Table Testing . 473

Starting Parallel Testing . 473
Testing an Automation Table Using Recorded AIFRs . 474
Sample Report for the AUTOTEST Command . 475

Using a Test Environment . 479
Using Applications . 479
Using a Simulator . 479

Message Simulation . 479
MSU Simulation . 480

Implementing Automation Incrementally . 480
Verifying Automation Table Matches . 481
Verifying Automated Action Parameters . 481
Verifying Scheduled Commands . 482
Checking the Effect of Automation . 482
Ensuring That Autotasks Process Command Procedures Correctly 483

Using Debugging Tools . 484
Using Logs . 484
Evaluating Unautomated Messages and MSUs . 485
Using NetView Automation Table Listings. 485
Using NetView Automation Table Tracing . 486

Chapter 35. Logging . 489
Logging Considerations . 489
MVS System Log (SYSLOG) . 490
Network Log . 490
User-Provided Logs . 491
NetView Logging Capabilities . 491
MVS System Log and NetView Network Log Records . 492

Chapter 36. Job Entry Subsystem 3 (JES3) Automation 493
Message Flow in a JES3 Complex. 493

Messages That Originate on the Global Processor . 493
Messages That Originate on the Local Processor . 494

Commands in a JES3 Environment . 495
Issuing JES3 Commands from NetView. 495
Issuing MVS Commands from NetView in a JES3 Complex 496
Issuing NetView Commands from Operating System Consoles in a JES3 Complex 496

NetView in a JES3 Environment . 496

Chapter 37. SNMP Trap Automation . 499
The SNMP trap automation task . 499

Configuring an SNMP trap automation task . 499
SNMP trap automation task configuration file . 500

SNMP Trap Automation CP-MSU . 502
Example of SNMP trap automation . 506

xvi Automation Guide

Part 8. Appendixes . 511

Appendix A. Planning for Migration to New Automation Capabilities in the NetView
Program . 513
NetView for z/OS V5R4 Program . 513
NetView for OS/390 V1R4 Program . 513

Appendix B. Sample Project Plan . 515
Project Definition . 516
Design . 518
Implementation . 518
Production . 519
Planning Charts . 520

Appendix C. Sample Progress Measurements 523

Appendix D. MVS Message and Command Processing 525
Message Flow in MVS . 525

Message Processing Facility . 525
Subsystems in Message Processing . 526
Multiple Console Support . 527

Command Flow . 527
Processing Determination . 527
Commands Issued from a Console . 528

NetView Interfaces with MVS . 528
Messages Issued as WTOs to Be Displayed or Processed by NetView. 529

WTO Processing with the Subsystem Interface . 529
WTO Processing with EMCS Consoles . 529

MVS Commands Issued by NetView . 529
NetView Commands Issued as Subsystem Commands from an MVS Console 529
NetView Commands Issued with MODIFY (F) Command from an MVS Console 530
Messages and Commands through VTAM Interfaces . 530

Terminal Access Facility . 530
Interfaces . 530
Communication Network Management Interface . 530
Filters . 530
Communication Network Management. 530

Console Operations . 531
Using MVS Operator Consoles to Issue Commands and Command Lists as Subsystem Commands 531
Using MVS Operator Consoles to Issue Commands and Command Lists as MODIFY (F) Commands 532
Multiple Console Support Operator Use of Command Lists 532
Issuing an MVS Command from a NetView Operator ID 533

Using EMCS Consoles . 533

Appendix E. VTAM Message and Command Processing 535
Message and Command Flow in VTAM . 535
Message Flooding Prevention Table . 535
VTAM Message Suppression Criteria . 536

Identifying Events with the Automation Table . 536
Understanding Suppression Levels . 536
Identifying Unsuppressable Messages . 537

Appendix F. Detailed NetView Message and Command Flows. 539
Flow Diagrams . 539
Flow Descriptions . 548

1. NetView Command Entry (VTAM Terminal) . 548
2. Cross-Domain Commands (OST to NNT) . 549
3. VTAM (POI) Command Entry . 549
4. Solicited System Messages . 549

Contents xvii

||

5. NetView Command Entry (MVS System Console) . 550
6. Replies to NetView WTOR . 550
7. Unsolicited VTAM (POI) Messages . 550
8. Unsolicited MVS System Messages . 551
9. Cross-Domain Messages and Commands (NNT to OST) 552
10. PPT as the MVS, ISCF, or TAF OPCTL Operator . 553
11. OST or NNT as MVS, ISCF, or TAF OPCTL Operator 553
12. Solicited VTAM (POI) Messages . 554
13. PPT Message Queue Processing . 554
14. DSIPSS for PPT or NetView Authorized-Receiver Messages 554
15. OST or NNT Message Queue Processing . 556
16. NetView Console Output or SYSOP Message Queue Processing 556
17. OST or NNT DSIPSS. 557
18 Solicited and Unsolicited System MVS Extended Console Messages for an OST, NNT, or Autotask 558
19 Solicited and Unsolicited System MVS Extended Console Messages for the PPT 558

Appendix G. NetView Message Type (HDRMTYPE) Descriptions 559

Appendix H. MVS Command Management (Deprecated) 563
Enabling MVS Command Management in the NetView Environment. 564
Enabling the MVS Command Exit on MVS . 565
Suppressing additional command echoes and IEE295I messages 565
Exclusion or Inclusion Lists . 567
Logical PARMLIB Member - CNMCAUaa . 568
Syntax for CNMCAUaa Statements . 568
Console Exclusion List and Console Inclusion List . 568
Command Exclusion List and Command Inclusion List . 569
CMDTEXT Exclusion List and CMDTEXT Inclusion List . 570
Order of matching. 571
Starting MVS Command Management . 571

Activating the MVS Command Exit . 571
Starting MVS Command Processing . 572

Displaying the MVS Command Management Setting . 572
Stopping MVS Command Management . 572

Stopping MVS Command Management and Keeping the CNMCAUaa Member 572
Stopping MVS Command Management and Deleting the CNMCAUaa Member 572
Stopping the MVS Command Exit from Being Invoked 572
Deactivating the MVS Command Exit . 573

Testing MVS Command Management . 573
Starting the Exclusion or Inclusion List . 574
Changing the Exclusion or Inclusion List . 574
General Processing of CONSOLE and COMMAND Inclusion and Exclusion Lists 574

Commands Excluded by NetView Command Exit . 574
Restrictions . 575

MVS Command Management Processing on NetView . 576
Protecting MVS Command Management Processing . 578

Appendix I. The Sample Set for Automation 579
Using the Sample Set for Automation . 579

Locating and Renaming the Sample Set for Automation 580
Using the Message Suppression Sample Set . 581
Using the Log Analysis Program . 581
Setting Up Communication between NetView and MVS 581
Using the Basic Automation Sample Set . 581

Functions Performed by the Basic Automation Sample Set 581
Automation Table Used in the Basic Automation Sample Set 582

Issuing Commands . 583
Assigning a Value to a Variable . 583
Invoking Command Lists and Command Processors 584

Activating the Basic Automation Sample Set . 585

xviii Automation Guide

||

||

||
||

Defining Command List Synonyms . 585
Preparing and Activating the Sample Automation Table 586
Activating the Autotask AUTO1 . 586
Testing the Basic Automation Sample Set . 587

Using the Advanced Automation Sample Set . 587
Functions Performed by the Advanced Automation Sample Set. 587

Initialization. 588
Monitoring . 588
Recovery . 591
Shutdown . 591
Enhancing the Operator Interface. 592

Command Lists Used in the Advanced Automation Sample Set 592
Advanced Automation Sample Set Functions . 592
Naming Conventions for Advanced Automation Sample Set Command Lists 594
Initialization and Active-Monitoring Command Lists 594
Recovery Command Lists . 596
Shutdown Command Lists . 598
Operator-Interface Command List and Panels . 600

Automation Display Command List . 600
Automation Display Panels. 600

Miscellaneous Samples . 601
Preparing to Use the Advanced Automation Sample Set 602

Preparing for NetView Initialization . 602
Starting NetView before JES . 602
Starting NetView before VTAM . 603
Starting NetView before a System Authorization Facility Product 603

Modifying the Advanced Automation Sample Set . 603
Defining Autotasks . 604
Defining Command Definition Statements . 605
Modifying the Automation Table . 605

Customizing the Advanced Automation Sample Set . 606
Customizing with Global Variables . 606

Building and Naming Complex Global Variables 607
Example of Using a Complex Global Variable . 608

Fine-Tuning the Advanced Automation Sample Set . 609
Adding a Product . 609
Handling a New Message with Automation . 610
Changing Timer-Command Intervals . 610
Preloading Command Lists . 611

Testing Added or Changed Automation . 611
Cross-Reference Listing of Command Lists and Samples . 611

Basic Automation Sample Set . 611
Samples . 611
Command Lists. 611

Advanced Automation Sample Set . 612
Samples . 612
Command Lists Sorted by Shipped Name . 612
Command Lists Sorted by Command Synonym Name. 614

Message Suppression Samples . 615
Log Analysis Samples . 615
Setup Samples . 615

Notices . 617
Programming Interfaces . 618
Trademarks . 618

Index . 621

Contents xix

xx Automation Guide

Figures

1. Adding Automation, with NetView on a Single
System 7

2. Propagating Automation to Additional Systems 14
3. Forwarding Exceptions that Local Automation

Cannot Handle 15
4. Remotely Initializing Target Systems 17
5. Message Flow between the z/OS System and

NetView through the Subsystem Interface . . 28
6. Message Flow between the z/OS System and

NetView through EMCS Consoles 29
7. Command Flow between the z/OS System and

NetView 30
8. Example of a Multisite Configuration 58
9. NetView Interfaces Used in Automation 86

10. Using the ASSIGN Command to Route
Unsolicited Messages 91

11. Using the ASSIGN Command to Drop
Unsolicited Messages 92

12. Using the ASSIGN Command to Route
Solicited Messages 92

13. General and Specific Message Routing . . . 93
14. MSGID Statement in Automation Table 99
15. Flow of Data to the Hardware Monitor and

MSUs to Automation 102
16. EXCMD Command Example 106
17. Sample AFTER Command 119
18. Sample AT Command. 120
19. Sample EVERY Command 120
20. Sample CHRON Command 121
21. Message Resulting from a Skipped TIMER

Command 121
22. LIST TIMER Command Examples. 122
23. PURGE TIMER Command Examples 122
24. Definition Statements for AUTO1 123
25. Example of Using the Logical-AND Operator 156
26. Additional Example of Using the

Logical-AND Operator 156
27. Example of Using the Logical-OR Operator 157
28. Example of Using the Logical-OR and

Logical-AND Operator 157
29. Example of Grouping Logical Operators 157
30. Example of Using LABEL and ENDLABEL

Keywords. 158
31. Example of Using the GROUP Keyword 158
32. Example of Using THEN Keyword Without

Actions 158
33. Statement Evaluated by the THRESHOLD

Keyword 204
34. Example of Comparing Bits 206
35. Example of Comparing Bits of Unequal

Length 206
36. Example of Comparing Null Bit Strings 207
37. Example of a Multiline Literal Compare Item 207
38. Example of Comparing Character Literals 208
39. Example of Using Single quotation marks in a

Character Literal 208

40. Example of Using System Symbolics as a
Character Literal 208

41. Example of Using a Character Variable Name 209
42. Example of Using Character Variable Name

DOMID 209
43. Example of Using a Hexadecimal Variable

Name 209
44. Example of Using the Value of Variable

DOM1 209
45. Example of Using a Placeholder 210
46. Example of Using a Placeholder to Select a

Single Character 210
47. Example of Using Nulls as a Variable 211
48. Example of Specifying a CMD in an EXEC 218
49. Example of Using the CMD and ROUTE

Keywords. 218
50. Example of Using EXEC Action with the

ROUTE Keyword 220
51. Example of Using A Parse Token 220
52. Example of Ignoring Parse Delimiters 220
53. Example of Unbalanced Parse Tokens 221
54. Example of Using NETLOG Keyword 223
55. Example of Using NETLOG with a List of

Operators 223
56. Example of Performing Multiple EXECs for a

Message or MSU 226
57. Example of Specifying an Action More than

Once 227
58. Example of Conflicting Action for a Message

Using CONTINUE 227
59. Example of Using a SYN Statement 232
60. Example of Incorrect Synonym Substitution 232
61. Example of Correctly Using Synonym

Substitution 232
62. Example of Grouping Statements 234
63. Example of Occurrence-Detection Condition

Items 235
64. Example of Isolating a Complex Compare

Item 235
65. Example of Including Other Automation

Tables 236
66. Example of Using the CONTINUE Keyword 237
67. Example of Using the CONTINUE Keyword

on an ALWAYS Statement 238
68. Example of Automation-Table Synonym

Statements 238
69. Example of a Main Automation-Table

Member 239
70. Example of an Automation-Table Listing 240
71. Automation-Table Member 242
72. Automation-Table Listing for the Sample

Member 243
73. MSG Detail Report. 246
74. MSU Detail Report. 247
75. Statements Evaluated with Usage Statistics 247

© Copyright IBM Corp. 1997, 2009 xxi

76. MSG Summary Report for Message
Automation 249

77. MSU Summary Report for MSU Automation 249
78. Automation-Table Structure 251
79. Automation-Table Management Commands

Popup 253
80. Automation-Table Management Insert Option 254
81. Automation-Table Management Display

Options Pop-up Window 255
82. Automation-Table Management Global

Commands Popup 256
83. Automation-Table Management Global

Display Options Popup 257
84. Automation-Table Management

ENABLE/DISABLE Panel 258
85. Automation-Table Management

Label/Block/Group Panel 259
86. Message Flow between the z/OS System and

NetView through the Subsystem Interface . . 294
87. Message Flow between the z/OS System and

NetView through EMCS Consoles. 295
88. Command Flow between z/OS and NetView 296
89. Filter Hierarchy 304
90. Alert Received on the Alerts-Dynamic Panel 305
91. Messages Generated for Alerts by NetView 305
92. Activating an NCP with a Command 313
93. Sample Command List for Activating an NCP 314
94. Sample Command Procedure 316
95. Example of Checking a Message by Message

ID 320
96. Example of Checking an MVS WTOR

Message Using the Message ID 320
97. Example of Checking a Message by Domain

ID 321
98. Example of Logging A Message Using a

Token 321
99. Example of Logging a Message Using a Text

Position 321
100. Example of Logging a Message Using a

Placeholder 322
101. Example of Routing Messages Using

Logical-AND Logic 322
102. Example of Routing Messages Using

Logical-OR Logic 322
103. Example of Routing Messages Using a

Placeholder 322
104. Example of Using a Placeholder in a Parse

Template 323
105. Example of Using Variables in a Parse

Template 323
106. Conceptual View of a CP-MSU. 324
107. Conceptual View of an NMVT 325
108. Hardware Monitor’s Hexadecimal Display of

Data Record 326
109. Example of Selecting an MSU 326
110. Example of Selecting a Subvector 327
111. Example of Selecting a Subfield 327
112. Example of Checking the Contents of a MSU

Subvector 327
113. Example of Checking the Contents of a

Position in an MSU Subvector 327

114. Example of Using a Placeholder to Check the
Contents of a Position in an MSU Subvector . 328

115. RECMS 82 328
116. RECMS Encapsulated in X'1044' 328
117. Example of Using Hexadecimal Notation 330
118. Example of Using Character Notation 330
119. Example of Using Bit Notation. 330
120. Example of Checking Multiple Occurrences of

a Field 331
121. Example of Checking All Occurrences of a

Field 331
122. Example of Detailed Checking of an MSU

Field 331
123. Example of Checking an MDS Header 332
124. Example of Checking for Alert Major Vectors

in an MDS-MU 332
125. Example of Automating a Resolution Major

Vector 332
126. Example of Automating a Routing and

Targeting Instruction GDS 333
127. Example of Checking a Resource in the

Resource Hierarchy 333
128. Example of Checking Multiple Resources in

the Resource Hierarchy 333
129. Example of Checking All Resources in the

Resource Hierarchy 333
130. Example of Using the DOMAINID Keyword 334
131. Format for a CNM094I Message 335
132. Example of Verifying an Automation Table 335
133. State transitions for the duplicate rule 346
134. State transitions for the basic threshold rule 347
135. State transitions for the threshold rule using

forwardEvents 347
136. State transitions for the collector rule 348
137. State transitions for the passthrough rule

(randomOrder=no). 349
138. State transitions for the passthrough rule

(randomOrder=yes) 350
139. State transitions for the reset on match rule

(randomOrder=no). 351
140. State transitions for the reset on match rule

(randomOrder=yes) 352
141. Structure of an action 355
142. Coordinated Automation Using State

Variables 359
143. Sample Output From the REGISTER QUERY

Command 376
144. VTAM APPL Statement 376
145. Typical Focal Point and Entry Point Definition

Statements in DSI6INIT 384
146. NetView Intermediate Node Focal Point

Forwards Alerts with LU 6.2 387
147. RMTCMD Example 393
148. Switched Line Support 397
149. Using the SAVECMD Command List in the

Automation Table 412
150. Sample DSIQTSKI Initialization Member for

the DSIQTSK Task 416
151. Automation Table Statement to Trap IST105I

and Issue ORCONV Command 416

xxii Automation Guide

152. Sample Automation Table Statement to Trap
DWO670I 417

153. Input File for RODM Loader 417
154. Changing the Default RODM 418
155. Activating the Automation Table 418
156. Setting the DEFAULT SENDMSG Parameter 419
157. Example of Inactivating Resource A01A704 419
158. Example Screen for the ASSISCMD Command 419
159. Example Screen for the ASSISCMD

Command--Enter M for More Detail 420
160. Example Screen for the ASSISCMD

Command--More Detail About Command . . 421
161. Example Screen for the ASSISCMD

Command--Enter E to Execute Command . . 421
162. Procedure Statement for Change Method

EKGCPPI 422
163. Local Variables for Change Method EKGCPPI 423
164. Constants for Change Method EKGCPPI 425
165. Initialization of Change Method EKGCPPI 426
166. Changing a Subfield with Change Method

EKGCPPI 427
167. Querying a Field with Change Method

EKGCPPI 427
168. Querying an Object Name with Change

Method EKGCPPI 428
169. Triggering an Object-Independent Method

with Change Method EKGCPPI 429
170. A Sample VTAMLST Definition for a TAF

Source LU 433
171. Defining TAF to CICS. 433
172. Defining TAF to IMS 434
173. Automation Failure Logic 446
174. Resources Automated by AON/SNA 447
175. Tivoli NetView (AIX) monitors resources 452
176. Log Analysis Program Output 466
177. Messages to be Filtered 467
178. Log Analysis Program Output with Filtering 467
179. Preventing the Automation Table from

Processing Commands 470
180. Automation Statement with Actions

Commented Out 481
181. $HASP098 Command List 483
182. DSI013I Message Written by the

&CONTROL CMD Statement 485
183. Statement that Passes Messages to LOGSEQ 485
184. Message CNM493I Format 489
185. Statement to Start the AUTH=CNM

Application 531
186. Statement to Start Other NetView Application

Programs 531
187. Commands Used to Bring DASD Online 533
188. Flow Diagram for NetView Command Entry

(VTAM Terminal) 539
189. Flow Diagram for Cross-Domain Commands 540
190. Flow Diagram for VTAM (POI) Command

Entry 541

191. Flow Diagram for Solicited System
(Subsystem Interface) Messages 542

192. Flow Diagram for NetView Command Entry
(MVS) 542

193. Flow Diagram for Replies to NetView WTOR 543
194. Flow Diagram for Unsolicited VTAM (POI)

Messages 544
195. Flow Diagram for Unsolicited System (SSI or

MVS Extended Console) Messages
(CNMCSSIR). 545

196. Flow Diagram for Cross-Domain Messages
(NNT to OST) 545

197. Flow Diagram for Messages (Operator is PPT) 546
198. Flow Diagram for Messages (Operator is

OST/NNT) 546
199. Flow Diagram for Solicited and Unsolicited

System MVS Extended Console Messages for
OST, NNT, or Autotask 547

200. Flow Diagram for Solicited and Unsolicited
System MVS Extended Console Messages for
PPT 548

201. Commands to Associate an Autotask with a
System Console 550

202. MVS Command Management Flow 564
203. Basic Automation Sample Set Automation

Table Entries 582
204. Messages Automated by the Basic

Automation Sample Set Automation Table . . 583
205. Specifying Multiple Autotasks and Operators

on the ROUTE Command 583
206. Testing Your Automation Table. 586
207. Activating Your Automation Table 586
208. Activating Autotask AUTO1 587
209. CICS Abend Message 589
210. Passive Monitoring in the Advanced

Automation Sample Set 589
211. Proactive Monitoring for the AUTOJES

Autotask 590
212. Proactive Monitoring for Message DSI039I 591
213. Automation Table EXCMD Command in

Response to DSI039I Message 591
214. Sample CNMS64P0 Display 600
215. Sample CNMS64P1 Display 601
216. CNMS6408 Excerpt (AUTOMGR Operator

Definition) 604
217. CNMS6409 Excerpt (DSIPROFM Operator

Profile). 605
218. Defining Variables for the Start TSO Variable 608
219. Building a Start TSO Variable 608
220. Statement Defining &START as a Common

Global Variable 608
221. Updating a Common Global Variable

Indirectly 609
222. Substituting a Common Global Variable in an

Assignment 609

Figures xxiii

xxiv Automation Guide

About this publication

The IBM® Tivoli® NetView® for z/OS® product provides advanced capabilities that
you can use to maintain the highest degree of availability of your complex,
multi-platform, multi-vendor networks and systems from a single point of control.
This publication, the IBM Tivoli NetView for z/OS Automation Guide, provides
information about planning for automated operations. You can use the automation
capabilities of the NetView program to improve system and network efficiency,
and operator productivity. NetView automation can eliminate or simplify much of
the routine work that operators perform.

Intended audience
This publication is for data processing managers and their technical staff who are
interested in using the NetView program to perform system automation, network
automation, or both. The publication is both for those who are new to automation
and for those who have existing automation projects that they want to update or
expand.

Publications
This section lists publications in the IBM Tivoli NetView for z/OS library and
related documents. It also describes how to access Tivoli publications online and
how to order Tivoli publications.

IBM Tivoli NetView for z/OS library
The following documents are available in the IBM Tivoli NetView for z/OS library:
v Administration Reference, SC31-8854, describes the NetView program definition

statements required for system administration.
v Application Programmer’s Guide, SC31-8855, describes the NetView

program-to-program interface (PPI) and how to use the NetView application
programming interfaces (APIs).

v Automation Guide, SC31-8853, describes how to use automated operations to
improve system and network efficiency and operator productivity.

v Command Reference Volume 1 (A-N), SC31-8857, and Command Reference Volume 2
(O-Z), SC31-8858, describe the NetView commands, which can be used for
network and system operation and in command lists and command procedures.

v Customization Guide, SC31-8859, describes how to customize the NetView product
and points to sources of related information.

v Data Model Reference, SC31-8864, provides information about the Graphic
Monitor Facility host subsystem (GMFHS), SNA topology manager, and
MultiSystem Manager data models.

v Installation: Configuring Additional Components, SC31-8874, describes how to
configure NetView functions beyond the base functions.

v Installation: Configuring Graphical Components, SC31-8875, describes how to install
and configure the NetView graphics components.

v Installation: Configuring the Tivoli NetView for z/OS Enterprise Management Agent,
SC31-6969, describes how to install and configure the NetView for z/OS
Enterprise Management Agent.

© Copyright IBM Corp. 1997, 2009 xxv

v Installation: Getting Started, SC31-8872, describes how to install and configure the
base NetView functions.

v Installation: Migration Guide, SC31-8873, describes the new functions provided by
the current release of the NetView product and the migration of the base
functions from a previous release.

v IP Management, SC27-2506, describes how to use the NetView product to manage
IP networks.

v Messages and Codes Volume 1 (AAU-DSI), SC31-6965, and Messages and Codes
Volume 2 (DUI-IHS), SC31-6966, describe the messages for the NetView product,
the NetView abend codes, the sense codes that are included in NetView
messages, and generic alert code points.

v Programming: Assembler, SC31-8860, describes how to write exit routines,
command processors, and subtasks for the NetView product using assembler
language.

v Programming: Pipes, SC31-8863, describes how to use the NetView pipelines to
customize a NetView installation.

v Programming: PL/I and C, SC31-8861, describes how to write command processors
and installation exit routines for the NetView product using PL/I or C.

v Programming: REXX and the NetView Command List Language, SC31-8862, describes
how to write command lists for the NetView product using the Restructured
Extended Executor language (REXX) or the NetView command list language.

v Resource Object Data Manager and GMFHS Programmer’s Guide, SC31-8865,
describes the NetView Resource Object Data Manager (RODM), including how
to define your non-SNA network to RODM and use RODM for network
automation and for application programming.

v Security Reference, SC31-8870, describes how to implement authorization checking
for the NetView environment.

v SNA Topology Manager Implementation Guide, SC31-8868, describes planning for
and implementing the NetView SNA topology manager, which can be used to
manage subarea, Advanced Peer-to-Peer Networking, and TN3270 resources.

v Troubleshooting Guide, GC27-2507, provides information about documenting,
diagnosing, and solving problems that might occur in using the NetView
product.

v Tuning Guide, SC31-8869, provides tuning information to help achieve certain
performance goals for the NetView product and the network environment.

v User’s Guide: Automated Operations Network, GC31-8851, describes how to use the
NetView Automated Operations Network (AON) component, which provides
event-driven network automation, to improve system and network efficiency. It
also describes how to tailor and extend the automated operations capabilities of
the AON component.

v User’s Guide: NetView, GC31-8849, describes how to use the NetView product to
manage complex, multivendor networks and systems from a single point.

v User’s Guide: NetView Management Console, GC31-8852, provides information
about the NetView management console interface of the NetView product.

v User’s Guide: Web Application, SC32-9381, describes how to use the NetView Web
application to manage complex, multivendor networks and systems from a
single point.

v Licensed Program Specifications, GC31-8848, provides the license information for
the NetView product.

xxvi Automation Guide

v Program Directory for IBM Tivoli NetView for z/OS US English, GI10-3194, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v Program Directory for IBM Tivoli NetView for z/OS Japanese, GI10-3210, contains
information about the material and procedures that are associated with installing
the IBM Tivoli NetView for z/OS product.

v IBM Tivoli NetView for z/OS V5R4 Online Library, SK2T-6175, contains the
publications that are in the NetView for z/OS library. The publications are
available in PDF, HTML, and BookManager® formats.

Related publications
You can find additional product information on the NetView for z/OS Web site:

http://www.ibm.com/software/tivoli/products/netview-zos/

For information about the NetView Bridge function, see Tivoli NetView for OS/390
Bridge Implementation, SC31-8238-03 (available only in the V1R4 library).

Accessing terminology online
The Tivoli Software Glossary includes definitions for many of the technical terms
related to Tivoli software. The Tivoli Software Glossary is available at the following
Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology/

For a list of NetView for z/OS terms and definitions, refer to the IBM Terminology
Web site. The following terms are used in this library:

NetView
For the following products:
v Tivoli NetView for z/OS version 5 release 4
v Tivoli NetView for z/OS version 5 release 3
v Tivoli NetView for z/OS version 5 release 2
v Tivoli NetView for z/OS version 5 release 1
v Tivoli NetView for OS/390® version 1 release 4

MVS For z/OS operating systems

MVS element
For the BCP element of the z/OS operating system

CNMCMD
For the CNMCMD member and the members that are included in it using
the %INCLUDE statement

CNMSTYLE
For the CNMSTYLE member and the members that are included in it using
the %INCLUDE statement

PARMLIB
For SYS1.PARMLIB and other data sets in the concatenation sequence

About this publication xxvii

|

http://www.ibm.com/software/tivoli/products/netview-zos/
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology/

Unless otherwise indicated, references to programs indicate the latest version and
release of the programs. If only a version is indicated, the reference is to all
releases within that version.

When a reference is made about using a personal computer or workstation, any
programmable workstation can be used.

Using NetView for z/OS online help
The following types of NetView for z/OS mainframe online help are available,
depending on your installation and configuration:
v General help and component information
v Command help
v Message help
v Sense code information
v Recommended actions

Using LookAt to look up message explanations
LookAt is an online facility that you can use to look up explanations for most of
the IBM messages you encounter, and for some system abends and codes. Using
LookAt to find information is faster than a conventional search because, in most
cases, LookAt goes directly to the message explanation.

You can use LookAt from the following locations to find IBM message
explanations for z/OS elements and features, z/VM®, VSE/ESA, and Clusters for
AIX® and Linux® systems:
v The Internet. You can access IBM message explanations directly from the LookAt

Web site at http://www.ibm.com/systems/z/os/zos/bkserv/lookat/ .
v Your z/OS TSO/E host system. You can install code on your z/OS or z/OS.e

system to access IBM message explanations, using LookAt from a TSO/E
command line (for example, TSO/E prompt, ISPF, or z/OS UNIX® System
Services running OMVS).

v Your Microsoft® Windows® workstation. You can install LookAt directly from the
z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection
(SK3T-4271) and use it from the resulting Windows graphical user interface
(GUI). The command prompt (also known as the DOS command line) version
can still be used from the directory in which you install the Windows version of
LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html with a
handheld device that has wireless access and an Internet browser.

You can obtain code to install LookAt on your host system or Microsoft Windows
workstation from the following locations:
v A CD in the z/OS Collection (SK3T-4269).
v The z/OS and Software Products DVD Collection (SK3T-4271).
v The LookAt Web site. Click Download and then select the platform, release,

collection, and location that you want. More information is available in the
LOOKAT.ME files that is available during the download process.

Accessing publications online
The documentation DVD, IBM Tivoli NetView for z/OS V5R4 Online Library,
SK2T-6175, contains the publications that are in the product library. The

xxviii Automation Guide

http://www.ibm.com/systems/z/os/zos/bkserv/lookat/
http://www.ibm.com/systems/z/os/zos/bkserv/lookat/lookatm.html

publications are available in PDF, HTML, and BookManager formats. Refer to the
readme file on the DVD for instructions on how to access the documentation.

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp.

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File → Print window that enables Adobe® Reader to print letter-sized
pages on your local paper.

Ordering publications
You can order many Tivoli publications online at
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site to see an information page that includes the telephone

number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. Standard shortcut
and accelerator keys are used by the product and are documented by the operating
system. Refer to the documentation provided by your operating system for more
information.

For additional information, see the Accessibility appendix in the User’s Guide:
NetView.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

Downloads
Clients and agents, NetView product demonstrations, and several free NetView
applications can be downloaded from the NetView for z/OS support Web site:

http://www.ibm.com/software/sysmgmt/products/support/
IBMTivoliNetViewforzOS.html

In the ″IBM Tivoli for NetView for z/OS support″ pane, click Download to go to a
page where you can search for or select downloads.

About this publication xxix

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html
http://www.ibm.com/software/sysmgmt/products/support/IBMTivoliNetViewforzOS.html

These applications can help with the following tasks:
v Migrating customization parameters and initialization statements from earlier

releases to the CNMSTUSR member and command definitions from earlier
releases to the CNMCMDU member.

v Getting statistics for your automation table and merging the statistics with a
listing of the automation table

v Displaying the status of a job entry subsystem (JES) job or canceling a specified
JES job

v Sending alerts to the NetView program using the program-to-program interface
(PPI)

v Sending and receiving MVS commands using the PPI
v Sending Time Sharing Option (TSO) commands and receiving responses

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html and follow the
instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa/.

Troubleshooting information
For more information about resolving problems with the NetView for z/OS
product, see the IBM Tivoli NetView for z/OS Troubleshooting Guide.
Additional support for the NetView for z/OS product is available through
the NetView user group on Yahoo at
http://groups.yahoo.com/group/NetView/. This support is for NetView
for z/OS customers only, and registration is required. This forum is
monitored by NetView developers who answer questions and provide
guidance. When a problem with the code is found, you are asked to open
an official problem management record (PMR) to obtain resolution.

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and command syntax.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,

xxx Automation Guide

http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa/
http://groups.yahoo.com/group/NetView/

multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents...

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
For workstation components, this publication uses the UNIX convention for
specifying environment variables and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Syntax diagrams
Read syntax diagrams from left-to-right, top-to-bottom, following the horizontal
line (the main path). This section describes how syntax elements are shown in
syntax diagrams.

Symbols
The following symbols are used in syntax diagrams:

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

�� Marks the end of the command syntax.

Parameters
The following types of parameters are used in syntax diagrams:

About this publication xxxi

Required Required parameters are shown on the main path.

Optional Optional parameters are shown below the main path.

Default Default parameters are shown above the main path. In parameter
descriptions, default parameters are underlined.

Syntax diagrams do not rely on highlighting, brackets, or braces. In syntax
diagrams, the position of the elements relative to the main syntax line indicates
whether an element is required, optional, or the default value.

Parameters are classified as keywords or variables. Keywords are shown in
uppercase letters. Variables, which represent names or values that you supply, are
shown in lowercase letters and are either italicized or, in NetView help and
BookManager publications, displayed in a differentiating color.

In the following example, the USER command is a required keyword parameter,
user_id is a required variable parameter, and password is an optional variable
parameter.

�� USER user_id
password

��

Punctuation and parentheses
You must include all punctuation that is shown in the syntax diagram, such as
colons, semicolons, commas, minus signs, and both single and double quotation
marks.

When an operand can have more than one value, the values typically are enclosed
in parentheses and separated by commas. For a single value, the parentheses
typically can be omitted. For more information, see “Multiple operands or values”
on page xxxiii.

If a command requires positional commas to separate keywords and variables, the
commas are shown before the keywords or variables.

When examples of commands are shown, commas are also used to indicate the
absence of a positional operand. For example, the second comma indicates that an
optional operand is not being used:
COMMAND_NAME opt_variable_1,,opt_variable_3

You do not need to specify the trailing positional commas. Trailing positional and
non-positional commas either are ignored or cause a command to be rejected.
Restrictions for each command state whether trailing commas cause the command
to be rejected.

Abbreviations
Command and keyword abbreviations are listed in synonym tables after each
command description.

Syntax examples
This section show examples for the different uses of syntax elements.

Required syntax elements: Required keywords and variables are shown on the
main syntax line. You must code required keywords and variables.

xxxii Automation Guide

�� REQUIRED_KEYWORD required_variable ��

If multiple mutually exclusive required keywords or variables are available to
choose from, they are stacked vertically in alphanumeric order.

�� REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

��

Optional syntax elements: Optional keywords and variables are shown below the
main syntax line. You can choose not to code optional keywords and variables.

��
OPTIONAL_OPERAND

��

If multiple mutually exclusive optional keywords or variables are available to
choose from, they are stacked vertically in alphanumeric order below the main
syntax line.

��
OPTIONAL_OPERAND_OR_VALUE_1
OPTIONAL_OPERAND_OR_VALUE_2

��

Default keywords and values: Default keywords and values are shown above the
main syntax line in one of the following ways:
v A default keyword is shown only above the main syntax line. You can specify

this keyword or allow it to default. The following syntax example shows the
default keyword KEYWORD1 above the main syntax line and the rest of the
optional keywords below the main syntax line.

v If an operand has a default value, the operand is shown both above and below
the main syntax line. A value below the main syntax line indicates that if you
specify the operand, you must also specify either the default value or another
value shown. If you do not specify the operand, the default value above the
main syntax line is used. The following syntax example shows the default values
for operand OPTION=* above and below the main syntax line.

�� COMMAND_NAME
,KEYWORD1

,KEYWORD2
,KEYWORD3
,KEYWORD4

,OPTION=*

,OPTION= *
VALUE1
VALUE2

��

Multiple operands or values: An arrow returning to the left above a group of
operands or values indicates that more than one can be selected or that a single
one can be repeated.

About this publication xxxiii

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPERAND_OR_VALUE_3

�

,

KEYWORD=(value_n) ��

Syntax that is longer than one line: If a diagram is longer than one line, each line
that is to be continued ends with a single arrowhead and the following line begins
with a single arrowhead.

�� OPERAND_1 OPERAND_2 OPERAND_3 OPERAND_4 OPERAND_5 �

� OPERAND_6 OPERAND_7 OPERAND_8 ��

Syntax fragments: Some syntax diagrams contain syntax fragments, which are
used for lengthy, complex, or repeated sections of syntax. Syntax fragments follow
the main diagram. Each syntax fragment name is mixed case and is shown in the
main diagram and in the heading of the fragment. The following syntax example
shows a syntax diagram with two fragments that are identified as Fragment1 and
Fragment2.

�� COMMAND_NAME Fragment1
Fragment2

��

Fragment1

KEYWORD_A=valueA KEYWORD_B KEYWORD_C

Fragment2

KEYWORD_D KEYWORD_E=valueE KEYWORD_F

xxxiv Automation Guide

Part 1. Introducing Automation
Chapter 1. Introducing NetView Automation . 3
What Does NetView Automation Mean? . 3
Benefits of Automation . 3

Improving System and Network Availability. 3
Removing Constraints to Growth . 4
Increasing Operator Productivity . 4
Ensuring Consistent Operating Procedures . 4

Classes of Automation . 4
System and Network Automation . 5

System Automation . 5
Network Automation . 6

Single-System or Multiple-System Automation . 6
Single-System Automation . 6
Multiple-System Automation . 6

Stages of Automation . 7
Single-System Automation Stages . 7

Suppressing or Revising Messages and Blocking Alerts 8
Consolidating Consoles . 8

Reducing Consoles . 8
Consolidating Consoles through Message Collection 9
Dedicating a NetView Console . 9

Consolidating Commands . 9
Scheduling Commands . 10
Responding Automatically to Messages and MSUs . 10
Establishing Coordinated Automation . 10
Consolidating Automation with RODM . 11

Improving Operator Interfaces . 11
Presenting Information in Messages . 12
Presenting Information in Hardware Monitor Alerts . 12

Deciding How to Use the Hardware Monitor . 13
Generating Alerts . 13

Presenting Information in Beeper/E-mail Actions . 13
Presenting Status Information . 13
Displaying Information on Full-Screen Panels . 13
Propagating Single-System Automation . 14
Centralizing Operations . 15
Use of Focal Points in Centralized Operations . 15
Establishing Remote Operation . 16

Automating Non-NetView Systems and Non-SNA Devices 18
Example of a Staged Approach . 18

Stage 1: Suppress Messages and Filter Alerts . 18
Stage 2: Consolidate Consoles . 18
Stage 3: Consolidate Commands . 18
Stage 4: Schedule Commands . 19
Stage 5: Create Automated Responses to Messages and MSUs 19
Stage 6: Coordinate Monitoring and Reactivating . 19
Stage 7: Improve Operator Interfaces . 19
Stage 8: Implement Multiple-System Automation . 19
Stage 9: Centralize Operations . 19
Stage 10: Extend Automation to Additional Machines and Devices 19

Chapter 2. Overview of Automation Products . 21
NetView Automation Facilities . 21

Command Lists and Command Processors . 21
Choosing a Language . 22
Automating with Command Procedures . 22

© Copyright IBM Corp. 1997, 2009 1

Obtaining Message and Management Services Unit (MSU) Information 22
Using Global Variables . 22
Accepting Parameters . 22
Obtaining Environment Information . 23
Interacting with the System and Network . 23
Waiting . 23

Timer Commands . 23
Autotasks . 23
Automation Table . 24
Message Revision Table . 25
Resource Object Data Manager . 25
Installation Exits. 25

Using DSIEX02A . 26
Using DSIEX16 or DSIEX16B . 26
Using DSIEX17 . 26
Using XITCI . 26

MVS Command Revision . 26
Automated Operations Network (AON) . 26
Status Monitor . 27

Operating-System Automation Facilities and Interactions with NetView 27
Automation on MVS Systems . 27

Automating Responses to Messages . 27
Setting Options for Automating with either the Message Processing Facility (MPF) or the Message Revision
Table (MRT) . 31
Automating a Sysplex . 31
Automating Responses to MSUs . 32
Issuing NetView Commands from Multiple Support Consoles 32

Issuing NetView Commands with the MVS MODIFY Command 32
Issuing NetView Commands with the Designator Character 32

Issuing MVS Commands from NetView . 33
Automating MVS Commands . 33
Issuing MVS System Messages and Delete Operator Messages (DOMs) 33

System Automation/390 Programs . 33
Examples of Using NetView Interfaces . 33

NetView Service Points . 34
Tivoli Networks . 34
IP Networks Using SNMP . 34
Non-IBM Networks. 35

Automation-Related Functions and Services . 35
Managing Workload . 35
Managing Network Performance . 35
Managing Input/Output . 36
Managing Storage . 36
Management Reporting . 37

2 Automation Guide

||

Chapter 1. Introducing NetView Automation

This chapter introduces NetView automation by describing:
v What the term NetView automation means
v Benefits of automation
v Classes of automation
v Stages of automation

What Does NetView Automation Mean?
NetView automation means using NetView (and some associated products) to
automate many of the information-system and network operations that usually
require human intervention. NetView provides specialized services to assist in
system and network automation. Through these services, NetView can perform
many routine operator tasks.

For an overview of specific functions and facilities of NetView and other products
that contribute to NetView automation, see Chapter 2, “Overview of Automation
Products,” on page 21.

Benefits of Automation
NetView automation offers system-wide and network-wide benefits by simplifying
your operating environment. You can reduce the amount of manual intervention
required to manage operating systems, subsystems, application programs, network
devices, and many other products.

The need to simplify operations increases as you add hardware and software
products to your data center, data centers to your network, and personnel to your
data-processing staff. By simplifying your operations, NetView automation can
help you meet required service levels, contain costs, and make efficient use of your
operation staff.

NetView automation helps you:
v Improve system and network availability
v Remove constraints to growth
v Increase operator productivity
v Ensure more consistent operating procedures

Improving System and Network Availability
Automation can improve the availability of your system and network. Automated
operations can quickly and accurately respond to unexpected events. When
outages do occur, whether planned or unplanned, automation can reduce your
recovery time.

Automation decreases the chances for operator errors. Some operator errors can
cause failures and lengthen recovery times. For example, an operator might fail to
see a message or might type a command incorrectly. Also, an operator might have
to type long sequences of commands, remembering the command syntaxes of
several programs or components (or take the time to look them up). There are
many opportunities for operator error.

© Copyright IBM Corp. 1997, 2009 3

With automation, you substitute automatic responses for operator-typed
commands. If operator intervention is required, automation procedures can
simplify the tasks, reduce the chances of mistakes, and ensure similar responses to
similar events. Automation also expedites shutdown, initialization, and recovery
procedures, reducing downtime.

Removing Constraints to Growth
Automation can help you remove constraints on system and network growth. For
example, ever-increasing data rates might constrain your growth.

As you add faster systems and larger networks to the environment, your operators
can receive more messages and alerts. Under normal operating conditions, most
operators can read and comprehend each message but might have difficulty
reacting to all of them. Automation can reduce the number of messages and alerts
that are displayed by:
v Suppressing routine messages
v Blocking routine alerts
v Responding to messages and alerts automatically

Increasing the number of consoles also constrains growth. New products can add
consoles that you need to manage. Regardless of your operating system, having
many systems requires many consoles. Automation consolidates consoles on
individual systems and helps you operate many systems from one centralized
point.

Another constraint is the increasing complexity of networks. Interconnected
networks often include large numbers of resources, many product types, and
combinations of TCP/IP and Systems Network Architecture (SNA) resources.
Finding experienced operators to manage all of them can be difficult and costly.

Automation reduces the complexity of the operator’s task by managing complex
networks according to rules that you specify. Therefore, automation can help you
to manage system and network growth.

Increasing Operator Productivity
With automation, operator productivity can increase because the operators spend
less time reading messages and alerts and performing repetitive tasks. The
operators have more time to concentrate on the tasks that require operator
intervention, such as resolution of a new problem.

Ensuring Consistent Operating Procedures
By writing automation procedures and documenting them, you can structure your
operations and enable effective reviews. Automation provides a basis for ensuring
consistent operating procedures across your organization. Using automation, you
can implement new operating procedures quickly and consistently, and you can
manage changes more easily and efficiently.

Classes of Automation
With NetView, you can establish a wide variety of automated environments. This
section describes several classes of automated operations and the terminology used
in this book to describe each one. These classes include:
v “System Automation” on page 5

4 Automation Guide

v “Network Automation” on page 6
v “Single-System Automation” on page 6
v “Multiple-System Automation” on page 6

System and Network Automation
Besides automating its own internal processing, NetView can accomplish both
system and network automation. System automation is the automated operation of
the operating system, subsystems, and application programs. Network automation is
the automated operation of network resources through a communication program,
such as VTAM®.

You can use NetView to implement system automation, network automation, or
both. If you combine system and network automation in a single design, you can
develop integrated, comprehensive automation. You can also give operators a
unified view of information to help them perform problem determination on all
system hardware, system software, and network devices that might contribute to a
problem.

The content of messages, management services units (MSUs), and system
commands are examined by the automation table. Based on that content, the
automation table issues appropriate commands to control your system and
network. MSUs are data structures that carry alert major vectors and other
management-services data.

For more information about MSUs in NetView, see Chapter 9, “NetView
Information Routing for Automation,” on page 85. For more information about
MSUs in SNA, refer to the SNA Management Services Reference and Systems Network
Architecture Formats.

System Automation
System automation means automatically responding to system messages and
MSUs, and automatically issuing system commands. The system commands can be
issued either at scheduled times or in response to a system message or MSU.

For information about how NetView accomplishes system automation with the
help of operating-system facilities, see “Operating-System Automation Facilities
and Interactions with NetView” on page 27.

From a NetView perspective, system messages and MSUs are the messages and
MSUs that an operating system, subsystem, or application program issues. The
operating system message types include:
v Write-to-operator (WTO)
v Write-to-operator-with-reply (WTOR)

NetView can alter or redirect these before they are presented to consoles or system
logging.

System MSUs are MSUs that come across the NetView program-to-program
interface or through LU 6.2 sessions from other programs on the system. NetView
automation can suppress or automatically respond to system messages and MSUs.

System commands are the commands that operators can issue to systems,
subsystems, and application programs. In an automated environment, NetView

Chapter 1. Introducing NetView Automation 5

operators and automation routines can use all system commands. For example,
you might issue a system command automatically at specified intervals or in
response to a particular system message.

Network Automation
Network automation means automatically responding to network messages and
MSUs, and automatically issuing network commands. The network commands can
be issued either at scheduled times or in response to a network message or MSU.

NetView provides you with extensive, policy-based automation for your network
resources. AON provides automation of the following network resources:
v VTAM SNA
v TCP/IP

NetView accomplishes network automation through interaction with other
communication software, typically VTAM. If you are already using NetView for
network management, you can progress to network automation by having the
program do much of the work that operators now do. Network automation, unlike
system automation, does not use the operating system’s message-processing
facilities.

Network messages and network MSUs are those messages and MSUs that come from
or go through the VTAM program, directly or indirectly. They include:
v VTAM messages sent to NetView across the program operator interface
v MSUs sent to NetView to report hardware and software problems in the

network

NetView can suppress or automatically respond to network messages and MSUs.

Network commands are any commands that operators can issue to VTAM or through
it to network devices. NetView automation facilities use many of these commands.

Single-System or Multiple-System Automation
You can also choose between single-system and multiple-system automation. When
beginning new automation, start with single-system automation. That is, automate
as many operations locally (at each system) as possible before moving to
multiple-system automation. You thereby reduce the number of interactions needed
with other systems to achieve full multiple-system automation. You also avoid
overtaxing the communication facilities, focal-point systems, and
telecommunication lines.

For descriptions of the stages of single-system and multiple-system automation, see
“Stages of Automation” on page 7.

Single-System Automation
In single-system automation, the automation of each host system is self-contained.
You can automate the system, its subsystems and application programs, and the
network devices in the domain of that system’s VTAM program. However, in
single-system automation, NetView cannot automate any devices outside its own
VTAM domain. Operators handle those tasks that cannot be automated locally,
such as recovery of an operating system or an initial program load.

Multiple-System Automation
In multiple-system automation, you coordinate automation across two or more host
systems. The coordination enables you to automate the operation of resources that

6 Automation Guide

you cannot automate locally on a single system. Multiple-system automation is
either single-site or multi-site, depending on whether the coordination unites a
single data center or spans several data centers at remote locations.

With multiple-system automation, you can establish remote operations, called
centralized operations, in which many of your systems have no operators present
and do not need full operator interfaces. You operate the unattended systems
remotely. You forward information about the conditions of the unattended systems
to the central system, along with any problem reports that you cannot automate
locally.

Stages of Automation
NetView automation encompasses a broad selection of techniques. These
techniques can be divided into those used:
v On a single system
v In a multiple-system environment
v Specifically for non-NetView systems or non-SNA devices

For an example of the stages of automation, see “Example of a Staged Approach”
on page 18.

Single-System Automation Stages
This section introduces the primary techniques of automating system and network
management on a single system. These techniques are grouped into seven stages,
according to the approximate order that you might implement them.

Figure 1 is the first of several illustrations in this chapter that show the staged
introduction of automation to your system or systems. Later illustrations show the
expansion of automation to multiple systems.

The first three stages of automating a single system use NetView automation to
increase the speed and accuracy with which operators process information as
follows:
v Suppressing messages and blocking alerts
v Consolidating consoles
v Consolidating commands

The next three stages further reduce the workload of operators by having NetView
automatically perform the following management tasks:
v Schedule commands
v Respond to messages and MSUs
v Establish coordinated automation

Automation
Applications

NetView

Suppressing messages and
blocking alerts
Consolidating consoles
Consolidating commands
Scheduling commands
Responding automatically to
messages and MSUs
Establishing coordinated
automation
Improving operator interfaces

Figure 1. Adding Automation, with NetView on a Single System

Chapter 1. Introducing NetView Automation 7

The final stage, improving operator interfaces, adapts your operator interfaces to
the new environment and the reduced workload.

Suppressing or Revising Messages and Blocking Alerts
Even in a small data processing center, you probably receive many informational
messages and alerts that operators simply ignore. In a larger center, you might
receive hundreds of messages and alerts per second, only a small fraction of which
contain data that operators use to make decisions.

A first step toward automated operations is to suppress or block routine messages
and alerts. In this way, you can decrease the unneeded information your operators
receive. They can then concentrate on important information.

Decreasing the number of messages can also decrease the load on the system. The
system can then process important messages efficiently. You can continue to log the
messages you suppress, keeping them available for debugging applications,
auditing your automation, and similar activities.

You can suppress or revise messages by using the combined capabilities of
NetView.

Use of the z/OS message processing facility (MPF) is still supported but many of
its functions are superseded by the NetView revision table or the NetView
automation table facilities. Use the revision table to suppress or revise most system
messages. Only messages that require more complex actions, such as initiating an
automation command list, must be passed to the NetView address space for
automation table processing. You can also use the automation table to suppress
unneeded NetView messages and VTAM messages received directly by NetView.

You can block unneeded alerts by first determining which problem records become
events and which events become alerts. You can then set recording filters for the
hardware monitor with the SRFILTER command. For more information about
filtering commands with the SRFILTER command, refer to the NetView online
help.

You can also add filtering statements to the NetView automation table. The
NetView automation table contains processing options and automatic responses for
incoming messages and MSUs. Automation-table statements can override recording
filters for the hardware monitor.

Consolidating Consoles
After you reduce the flow of messages, you might be able to combine some
consoles. For more information, see “Improving Operator Interfaces” on page 11
and Chapter 26, “Centralized Operations,” on page 375.

After suppressing unneeded messages, you can route the remaining messages to
one or two consoles. You can display messages to operators in several ways.

Reducing Consoles: You can decrease the number of NetView consoles your
operators monitor by moving information from the hardware monitor to another
interface. You can decrease or eliminate use of the hardware monitor by displaying
alert information in other forms. For example, alerts that cannot be handled with
an automatic response might be converted into messages or displayed on a
full-screen panel. The automation table can initiate this process.

8 Automation Guide

You can decrease the number of NetView consoles your operators monitor by
decreasing or eliminating messages to operators and by increasing your reliance on
the hardware monitor. When problems occur that automation cannot handle, you
can generate hardware monitor alerts to inform your operators. You can then use
the hardware monitor to display information that helps operators solve problems.

Consolidating Consoles through Message Collection: You can consolidate
consoles by having NetView collect messages from a variety of sources such as:
v The operating system
v Master operator consoles of the Information Management System (IMS™)

program or the Customer Information Control System (CICS®) program through
the NetView terminal access facility

v Other subsystems and application programs
v Processor hardware consoles, through the Processor Operations component of

the Tivoli System Automation for z/OS product
v VTAM application programs
v VTAM

After consolidation, you might have a few consoles close together in a central
operating area or you might have just a single console. Then, a few operators or
one operator can receive all of the messages that are essential for controlling the
system and network. If you have more than one operator, you can display all of
the messages that a specific operator needs, and no others, on one console for that
operator. An operator does not have to watch several consoles at once or sift
through another operator’s messages.

Dedicating a NetView Console: You can consolidate the consoles used to manage
the system and the network.

You can dedicate one NetView console to manage the system (using the command
facility) and another console to manage the network (using the hardware monitor).

You can customize the NetView console, enabling operators who use other
consoles to easily adapt to using NetView. In some cases, this ability to customize
the NetView console depends upon the facilities of the operating system. Examples
of console customization include coloring messages and changing message
prefixes. (You can also use the revision table to perform console customization).

For information about console customization, refer to the IBM Tivoli NetView for
z/OS Customization Guide.

Consolidating Commands
You can use simple command procedures to improve operations. Learn the
sequence of commands your operators most commonly issue and write short
programs (called command procedures) to issue those sequences automatically. An
operator can enter the name of the command procedure, and NetView issues all of
the commands in the sequence.

For example, you might create a simple command procedure to perform any of the
following actions:
v Bringing a bank of direct access storage devices (DASD) online and mounting

each volume with the correct attributes
v Re-establishing a set of telecommunication lines after repair
v Initializing a simple application, including verification of required DASD

Chapter 1. Introducing NetView Automation 9

v Dumping a filled system management facilities (SMF) data set or a dump data
set

v Monitoring an operation checklist

Writing command procedures for your operators decreases the typing each
operator must do. Operator productivity rises, and the chance of an error because
of typing a command incorrectly decreases. The command procedures also provide
a base for later automation, because you can use the NetView automation table or
a timer command to automatically invoke some of the same procedures.

Scheduling Commands
If you want to issue a command at a particular time or issue a given command
periodically, you can use command scheduling and the NetView timer commands.
For example, you might need to shut down your applications at 5:00 p.m. to free
processor capacity for a special activity, such as tape transfer, or you might want to
check the status of certain tasks every 3 minutes.

The command that is issued can be a command procedure. Suppose you have
written a simple command procedure that initializes an application program. If
you want to initialize the program every day at 6:00 a.m., you can run your
command procedure daily at that time.

By scheduling commands, you relieve your operators of the need to issue the
commands manually. You can also perform actions when your operators are
unavailable or repeat certain commands at a frequency that is impractical for
human operators.

Responding Automatically to Messages and MSUs
Responding to event notifications, such as messages and MSUs, often consumes
much of an operator’s time. In many cases, NetView can automatically issue the
operator’s responses.

NetView provides an automation table that examines incoming messages and
MSUs and responds to them with various actions. The NetView automation table
can initiate any reaction you specify to a message or MSU, such as issuing a
command. For example, NetView can automatically respond to all IOS150I
messages, which indicate that a failed device is now available. The NetView
automation table can issue an MVS VARY ONLINE command to bring the device
back online.

When you have programmed NetView to reply automatically to the most common
messages and alerts, you can suppress those messages and alerts from being
displayed, eliminating the need for operators to view notifications for problems
that automation is solving.

Establishing Coordinated Automation
Coordinated automation represents an advanced stage of automated operations. In
coordinated automation, NetView continually tracks the preferred state of each
data-processing resource and the actual state. If the actual state differs from the
preferred state, automation takes corrective action.

Programmers or operators set the preferred state of each resource. Resources
include hardware components, such as channels, and software components, such
as data sets or the address space for the MVS time sharing option (TSO). You can
write command procedures to help operators examine and change the preferred
state of a resource.

10 Automation Guide

To determine the actual state of each resource, your automation can employ
passive and active monitoring. Passive monitoring means waiting for messages and
alerts that indicate status changes. Active monitoring means issuing commands to
solicit status information. For example, you might set up a command procedure to
run every 10 minutes and issue commands to check the states of important
resources. By combining passive and active monitoring, you can ensure that
automation has reliable, up-to-date information.

When your automation application program receives information about the state of
a resource, it records that information, perhaps by updating a global variable. For
example, if the IMS program fails, the value of a global variable that represents the
state of the IMS program can be changed to DOWN.

When a preferred state or actual state of a resource changes, automation
determines whether corrective action is needed. If so, automation can issue a
command or command procedure to remedy the situation. It can also notify
operators of the change of state.

Besides tracking preferred and actual states, you can track other information. For
example, you might use a variable to indicate the automated action being taken for
each resource. You can also specify the resources for which automation is
responsible. Automation still monitors all resources, but attempts problem
resolution only for those that you specify. With this technique, you can return to
the manual control of any resource by changing a variable to stop part of your
automation.

Automation samples are included with NetView. These samples demonstrate
coordinated automation using NetView global variables. Before implementing
coordinated automation, study the samples.

For information about the sample set, see Appendix I, “The Sample Set for
Automation,” on page 579

Consolidating Automation with RODM
In addition to the techniques previously mentioned, you can consolidate
automation using some of the capabilities provided by the Resource Object Data
Manager (RODM) component of NetView. These RODM capabilities can help track
resource information and help automate the resolution of problems. RODM can
retain various types of information about resources, events, and the relationships
among them. Because you specify complex relationships among pieces of
information in RODM, NetView can determine interactions between multiple
events and use them in analyzing and resolving problems.

Improving Operator Interfaces
Automated operations reduce the amount of human involvement needed to run a
data-processing environment. Nevertheless, operators still need to be able to
monitor the environment, examine the status of resources, and verify that
automation is functioning correctly.

Furthermore, you need a mechanism for exception notification. Exception notification
is the process of informing operators when automation routines encounter an event
you have not yet automated or when the routines fail to resolve a problem.

Therefore, plan interfaces that give operators the information they need. You can
present information to operators in the following forms:

Chapter 1. Introducing NetView Automation 11

v Messages from the command facility
v Alerts from the hardware monitor
v Status information from the status monitor and the NetView management

console (NMC)
v Full-screen displays and help panels displayed with the VIEW command

processor

Presenting Information in Messages
Messages are displayed on the NetView console to provide information about
NetView and the products that the program is managing. The command facility,
operated from the NetView console, displays messages. NetView operators monitor
this facility most often in many unautomated environments.

Automated operations can improve your use of the command facility. Message
suppression decreases the number of messages displayed, making it easier to read
the remaining messages. You can use the command facility for exception
notification by creating a message whenever automation routines encounter a
problem.

Console consolidation enables an operator to monitor more than one product, such
as your operating system and NetView, from a single screen. In addition, you can
use the automation table to hold important messages on the screen or to reissue
messages with modified text.

Automation can also control the way messages are displayed to help the operator
quickly recognize the importance of specific types of messages. For example, the
system can present different classes of messages with different colors or
highlighting. Also, different groups of messages can be formatted with different
arrangements of information. You can make these and other changes in the
appearance of the display by using a screen format member.

For information about the screen format member, refer to the IBM Tivoli NetView
for z/OS Customization Guide.

NetView can store a specified limit of messages for display. If this number is
exceeded, some of the oldest messages are discarded, but automation based on
messages still continues, and all messages are logged.

Presenting Information in Hardware Monitor Alerts
The hardware monitor receives information in the form of events and alerts, and
displays the information. The events and alerts are MSUs and other data structures
that flow into NetView. Alerts primarily indicate that network hardware is
experiencing problems.

Note: The hardware monitor submits only unsolicited MSUs to the automation
table.

You can continue to use the hardware monitor in conjunction with other facilities
that provide resource information for display, just as you would in an
unautomated environment. To do so, you can have one or more consoles present
alerts to operators from the hardware monitor. The operators can use the alerts to
manage network problems. You can display automation status and other
information on a separate console, in another form, such as messages or full-screen
panels.

12 Automation Guide

Deciding How to Use the Hardware Monitor: Operators can display problem
descriptions, lists of probable causes, and lists of suggested actions. The hardware
monitor also:
v Maintains a history of reported problems
v Provides viewing filters that determine which operators see which alerts
v Enables you to send information to the Information/Management program, to a

user-defined external log, or to a system management facilities (SMF) external
log

Generating Alerts: To generate your own alerts, use the GENALERT command,
the program-to-program interface, or the management services (MS) transport of
NetView. After suppressing or automating the majority of the messages you
receive, use alerts to notify operators of the remaining messages and of any
problems that your automation encounters.

You can issue the GENALERT command from the automation table, when certain
messages are received, or from command procedures. You control the contents of
the alerts you generate, including descriptions, suggested actions, telephone
numbers of people to contact, and other information that fits your environment.

You can also write a REXX command that formats the alert and sends it by way of
the program-to-program interface (PPI) PIPE stage.

Presenting Information in Beeper/E-mail Actions
Using the INFORM command and its associated policy definitions, you can
generate beeper or e-mail actions to notify appropriate personnel of key events or
actions. For example, you can use beeper or e-mail actions for off-shift hours or for
support of remote locations.

For more information, see the IBM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N).

Presenting Status Information
The status monitor and the NetView management console (NMC) can track
network status. You can determine status without remembering past sequences of
messages or issuing query commands. The status monitor provides status
information for display in text form on the status monitor panel. The NetView
management console (NMC) provides status information in graphic displays of
your network on the screen of a workstation. While your automation is responding
to events and keeping resources active, operators can efficiently monitor the
network with status displays.

The NetView management console (NMC) can display information on a
workstation attached to an MVS system. You can run the facility on a single
system, but it is most useful in a multiple-system environment. To display
information about other systems graphically, you can forward status information to
an MVS system.

For a description of forwarding status information, see Chapter 26, “Centralized
Operations,” on page 375.

Displaying Information on Full-Screen Panels
For greater flexibility in designing interfaces, you can create full-screen panels that
are displayed from a command procedure. Full-screen panels provide many color
and highlighting options, which can be used for displaying status information,
exception notification, or both.

Chapter 1. Introducing NetView Automation 13

NetView automatically defers displaying messages during the display of full-screen
panels. However, automation and message logging continue while the panels are
displayed.

You can create full-screen panels with a standard editor, such as the Interactive
System Productivity Facility (ISPF).

After you have created a panel, you can use the VIEW command to display it from
a command procedure. In addition to displaying data with the color and
highlighting options you specified, the VIEW command can accept input in fields
you have designated. This input is passed back to the command procedure,
enabling your automation routines to communicate with the operator, interactively.

For examples of how to display full-screen panels, use a standard editor to review
NetView command lists that are using the VIEW command. Such command lists
include BROWSE, TUTOR, and DISG.

The HELP command also uses the VIEW command; therefore, you can create help
panels or modify existing NetView help panels. You can display information that
documents the automation you create, assists operators in using your command
procedures, and presents customized information that reflects your network
environment.

Propagating Single-System Automation
The first stage of multiple-system, network-wide automation is to propagate
single-system automation to all of your NetView systems (see Figure 2). You might
need to design new automation for each system because different applications or
devices can be installed on each system in the network. However, if you have
implemented single-system automation on one system, you might be able to
propagate much of that automation onto other systems.

If you customize the copied automation for the new systems, the number of
changes needed depends on how different the new environment is from the one on
which you developed the automation.

Automation
Applications

NetView

Automation
Applications

NetView

Automation
Applications

NetView

Figure 2. Propagating Automation to Additional Systems

14 Automation Guide

Use a flexible design for propagation. See “Designing for Expansion and
Propagation” on page 52 for information about how you can design portable
automation.

Centralizing Operations
In a centralized operation that results from single-system consolidation, you can
route information from many systems, spread across the network, to a single
console or set of consoles. Operators no longer need to run each system from
separate consoles.

To avoid overburdening the communication between systems, do not send
problems to another system until you have locally automated responses to as many
problems as possible. Forward only two types of information:
v Information about the condition of the individual systems (for display to

operators)
v Information about problems that the individual systems cannot automatically

resolve without assistance from another system

These problems include those that require operator attention and those that require
restarting the processor, the operating system, or NetView.

As shown in Figure 3, you can designate one system as the focal point for
receiving forwarded exceptions from distributed data systems. By logging on to
NetView at the focal-point system, operators can manage a group of systems, an
entire data center, or several data centers.

Use of Focal Points in Centralized Operations
Whether you perform single-site or multi-site automation, the focal-point system
performs two sets of actions:

Automation
Applications

NetView

Automation
Applications

NetView

Automation
Applications

NetView

Focal-Point
Applications

Focal Point

Distributed System

Distributed System

Figure 3. Forwarding Exceptions that Local Automation Cannot Handle

Chapter 1. Introducing NetView Automation 15

v The focal-point system automates its own system and network management. For
this, implement the same types of single-system automation that you are using
on other systems.

v The focal-point system automates information that comes from the systems that
report to it, which are known as distributed, target, or entry point systems.

Information that cannot be automated by either the target systems or their focal
point is presented to operators at the focal point system.

With an arrangement of focal-point and distributed data systems, you might not
staff certain data centers during off shifts and remotely operate the data centers.
During those shifts, you can forward information from the distributed systems at
unattended data centers to a focal-point system at an attended data center.
However, running an automated data center unattended might still require some
manual intervention for such tasks as mounting tapes and handling printers.

See “Automation-Related Functions and Services” on page 35 for ways to reduce
the need for manual intervention.

You can use NetView to forward messages, alerts, and the status information used
by the NetView management console (NMC). By tracking the focal points of the
application programs NetView can also assist in information forwarding for
application programs that use the management services transport.

Because an outage in the focal-point system can interrupt the management of
many other systems, select a reliable system for your focal point. You can also
designate a backup focal point to take control in the event of a planned or
unplanned outage.

See “Choosing Focal Points” on page 57 for criteria to use in selecting a reliable
system for your focal point. For information about selecting a backup focal point,
see “Using a Backup Focal Point” on page 58.

Establishing Remote Operation
When you implement the stages previously described, your distributed systems
can automate most operations. Information about the remaining operating activities
is forwarded to a focal point, where automation and your centralized operations
staff handle situations that do not require manual intervention at a remote location.

You can complete multiple-system automation by automating actions that involve
the hardware and system consoles of the target processors. Actions that involve
these consoles include initialization, configuration, and shutdown of target
processors. You can use IBM System Automation for z/OS to accomplish these
actions for most IBM processors. Use of System Automation for z/OS to remotely
initialize target systems is shown in Figure 4 on page 17.

See “System Automation/390 Programs” on page 33 for an overview of System
Automation for z/OS capabilities.

16 Automation Guide

System Automation for z/OS can control Enterprise System/4381, Enterprise
System/3080, Enterprise System/3090, and most Enterprise System/9000 (ES/9000)
processors, but cannot remotely initialize 9370 processors.

However, the Automated Power Control (APC) feature of the 9370 enables you to
automate initial program loads (IPLs). You can set a timer to turn on power to the
9370, which then performs an IPL and starts the operating system.

The operating system can start NetView, which then establishes your system and
network automation. APC also enables you to turn on power remotely through a
modem or other RS-232 device for initialization in recovery situations.

The 9370 system also offers a Remote Operator Facility (ROF). This facility gives
you a remote-console capability and enables you to control distributed 9370s from
your central site. ROF runs on a workstation and enables operators at the central
site to control the hardware and operating system of the remote 9370 service
processor through a dialed connection.

Note: System Automation for z/OS does not support the rack-mounted ES/9000
processors (models 120, 130, 150, and 170). You can initialize these
processors remotely with the NetView RUNCMD command by sending
initialization commands to the processor console of the ES/9000. By writing
command procedures to send these initialization commands, you can ensure
correct entry of the RUNCMD command.

For information about ES/9000 processors, refer to Enterprise System/9000 Models
120, 130, 150, and 170: Managing Your Distributed Processors.

3x74

3x74

Focal Point

Distributed System

Distributed System

NetView

NetView

NetView

Automation
Applications

Automation
Applications

Automation
Applications

Focal-Point
Applications

TSCF

workstation

workstation

Figure 4. Remotely Initializing Target Systems

Chapter 1. Introducing NetView Automation 17

Automating Non-NetView Systems and Non-SNA Devices
You can use NetView to automate many target systems, even though the target
systems are not running NetView. You can also use NetView to automate many
network devices, even though the devices do not use SNA protocols or report to
VTAM.

NetView automation capabilities for a non-NetView system or non-SNA device
depend on the capabilities of the system or device. The system or device must be
able to send problem reports and other information in a form that NetView can
interpret (such as messages or MSUs), and the system or device must be able to
receive commands from NetView.

You can directly automate some products using NetView and indirectly automate
other products by using an existing NetView interface or by writing your own
interface. NetView interfaces with the AIX NetView Service Point program and
with Tivoli NetView, which is used with the AIX NetView Service Point program.
See “Examples of Using NetView Interfaces” on page 33 for descriptions of AIX
and other NetView interfaces.

Example of a Staged Approach
In a typical environment in which operators manage systems by monitoring a
steady stream of event notifications such as messages and alerts, operators observe
each event and respond if the event indicates a problem. This operating technique
can be described as an event-monitoring environment.

In this example, the following sequence describes a staged approach for
automating the systems in your enterprise. This approach moves from an
event-monitoring environment to an exception-monitoring environment, and from
there to a centralized-operations environment. In the centralized-operations
environment, automation responds to the majority of events and problems.

For the few that remain, notifications are sent to a single focal-point system.
NetView as the focal point, describes the problems using efficient interfaces,
enabling operators to understand the situation quickly and to take appropriate
action.

To teach your operators about the new environment, document the way your
network is automated; then update your procedures or run books.

Stage 1: Suppress Messages and Filter Alerts
Block out unneeded notifications. Allow time after setting up this stage for
operators to become accustomed to monitoring the environment with limited
notifications. Notify your operators before this procedure takes place.

Stage 2: Consolidate Consoles
Fewer consoles are needed for monitoring messages, and the message rate for each
console diminishes. Forward unsuppressed messages from your operating system
to NetView.

Stage 3: Consolidate Commands
Consult operators and other sources of information to identify the procedures and
sets of commands that operators most commonly use to perform their tasks. Then,
write simple command procedures that enable operators to efficiently perform
their tasks.

18 Automation Guide

|
|
|
|
|
|

Stage 4: Schedule Commands
Using command scheduling, issue timer commands to perform repetitive operator
tasks.

Stage 5: Create Automated Responses to Messages and MSUs
Use the NetView automation table to issue automated responses to common
messages and MSUs. This can reduce the rate of messages and alerts displayed to
operators and diminish the role of the operators in minute-by-minute system and
network operations.

Stage 6: Coordinate Monitoring and Reactivating
Create a coordinated system to monitor and reactivate the products that your
operators have been managing. In this stage:
1. Track the state of each program or resource using, for example, global variables

or RODM.
2. Monitor messages and alerts to determine in what state each resource is.
3. Issue command procedures to resolve any differences.

Because this stage eliminates the last of the repetitive, mechanical tasks that
operators were performing, you have now moved from event monitoring to
exception monitoring. Operators no longer view a continuous stream of messages
and alerts. Instead, they view only summarized status information and
notifications of exceptional problems that automation cannot handle.

Stage 7: Improve Operator Interfaces
Operators no longer continuously monitor the command facility and the hardware
monitor for messages and alerts. Instead, employ alternative interfaces that are
more suited to status display and exception notification, such as full-screen panels
displayed with the VIEW command.

Stage 8: Implement Multiple-System Automation
Go from single-system automation to multiple-system automation. To automate a
multiple-system enterprise, first ensure that you propagate single-system
automation to every NetView system.

Stage 9: Centralize Operations
Choose one system to be the focal point. Then, forward exception notifications
from other systems to your focal point. Begin operating all of your systems from
the single focal point, eliminating the need for operators at the other systems. If
your enterprise is spread across several data centers or several sites, you also
perform remote initialization.

Stage 10: Extend Automation to Additional Machines and
Devices
With the Automated Operations Network (AON) component of NetView, you can
manage almost any data-processing equipment, including non-IBM systems and
non-SNA devices. See Chapter 31, “Using Automated Operations Network,” on
page 443 for specific information.

Chapter 1. Introducing NetView Automation 19

20 Automation Guide

Chapter 2. Overview of Automation Products

This chapter describes the major products used in NetView automation, their roles
in an automated environment, and how they relate to one another. Specifically, this
chapter includes overview information about:
v “NetView Automation Facilities”
v “Operating-System Automation Facilities and Interactions with NetView” on

page 27
v Other IBM programs that provide automation
v “Examples of Using NetView Interfaces” on page 33
v “Automation-Related Functions and Services” on page 35

NetView Automation Facilities
NetView is central to automated operations. It can receive information from the
other products in your enterprise, process that information in ways you specify,
and issue automatic responses.

Several NetView facilities are important to automation, whether you are
automating a system, a network, or multiple enterprises. These facilities enable you
to customize and use NetView to perform the types of automation described in
Chapter 1, “Introducing NetView Automation,” on page 3. NetView provides the
following major facilities for creating your own automation applications:
v “Command Lists and Command Processors”
v “Timer Commands” on page 23
v Automated tasks (“Autotasks” on page 23)
v “Automation Table” on page 24
v “Message Revision Table” on page 25
v “Resource Object Data Manager” on page 25 (RODM)
v “Installation Exits” on page 25 for automation
v “MVS Command Revision” on page 26
v “Automated Operations Network (AON)” on page 26
v “Status Monitor” on page 27

Command Lists and Command Processors
With NetView, you can write programs and use them as if they were NetView
commands. These programs are classified according to the language in which you
write them.

Command lists are sets of commands and special instructions that you write in the
Restructured Extended Executor (REXX) language or the NetView command list
language.

Command processors are assembled or compiled modules that you write in
assembler, PL/I, or C language. Command lists and command processors are used
extensively in automation.

A command list or command processor can either assist an operator with a task or
perform a procedure without operator intervention. When you write a command
list that performs the tasks of several NetView commands, operators can
accomplish a complex task with a single command.

© Copyright IBM Corp. 1997, 2009 21

To perform a procedure without operator intervention, use the NetView
automation facilities to start a command list or command processor. For example,
the automation table or a timer command can start a command.

Choosing a Language
In planning for automated operations, choose a language or set of languages for
writing your command procedures. For a description of the capabilities of each
language, refer to the IBM Tivoli NetView for z/OS Customization Guide.

Because only assembler language gives you access to NetView control blocks, you
must use assembler language for any intricate automation that examines or
modifies control-block information. However, most other automation routines are
easier to write in the other four languages. The other four languages provide
several functions that are of special value to automation, as described in
“Automating with Command Procedures.”

Automating with Command Procedures
A command procedure is a command list, or a command processor written in PL/I or
C language. This section summarizes automation functions available to command
procedures.

Obtaining Message and Management Services Unit (MSU) Information: The
automation table can respond to a message MSU by calling a command procedure.
The automation table can extract information about the message or MSU to be
passed to the command procedure in the form of parameters. For example, the
automation table might capture the MVS system ID or job name of a message and
pass it to a command procedure for use in the response.

Alternatively, the command procedure itself can extract information about the
message or MSU. A command procedure issued from the automation table (or a
command procedure issued because an MSU was received on the management
services transport) can obtain the contents of the message or MSU that caused it to
be issued.

Using Global Variables: Automation often requires cooperation among many
command procedures and coordination with the automation table. Global variables
provide a convenient way to transmit information from one command procedure
to another and to the automation table.

Global variables are variables that retain their values between uses of command
procedures. You can use them to share information between command procedures
running on one task (task global variables) or on different tasks (common global
variables). The automation table also can read global-variable values. To change a
value, the table must call a command procedure.

NetView gives you the option of saving global variables to an external database.
Saving variables can help recovery from any outage because you can restore the
variables when you restart NetView.

Accepting Parameters: Command procedures can also accept parameters. For
example, operators can enter parameter information after the name of the
command procedure when using a command procedure from a terminal.

Automation facilities, such as other command procedures or the automation table,
can also specify parameters when using your command procedure. For example,
you can write a recovery command list that uses parameter variables to accept the

22 Automation Guide

name of the application program to restart, the start command for the product, and
the amount of time to wait for the application program to initialize.

Obtaining Environment Information: Your command procedures can get
information about the system and the operating environment. For example, a
command procedure can obtain such data as:
v Operating system in use
v Domain ID
v Current date and time
v Type of task that is running the procedure

Interacting with the System and Network: Command procedures can pass
commands and messages to the operating system, enabling you to perform system
automation. For information about how command procedures pass commands and
messages to the operating system, see “Operating-System Automation Facilities
and Interactions with NetView” on page 27.

Command procedures can also pass commands to the VTAM program to control
the network.

Waiting: Command procedures can issue commands to solicit information and
wait for the responses before taking further action. For example, an automation
procedure that restarts a failed application program might issue a query command
afterward and wait for verification that application-program cleanup is complete.

Timer Commands
You can use timer commands to initiate automated actions. Both operators and
automation procedures can issue timer commands to schedule other commands,
command lists, and command processors. NetView provides the following timer
commands:
v The AT command schedules another command for execution at a specified time.
v The AFTER command schedules a command for execution after a specified

delay.
v The EVERY command schedules a command to be issued repeatedly after

specified intervals.
v The CHRON command enables you to perform complex timer automation

functions.
v The LIST TIMER and PURGE TIMER commands enable you to examine or

cancel commands that you have scheduled.
v The TIMER command enables you to add, change, and delete timers using full

screen panels.

For information about the using the timer commands, see Chapter 11, “Timer
Commands,” on page 119 or the NetView online help.

Autotasks
An autotask is an operator station task (OST) that does not require a terminal or an
operator. Like other OSTs, autotasks can receive messages and issue commands.
Autotasks are limited only by the fact that they cannot run full-screen applications.
Unlike other OSTs, autotasks can run without the VTAM program being active.
This ability, along with the fact that autotasks can do most of the tasks you can do
from an operator’s OST, makes autotasks useful for automation.

Chapter 2. Overview of Automation Products 23

You can define one or more autotasks for automation and have them started
during NetView initialization. Then the automation table, command lists,
command processors, and timer commands can all issue commands under your
autotasks. The autotasks can receive messages and present them to the automation
table or to installation-exit routines. Thus, many of the other facilities for
automation can use autotasks.

Autotasks are the preferred task for a wide variety of automation purposes. When
you route work to an autotask, you can avoid problems that might occur if you
used an operator’s OST. For example, the operator might be logged off or using the
OST for other work.

Automation Table
The NetView automation table enables you to specify processing options, for
incoming messages and MSUs, and to issue automatic responses. The table
contains a sequence of statements that define the actions that NetView can take in
various circumstances.

To determine the automated actions that the program can take, your automation
statements can examine any field in an MSU and any part of message text. (In
multiline messages, only the ACQUIRE condition can examine lines after the first
line.) Statements can also examine IDs of messages, resource hierarchies of MSUs,
domain IDs of either messages or MSUs, and many other attributes, such as
occurrence thresholds. Operands for AND and OR are recognized, so you can
specify several comparisons in any combination.

You can specify any number of actions for NetView to take when an incoming
message or MSU matches your conditions. Actions can be commands, command
lists, and command processors. For simple responses, a single command might be
sufficient, such as a NetView command, a VTAM command, or a system or
subsystem command. For more complex responses, you can write command lists
or command processors. The automation table specifies the task under which the
action is performed, enabling you to run automation procedures under an
autotask.

Actions also include setting message-processing and MSU-processing options. For
any particular message, you can use message-processing options to specify such
things as whether:
v The message should be suppressed (and if not, to which operator it should be

displayed)
v A message should be held on the operator’s display (messages requiring

operator attention)
v Automation should process the deletion request for a specific action message
v The message should be logged in the system, network, or hardcopy log
v An audible alarm should sound to call attention to the message

MSU processing options apply to MSUs that are directed to the hardware monitor.
These options enable you to override recording filters. For any particular MSU,
you can use MSU processing options to specify such things as whether
v The hardware monitor records the MSU in the event database
v The hardware monitor records the event in the alert database
v NetView forwards the alert to a focal point

You can also specify highlighting options, such as color and underlining, to help
focus operator attention.

24 Automation Guide

|
|
|

Use the AUTOCNT command to generate automation table usage reports for your
system. You can use the reports to analyze automation table statements to see the
matching frequency. You can move frequently matched statements toward the top
of the table so that less checking of unmatched criteria takes place.

You can also determine whether unmatched statements must be deleted from the
table or changed because of logic errors. Automation table usage reports enable
you to determine the level of automation taking place on your system. These
statistics can be useful in reports for management purposes.

You can use the AUTOTEST command to test an automation table. You can
perform this test using either current messages and MSUs or prerecorded messages
and MSUs. For more information, see Chapter 15, “The Automation Table,” on
page 149.

You can use the AUTOMAN command to manage your automation tables. Using
this function, you can enable or disable automation table statements, load and
unload automation tables, and display their status. For more information, see
“Managing Multiple Automation Tables” on page 250.

Message Revision Table
You can use the message revision table (MRT) to examine messages flowing in the
system and make changes to certain aspects of the messages. The MRT is active as
long as the SSI address space is active, even when NetView is not active. See
Chapter 13, “The Message Revision Table,” on page 129 for more information about
using this function.

Resource Object Data Manager
NetView can use the Resource Object Data Manager (RODM) to hold many types
of information about network and system resources. RODM keeps this information
in high-speed storage so the information can be retrieved and updated quickly. For
automation, you can use the information in RODM in conjunction with other
automation facilities to assist in determining the appropriate responses to
messages, MSUs, and status changes.

RODM uses small programs, called method procedures (or methods), to perform many
functions that retrieve, update, and manipulate information within RODM. An
application program interface (API) is also provided by RODM so that application
programs can gain access to the information in RODM. Through this API and the
method procedures, NetView can retrieve and update the resource information in
RODM, as needed.

For information about how RODM can be used in automation, see Chapter 8,
“Automation with the Resource Object Data Manager,” on page 81.

Installation Exits
In NetView, you can write routines that take control of processing at certain points.
These points, called installation exits, enable you to alter the normal course of
NetView processing. Installation exits that are important to automation are:
v DSIEX02A
v DSIEX16
v DSIEX16B
v DSIEX17
v XITCI

Chapter 2. Overview of Automation Products 25

For details about writing installation-exit routines in assembler language, refer to
IBM Tivoli NetView for z/OS Programming: Assembler. For details about writing
installation-exit routines in PL/I and C languages, refer to IBM Tivoli NetView for
z/OS Programming: PL/I and C.

Using DSIEX02A
If you write a routine for DSIEX02A, the routine receives control just before a
message goes to the automation table. The routine can alter, replace, or delete the
message. If you alter or replace the message, the new version of the message goes
to the automation table. To increase processing speed, write this installation-exit
routine in assembler language. You can also use PL/I or C language.

Using DSIEX16 or DSIEX16B
You can use the exits to modify message processing options, reformat messages,
and alter information in MSUs. Both of these installation-exit routines must be
written in assembler language.

Using DSIEX17
A routine written by you for DSIEX17 that receives control as soon as a message or
delete operator message (DOM) is received from the MVS system. Your routine
also receives control when a message or DOM is received from user calls to
assembler-language service DSIMMDB or to PL/I and C language service
CNMPMDB.

Refer to IBM Tivoli NetView for z/OS Programming: Assembler for information about
DSIMMDB. Refer to IBM Tivoli NetView for z/OS Programming: PL/I and C for
information about CNMPMDB.

Your routine can delete a message or DOM, or can modify the text and attributes
of a message. If you write a routine for this installation exit, use only assembler
language.

Your routine can also be used to mark messages that were issued as action
messages from MVS for which no DOM is expected.

Using XITCI
If you write a routine for exit XITCI for the hardware monitor, your routine
receives control when the BNJDSERV task receives data. With XITCI, you can
modify any data entering the hardware monitor. The XITCI exit routine can be
written in PL/I, C, or assembler language.

MVS Command Revision
The NetView MVS Command Revision function enables you to examine, modify,
or reject an MVS command. For more information see Chapter 14, “The Command
Revision Table,” on page 137.

Automated Operations Network (AON)
You can use the Automated Operations Network (AON) component of NetView to
provide policy-based network automation for VTAM SNA, and TCP/IP resources.

AON components intercept alerts and messages that indicate problems with
network resources. AON can recover failed resources and monitor resources until
they recover. AON can keep a record of resource failures to track recurring
network problems.

26 Automation Guide

|

|
|
|

AON uses most of the functions described in this manual to provide drop-in,
policy based automation.

For more information, see Chapter 31, “Using Automated Operations Network,” on
page 443.

Status Monitor
You can use the NetView status monitor to automatically reactivate failing network
nodes. The MONON and MONOFF commands start and stop this form of
automation. You can enter MONON and MONOFF from a terminal or have your
automation application program issue them. Use statements in the VTAMLST data
set members to control which resources the status monitor automates.

If you want to do your own automation when a node changes status, you can add
a SENDMSG statement to DSICNM (CNMS5001). Thereafter, a change in the node
status generates a CNM094I message, which you can process with the automation
table. For details about SENDMSG, refer to the IBM Tivoli NetView for
z/OS Administration Reference.

Operating-System Automation Facilities and Interactions with NetView
In system automation, the operating system provides some automation facilities
and can interact with NetView for additional automation. NetView receives
information from the operating system, processes that information with the
NetView automation facilities, and sends responses to the operating system as
commands. Also, in some interactions not directly related to automation, operator
commands can be sent between the operating system and NetView.

Automation on MVS Systems
NetView can automate responses to messages and MSUs from the operating
system and from MVS application programs. The operating system performs its
automation tasks before it sends messages to NetView for further automation.
Also, NetView commands can be sent from system operators to NetView, and MVS
commands can be sent from NetView to the operating system.

System messages that you can direct to NetView (either through the subsystem
interface or to NetView’s extended multiple console support consoles) include
write-to-operator (WTO) and write-to-operator-with-reply (WTOR) messages. Some
messages issued by application programs (such as CICS and IMS programs) to
their consoles are not available through the subsystem interface or extended
multiple console support (EMCS) consoles. To automate responses to such
messages, you can use NetView’s terminal access facility.

Automating Responses to Messages
To suppress or revise system messages, use the NetView message revision table. To
automate responses to messages, you can mark the messages in the NetView
message revision table for delivery to NetView or for ″NetView only″
(NETVONLY).

Messages marked for automation are sent to NetView through the subsystem
interface (SSI) if you are using the MSGIFAC=SSIEXT (default value) or
MSGIFAC=CMDONLY statements.

Messages marked for automation are sent to NetView through extended MCS
consoles if you are using the MSGIFAC=SYSTEM statement.

Chapter 2. Overview of Automation Products 27

|
|
|

Message marked as NETVONLY are always sent to NetView through the SSI.

Figure 5 shows message flow between the z/OS system and NetView when the
subsystem interface is used. Figure 6 on page 29 shows the message flow when
EMCS consoles are used. Figure 7 on page 30 shows the command flow.

Message
Processing
Facility
(MPF)

WTO/WTOR

MPF exits

Extended
MCS
consoles

MVS
messages
by console name

NetView
application

All other
Messages

Trash

Deleted
Messages

NetView Subsystem

JES

Subsystem Interface (loop)

Multiple
Console
Support
(MCS)

2

1

1 All except those messages delivered at 2

NetView
Operators

Automation/
ASSIGN

Revision
Table

Local
MCS
Consoles

Figure 5. Message Flow between the z/OS System and NetView through the Subsystem Interface

28 Automation Guide

Message
Processing
Facility
(MPF)

WTO/WTOR

MPF exits

Extended
MCS
consoles

MVS
messages
by console name

NetView
application

NETVONLY
Messages

Trash

Deleted
Messages

NetView Subsystem

JES

Subsystem Interface (loop)

Multiple
Console
Support
(MCS)

NetView
Operators

Automation/
ASSIGN

Revision
Table

Automation messages

Figure 6. Message Flow between the z/OS System and NetView through EMCS Consoles

Chapter 2. Overview of Automation Products 29

As indicated in Figure 5 on page 28 and Figure 6 on page 29, messages first flow to
the Message Processing Facility (MPF), which you can use to set several processing
options. Next, the messages are sent through multiple console support. Messages
destined for most subsystems are broadcast to the subsystems through the
subsystem interface.

Messages are processed by the Message Revision Table even if they are not
destined for NetView. Other subsystem interface (SSI) programs can also examine
and alter messages as well.

Messages destined for NetView can flow through either of two paths, depending
on whether the subsystem interface or the EMCS consoles are used for transferring

Subsystem Interface (loop)

MVS Commands

MVS
Command
Processors

NetView
application

NetView
commands
with designator

Multiple
Console
Support
(MCS)

NetView Subsystem

JES

NetView
commands

Autotasks

MVS commands

MVS
Stop/Modify

Figure 7. Command Flow between the z/OS System and NetView

30 Automation Guide

messages to NetView. (Selection of the transfer method is made before NetView
start-up.) When you use the subsystem interface for transferring the messages (see
Figure 5 on page 28), the messages flow from multiple console support to NetView
through the subsystem interface and the NetView subsystem. When you use
extended multiple console support consoles (see Figure 6 on page 29), the messages
flow to NetView through EMCS consoles. In either case, NetView compares each
message that it receives to entries in its automation table and issues any automated
response that you have specified.

Note: You can use the endcmd.close.leeway statement in the CNMSTYLE member
to specify how long commands can run after a CLOSE IMMED, CLOSE
STOP, or an MVS STOP (P) command is entered for the NetView program.
During the leeway period, message automation remains active; no new
commands are queued. If a CLOSE STOP command is issued and if
MSGIFAC=SSIEXT and message queuing are enabled for the SSI, then
message queuing begins as soon as the CLOSE STOP command is
recognized. There is no message queuing option for MSGIFAC=SYSTEM.

Setting Options for Automating with either the Message
Processing Facility (MPF) or the Message Revision Table (MRT)
To automate responses to messages, MPF can be used to set options, such as
whether a given message is displayed to operators, suppressed, or marked as
eligible for automation. In NetView for z/OS Version 5, Release 2, the message
revision table can also be used to provide these functions and more.

By default, NetView receives each message that you mark eligible for automation
and sends it through the automation table. You can save processing time by
marking as eligible only those messages that you want to be automated.

Messages leaving MPF or the message revision table can flow to NetView either
through the subsystem interface or to EMCS consoles. You choose the path by
selecting appropriate initialization options.

After passing through MPF and the NetView MRT, messages can travel to NetView
by several paths. First, a NETVONLY action in the MRT directs the message to
NetView directly, regardless of and MSGIFAC options; in such case, there is no
further system action on message, whether by route codes or consname nor
broadcast or any other means. Otherwise, if automation was requested in either the
MPF or the MRT, then the message is routed to NetView according to the
MSGIFAC setting.

When a message flows to EMCS through its EMCS console, additional information
is available, usually in a Message Data Block (MDB) which is attached to a system
message at IFRAUVPT. For example, the originating SYSPLEX name can be found
in this MDB. NetView preserves any color information that was set by an MPF or
Message Revision in system messages, regardless of how the messages are
delivered.

See Chapter 6, “Automation Using MVS Extended Multiple Console Support
Consoles,” on page 65 for information about extended multiple console support
consoles.

Automating a Sysplex
In addition to providing automation for a single MVS system, NetView can
provide automation for MVS systems that are interconnected in a sysplex

Chapter 2. Overview of Automation Products 31

|
|
|
|
|
|
|
|

configuration. An MVS sysplex configuration consists of multiple MVS systems
working as a single system by sharing functions and programs.

If NetView is operating in a sysplex environment and if you use the subsystem
interface for message delivery, NetView automates only those messages that are
directed to it by console name or route code.

If NetView is in a sysplex environment and if you use EMCS consoles, NetView
can process messages issued from other systems in the sysplex.

See Chapter 7, “Automation in an MVS Sysplex,” on page 77 for more information
about sysplex automation.

Automating Responses to MSUs
To automate responses to MSUs from another MVS application program, you can
send the MSUs to NetView through the NetView-to-program interface and the
management services (MS) LU 6.2 transport. The program-to-program interface can
receive both network management vector transports (NMVTs) and control point
management services units (CP-MSUs). The NetView automation table can
automate responses to both types of MSUs.

Issuing NetView Commands from Multiple Support Consoles
There are two ways to issue NetView commands from MVS. One way is to use the
MVS MODIFY command. The other way is to use the NetView subsystem
designator character.

For more information, see “Issuing NetView Commands with the MVS MODIFY
Command” and “Issuing NetView Commands with the Designator Character.”

Issuing NetView Commands with the MVS MODIFY Command: If you have an
autotask associated with the system console, you can enter NetView commands
from the console using the MVS MODIFY command. To do this, enter:

f procname,command

Where procname is the name that your system programmer assigned to the
cataloged procedure for NetView such as CNMCNETV, and command is the
NetView command you want to issue. For example, to display the MVS console
names and IDs used by NetView, enter:

f procname,disconid

Issuing NetView Commands with the Designator Character: To enable system
operators to issue commands to NetView, you can associate multiple console
support consoles with NetView autotasks. Refer to the AUTOTASK command in
NetView online help for information about associating multiple console support
consoles with autotasks.

As indicated in Figure 5 on page 28 and Figure 6 on page 29, operator commands
issued from multiple console support consoles flow to subsystems through
multiple console support and the subsystem interface. A subsystem processes only
those commands that are preceded by its assigned character. For example, JES2
typically processes all commands that are preceded by a dollar ($) symbol.

NetView processes all commands that are preceded by a designator character
string. If you are allowing NetView style processing to start your SSI, use the
SSI.DSIG parameter to set this. You can also see sample CNMSJ010 for other
methods. If you are using more than one NetView program on a system, and these

32 Automation Guide

|

NetView programs are to process NetView commands entered at a multiple
console support console, assign a different designator character string for each
NetView program on the system. The sample uses the subsystem name as the
designator character string. The default is the percent (%) character.

If a NetView autotask is associated with a multiple console support console and a
NetView command is issued from that console, the command is invoked by the
NetView autotask associated with the console. You can invoke NetView command
procedures and commands from the multiple console support console.

Issuing MVS Commands from NetView
You can issue MVS commands from NetView to the MVS system by preceding
each MVS command with the NetView command MVS. Either a NetView operator
or an autotask can issue the NetView MVS command.

In addition to preceding an MVS command with the NetView command MVS, you
can define command definitions for individual command verbs. For more
information about defining command definition statements for MVS, see the
CNMS6401 sample.

To protect against the unauthorized use of MVS commands you can use the
command authorization function of NetView. Also, you can use the OPERCMDS
class of the IBM Resource Access Control Facility (RACF®) or a compatible security
product to protect system commands. For more information about system
command security, refer to the IBM Tivoli NetView for z/OS Security Reference.

Automating MVS Commands
You can automate MVS and subsystem commands entered from any MVS console
or console interface. To do this, you must install a load module as an MVS
command exit, add a .CMD statement in one of the MPFLSTxx members, and issue a
SET MPF=xx command to activate the exit. Refer to IBM Tivoli NetView for
z/OS Installation: Getting Started for more information.

Issuing MVS System Messages and Delete Operator Messages
(DOMs)
You can use the NetView WTO and WTOR commands to issue MVS system
messages and the NetView DOM command to issue MVS DOMs.

For more information about the DOM, WTO, and WTOR commands, refer to IBM
Tivoli NetView for z/OS Programming: REXX and the NetView Command List Language.

System Automation/390 Programs
You can speed up the automation process by incorporating System Automation for
OS/390 into your design. The System Automation for OS/390 licensed program is
a NetView-based application which runs on z/OS and MVS/ESA Version 5. It is
designed to provide a single point of control for a full range of system
management functions.

Examples of Using NetView Interfaces
You can use NetView to automate the management of any product that sends
messages or MSUs to NetView and receives commands from NetView. For some of
these products, you need to use an interconnecting product as an interface to
NetView.

Chapter 2. Overview of Automation Products 33

By using interconnecting products, you can manage non-SNA networks and
devices. The majority of these non-SNA networks and devices use a NetView
service point, such as the UNIX NetView Service Point program, as an interface to
NetView.

This section describes a few examples of interconnecting products that can be used
as interface programs.

NetView Service Points
The UNIX NetView Service Point licensed program enables you to add to the list
of products managed by NetView. You can obtain or write service point application
programs that enable management and automation of many non-SNA networks
and devices. A service point application program for the UNIX NetView Service
Point program can monitor a non-SNA network, report network-management data
to NetView, and pass commands from NetView to devices in the non-SNA
network. Therefore, you can use the service point application program to expand
the scope of NetView automation. The UNIX NetView Service Point program runs
under the UNIX operating system.

You need the UNIX NetView Service Point program as an interface for
communication between Tivoli NetView and IBM Tivoli NetView for z/OS.
However, Tivoli NetView program can operate as a standalone program that
provides network management services without communicating with the IBM
Tivoli NetView for z/OS.

For information about the UNIX NetView Service Point program, refer to the AIX
NetView Service Point Installation, Operation, and Programming Guide.

Tivoli Networks
You can automate Tivoli distributed networks by using NetView with the
Event/Automation Service. The Event/Automation Service provides a gateway
between NetView and the Tivoli distributed networks for network events that
originate in either environment. The Event/Automation Service communicates
with NetView using the NetView subsystem PPI interface, and communicates with
the IBM Tivoli Enterprise Console® using the TCP/IP protocol.

The Event/Automation Service can translate and forward either NetView alerts or
messages into Tivoli Enterprise Console events and can also translate and forward
these events into NetView alerts. These alerts can then be used with automation to
start automatic responses.

For more information about Tivoli Enterprise Console events, see
“Event/Automation Service” on page 406.

IP Networks Using SNMP
The Event/Automation Service can manage event data between NetView and
SNMP agents and SNMP managers. NetView alerts can be converted into SNMP
traps before being forwarded to an SNMP manager. Traps that arrive from an
SNMP agent can be converted into SNA alerts which can then be forwarded to the
NetView hardware monitor. There, these alerts are filtered and routed to the
NetView automation table.

For more information about SNMP traps, see “Event/Automation Service” on page
406.

34 Automation Guide

Non-IBM Networks
NetView can manage other types of networks (for example, DECnet).

Automation-Related Functions and Services
This entire book describes automation primarily from the perspective of system
and network console automation. The book also explains how you can use
automation facilities to assist or replace operator action in responding to messages
and MSUs and issuing commands on the consoles of system and network software.

Other functions and services closely related to automation are also available for
systems and networks. For more information, investigate the following
automation-related topics:
v “Managing Workload”
v “Managing Network Performance”
v “Managing Input/Output” on page 36
v “Managing Storage” on page 36
v “Management Reporting” on page 37

Managing Workload
Automating the management of production batch jobs offers advantages in
availability, improved control, and reduced operator involvement.

IBM offers the Operations Planning and Control/Enterprise Systems Architecture
(OPC/ESA) licensed program for workload management. The OPC/ESA program
can plan, control, and automate your MVS batch production workload. This
program plans and schedules your workload processing and monitors and controls
the flow of work through your entire data-processing environment, both local and
remote. It reduces the human intervention needed while letting you retain manual
control of important processes and decisions.

Using the OPC/ESA program for workload management complements NetView
automation. The OPC/ESA program does the job scheduling. If a failure in a
scheduled job requires operator action, NetView automation can supply that action.

For more information about the OPC/ESA program, refer to Operations/Planning
and Control/Enterprise Systems Architecture General Information.

Managing Network Performance
You can use NetView Performance Monitor (NPM) to give your automation
application programs an increased spectrum of performance data. The NPM
program can also be valuable for centralized operations, because the program can
help you monitor the speed with which your central system communicates with
distributed systems. Operators using the NPM program on a central system can
view data collected at other systems.

NPM communicates with NetView through the NetView-to-program interface and
several other interfaces. By issuing commands to NPM through the operating
system, automation routines can request data about specific network resources. For
example, you can request data about communication controllers, lines, logical
units, and physical units in SNA, local area, and X.25 networks.

Chapter 2. Overview of Automation Products 35

NPM can also send unsolicited data. For example, if performance for a critical
network resource falls below a threshold you define, the NPM program can send
an alert to NetView. You can use the alert to inform automation routines of the
performance problem before the problem affects users. You also have the option of
sending resolutions to NetView to inform your automation routines when a
problem is resolved.

Managing Input/Output
Input/output (I/O) management involves controlling the flow of data into and out
of a data processing complex. In an automated environment, you might want to
change your approach to I/O activities that previously required manual
intervention, such as tape and printer management.

One approach to tape management is to avoid it by converting from tapes to direct
access storage devices (DASD). DASD does not require the manual intervention
that tapes do. You might want to compare, on a case-by-case basis, the cost of
DASD to the cost of tapes plus the cost of people to handle the tapes. Consider the
higher reliability and manageability of DASD. Also, you can institute periodic
reviews of your I/O rules and policies. Determine how effective your policies are
and how consistently your application programmers are applying them.

For less frequently used data, you might find that it is still appropriate to rely on
tape devices. The cartridge of the IBM 3480 Magnetic Tape Subsystem is
extensively used for its size and reliability advantages over other tape devices. The
Automatic Cartridge Loader function is available to assist with cartridge handling
and scratch tape mounts with minimal human intervention and minimal delay.

Sometimes, the best approach to printer handling is to place responsibility in the
hands of the users. You might be able to reduce the volume of printing. Programs
such as IBM’s Report Management and Distribution System (RMDS) program can
help. The RMDS program enables you to present report data to users online from a
central library archive. Users can view data online, printing only the portion of the
information that they need to have on paper. The RMDS program eliminates the
need for printing large volumes of report data on a regular basis and distributing
them to users who often want only a fraction of a report.

For more information about the RMDS program, refer to Report Management and
Distribution System: General Information.

Managing Storage
Storage management involves maintaining the integrity and availability of data
that you keep on auxiliary storage devices such as tapes or DASD. Previously,
users had to be aware of the characteristics of each device within the pool of
storage devices on which their data sets can reside.

With the introduction of the Storage Management Subsystem (SMS) using the MVS
Data Facility Storage Management Subsystem (DFSMS) family of products, storage
administrators rather than users can manage DASD storage. Storage administrators
establish policy statements in the form of storage classes and management classes,
defining and managing the way storage is allocated on the basis of these classes.
The user, allocating storage in terms of these policy statements, no longer needs to
use device and configuration specifics such as UNIT and VOLSER.

Use of SMS decreases the number of program abends caused by out-of-space
conditions that plague production job streams, because jobs need not be sensitive

36 Automation Guide

to configuration details. You can use storage management with
workload-management products, such as the OPC/ESA program, that offer
automated job recovery facilities. The result is production streams that run
consistently and finish within their scheduled windows with minimal human
intervention.

For more information about the DFSMS family of products, refer to the MVS
Storage Management library.

Management Reporting
As you move toward an automated environment, include a strong
management-reporting system in your automation design. As automation handles
more and more of your operations, you might need to identify things that need
management attention or that necessitate resource changes. To capture information
from logs and summarize it for presentation to management, you can use the
Information/Management and Service Level Reporter (SLR) products.

For information about Information/Family and SLR products, refer to Introducing
the Information/Family for MVS and Service Level Reporter General Information.

Chapter 2. Overview of Automation Products 37

38 Automation Guide

Part 2. Achieving an Automated Environment
Chapter 3. Defining an Automation Project . 41
Project Definition Tasks . 41
Assembling an Automation Team . 42

Choosing an Approach . 42
Involving Operation Groups . 42

Creating a Project Plan . 43
Identifying the Goals of Your Organization . 43

Identifying Business Goals . 43
Identifying Data-Processing Requirements . 43

Understanding Your Operating Environment . 44
MVS System and Network Logs . 45
Operation Procedure Books . 45
Problem-Management Reports . 45
Help-Desk Logs . 46
Service-Level Agreements . 46
Users . 46
Other Data-Processing Plans . 46
Interpreting the Information . 46

Developing Goals and Objectives for Automation. 46
Developing Goals for Automation . 47
Developing Measurable Objectives. 47
Quantifying Costs and Benefits . 47

Securing Commitment . 49

Chapter 4. Designing an Automation Project . 51
Project Design Tasks . 51

Identify Procedures and Functions to Automate . 51
Prioritize Procedures and Functions . 51
Schedule Stages for Implementation . 51
Establish Standards . 51

Design Guidelines . 52
Designing for Expansion and Propagation . 52
Designing for Auditability . 53
Designing Automation Security. 53
Designing for Availability. 54
Automating Close to the Source . 54
Using Multiple NetView Programs on a Single System . 54
Providing Operator Interfaces . 55
Educating Your Staff . 55
Anticipating Changing Staff Roles . 56
Providing for Testing . 56
Providing for Problem and Change Management . 56
Choosing Focal Points . 57
Using a Backup Focal Point . 58
Defining Operator Sphere-of-Control . 59

Chapter 5. Implementing an Automation Project . 61
Implementation Tasks . 61
Production Tasks . 61

© Copyright IBM Corp. 1997, 2009 39

40 Automation Guide

Chapter 3. Defining an Automation Project

This chapter describes the project definition tasks and phase of an automation
project. In this phase, you assemble a planning team, investigate how automation
can improve your operations, and set goals and objectives for the project.

Project Definition Tasks
The project definition phase focuses on:
v “Assembling an Automation Team” on page 42 or teams
v “Creating a Project Plan” on page 43
v “Identifying the Goals of Your Organization” on page 43
v “Understanding Your Operating Environment” on page 44
v “Developing Goals and Objectives for Automation” on page 46
v “Securing Commitment” on page 49

Automation often works best as an integrated, company-wide effort that
coordinates many separate departments and groups. Automation can change
organizational and working relationships in the following ways:
v Operation organizations might be restructured.
v Operator roles might change.
v Working relationships among operators, technical support personnel, and system

programmers might change.

Because automation can require considerable coordination or produce widespread
changes, it is important to have the commitment of the whole organization,
including upper-level management. Management must provide the resources
necessary to achieve your automation goals.

An integrated approach helps to avoid duplication of effort. A fragmented
approach, with each group or location choosing small and unrelated projects, can
lead to wasted time, inappropriate approaches, or automation applications that
cannot work together.

During the implementation phase, you can create your automation a small piece at
a time. This is also an excellent time to look at the automation process as a whole.
By developing an enterprise-wide approach from the start, you avoid the risk of
having to redesign the project later.

At the beginning of the project, it is important to identify your goals, such as the
following examples.
v How can automation best support your business objectives?
v How can it improve your data-processing operations?

While identifying the benefits of automation, you can also estimate the costs. By
doing so, you can determine the types of automation that provide the greatest
return for your investment.

© Copyright IBM Corp. 1997, 2009 41

Assembling an Automation Team
The first step is to assemble a team or teams to analyze and implement your
automation. You might already know who in your organization is doing the
automation. If not, ask these questions:
v Where in the organization does the responsibility for automation planning fall?
v What skills does the automation team need, and who can provide those skills?

Choosing an Approach®

You can use any of several approaches, depending on the resources available and
the schedule you require. One approach is to assign a project leader who works on
the project full-time, calling on the support of other organizations as needed.
Another approach, if more resources are available, is to form a temporary project
team. In this case, several people work on automation full-time.

A third and more lasting approach is to create a permanent automation
department. Also, consider whether you need separate teams for different stages or
phases of the project. Many organizations start with a temporary planning team
but establish a permanent department as their automation develops.

It is a good idea for an automation planning team to include people from all the
organizations affected by automation. You might include:
v One or more operators
v A member of the technical-support staff for system management
v Another member for network management (if applicable)
v System programmers who support your major subsystems and applications
v Network user representatives

You can also include your Tivoli branch system engineer on the planning team.
The branch system engineer can provide information about automation products or
about the experiences of other customers who have successfully planned and
implemented automation.

Involving Operation Groups
To achieve success, involve your operation groups in every phase of automation,
from project definition through design, implementation, testing, and production.
Members of the operation groups understand today’s environments and can
identify procedures that are appropriate to automate. They also are the ones who
have to live with the results of automation. Involving them in the design of each
automated procedure helps to ensure that the procedure matches their needs.

For example, both system and network operators in an unautomated environment
usually rely on a constant flow of messages to know that things are running
smoothly and that expected events are happening as anticipated. If you automate a
specific procedure (system initialization) and suddenly no messages are displayed,
the operators might have difficulty assessing whether things are going as
anticipated. Involving the operation groups helps ensure that operator interfaces
are adequate.

42 Automation Guide

Creating a Project Plan
To manage your automation project, use a project plan that lists the steps you need
to take in every phase, identifies the person or group responsible for each step,
and assigns a target date for completion of the step. The project plan becomes a
vehicle for managing the project and keeping track of your success in meeting the
schedule.

The project plan can evolve over time. If you are not yet able to fill in complete
details, you can, nevertheless, start a plan by setting down the tasks, responsible
parties, and target dates that you already anticipate. You can fill in the details as
the project evolves.

See Appendix B, “Sample Project Plan,” on page 515 for a plan that identifies
representative tasks for all phases of a project: definition, design, implementation,
and production. This plan, of course, is just an example; the plan for your project
might look substantially different.

Identifying the Goals of Your Organization
Another task of the planning team is to identify automation goals. Clear goals
enable you to focus your project and measure your results. They can also help you
to complete planning documents such as business proposals or the automation
project plan.

Identifying Business Goals
Your corporation or organization probably has several business goals. They might
be something like the following goals:
v Increase total business volume over the next 2 years by 40 percent
v Increase net profit for each of the next 5 years by 10 percent
v Increase profit margin by 5 percent next year by containing costs and increasing

productivity

Different areas of the organization might have different business goals that you
need to consider. By clearly understanding the goals of your organization, you can
decide how automation can contribute to their achievement.

Identifying Data-Processing Requirements
To support overall business goals, data-processing departments typically have
requirements of their own. The requirements might be objectives like these:
v Increase system availability by 10 percent over the next 2 years.
v Accommodate 12 percent growth capacity (in millions of instructions per second,

or MIPS) and network resources over the next 2 years with no increase in
operation staff.

v Improve system performance by 15 percent each year for the next 5 years.

Data-processing requirements typically fall into two classes: system-oriented and
user-oriented. System-oriented requirements measure the amount of information that
your systems process. These requirements include:
v Expected batch throughputs
v Workloads on each system
v Interactive transaction rates
v The number of concurrent users that you can support

Chapter 3. Defining an Automation Project 43

By contrast, user-oriented requirements measure the impact of data-processing
services on the user. Examples are expected response times for interactive work
and expected turnaround times for batch work.

Service-level agreements reflect these expectations of performance. A service-level
agreement resembles a contract between the data-processing department and that
department’s users. A service-level agreement might specify the services you
provide, the hours you provide them, and various agreed measures of availability
and performance. Whereas other requirements often represent goals that you want
to accomplish, service-level agreements state minimums that you must accomplish.

If your organization does not use service-level agreements, or if your service-level
agreements do not accurately reflect your goals, consider establishing agreements
that are based on your goals. Service-level agreements can help you measure the
improvements in service to users that automation provides. They can also help you
identify problem areas of your operation that might benefit from automation.

Understanding Your Operating Environment
Questions you can ask might be:
v How do your operators spend their time?
v What routine and repetitive tasks can you automate to increase productivity?
v What unscheduled events require operator action?
v For each unscheduled event requiring operator action, how severe are the results

of delayed or incorrect action?
v What events of any kind have a significant impact on your operations?

In summary, what are the most important problems and challenges in your
operating environment today, and where can you gain the greatest return from
automation?

After investigating your present environment, you can consider the future:
v What changes do you expect in your environment in the next year or the next

several years?
v Do you plan to add hardware to your systems or network?
v Do you plan to add new applications that you must manage?
v Will the number of users relying on you for service increase?
v Will you be under pressure to accommodate growth without increasing your

operations staff?
v Do you plan to add data centers?

Factors such as these contribute to your automation strategy and goals. With a
good understanding of where you are and where you are going, you can devise a
comprehensive strategy that makes full use of automation.

Start the process of identifying operating requirements for automation by working
with the operations staff. Operators can identify the procedures they perform
regularly, those they perform on a scheduled basis, and those that involve
predictable responses or repetitive tasks. With this information, you can choose
and prioritize the procedures you automate.

NetView’s Message Revision table can help you analyze your system message
traffic. By including UPON statements for MSID, PREFIX, or JOBNAME (with or

44 Automation Guide

without any other statements), your revision report shows the numbers of
messages matching each condition. See “Message Revision Table” on page 25 for
more on the MRT.

MVS System and Network Logs
Analyze your MVS system and network logs for information about the number of
messages that operators view each day. This information can help you assess the
benefits of message suppression. On most MVS systems, message suppression
yields impressive results.

You can write simple application programs to help you process logs. For an
example of an application program used to process logs, see Appendix I, “The
Sample Set for Automation,” on page 579. The example program analyzes SYSLOG
(the JES2 log) or DLOG (the JES3 log). For other logs, you can modify the example
program or write one of your own.

The example analysis program illustrates several things your program can do:
v Record each unique message ID received and the number of times messages

with that ID occurred.
v Provide a list of unique message IDs received, sorted by frequency of

occurrence.
v Accept input that specifies such things as time limits for the analysis and any

messages that can be ignored.

The list of sorted message IDs indicates where you might concentrate your efforts.
For each message ID, compute the percentage that it contributes to total message
volume. Usually, a small number of message IDs account for most of the message
traffic. As few as 10 message IDs can cause 90 percent of the traffic. Therefore, you
need to suppress or automate only a few message IDs to produce significant
savings.

The logs also show the commands that operators have entered and help you to
identify operating problems. For example, suppose you find that operators are
entering many JES commands that start and stop job queues, alter job classes, and
reset job priorities. The indication is that operators are spending a lot of time
controlling the flow of work. You might, therefore, introduce a job scheduling
program such as OPC/ESA. Or, perhaps a large proportion of the commands
issued are responses to a frequently recurring situation such as the loss of a CICS
terminal. By noting the frequency with which different commands are issued, you
can identify the procedures that offer the greatest return on your automation effort.

Operation Procedure Books
Operation procedure books, or run books, are good sources of information for
automation. When you identify your requirements and decide which procedures to
automate, you can turn to the operator procedure books for a step-by-step guide to
how automation can perform those procedures.

Problem-Management Reports
Problem-management reports track hardware and software problems and outline
the actions taken to solve each problem. They can help you identify frequently
recurring problems that are consuming resources, and they can help you identify
procedures for responding to those problems.

Chapter 3. Defining an Automation Project 45

Look for outages that were prolonged, either because the problem was not
detected immediately or because the resources necessary to correct the problem
were not available. Decide whether an automated process could have detected the
problem and notified the correct people more quickly, or solved the problem.

Help-Desk Logs
Help-desk logs are another source of problem descriptions. Like
problem-management logs, help-desk logs help you identify recurring situations
and situations for which established procedures are inadequate.

Service-Level Agreements
By reviewing service-level agreements and measurements taken to confirm
compliance, you can identify areas where you are having difficulty meeting
commitments to users. These areas clearly represent problems. Automation might
be a way to solve them.

Users
Users can inform you of possible problems in the environment, including problems
that they have not reported to operators or that are not tracked by problem
management.

Other Data-Processing Plans
Examine the changes you anticipate in your environment over your planning
period. Start with documentation of your current system and network
configurations, both hardware and software, and then examine your plans for the
future. Document configurations for all data centers that you plan to automate,
including those you plan to operate from a central focal-point system. Your
automation plan must reflect anticipated changes.

For example, if your organization is adding a large new system, message
suppression and console consolidation might be major requirements. If you are
adding data centers or moving toward distributed networks, network and
multiple-system automation might be major requirements. If you are supporting a
growing number of users, adding hardware and software to your systems and
networks without adding operators might be your primary requirement.

Interpreting the Information
After you review these sources of information, you should know:
v How operators spend their time
v The benefits of message suppression
v Which procedures you want to standardize and document
v Which procedures offer the greatest return for your automation effort
v What problems your users are experiencing

All of the information you gather contributes to defining your requirements for
automation.

Developing Goals and Objectives for Automation
By developing goals and measurable objectives for your automation project, you
can determine the project’s contributions to your business and data-processing
requirements and improve your operating environment.

46 Automation Guide

Developing Goals for Automation
Developing goals is an essential part of the planning process. With your
knowledge of business and data-processing requirements and your list of operating
problem areas, you can develop appropriate long-term automation goals.

See “Benefits of Automation” on page 3 for categories of possible automation
benefits.

You might want to review these categories and decide which are the most
important to your organization. You can also choose goals of your own that reflect
your own needs and environment. Choosing three or four of the most important
benefits you expect from automation and making them your long-term goals
provides a focus for the automation project.

Developing Measurable Objectives
Use measurable objectives to determine the progress you are making toward your
automation goals. Identify one or more specific measurements or indicators for
each long-term goal.

Measurements and projections play an important role in assessing the costs and
benefits of the automation project. If greater system availability is one of your
goals, you should know your current availability levels and the levels you expect
to attain. You can evaluate whether certain portions of the project require more
resources, whether others should be discontinued or expanded in scope, and the
extent to which automation is achieving your goals.

Table 1 on page 48 shows a worksheet with examples of major measurements. The
worksheet, which covers a 5-year period, uses goals derived from the automation
benefits in “Benefits of Automation” on page 3. You must decide on major
measurements that reflect your automation goals and suit your situation.

For information about calculating benefits for the measurements listed in Table 1
on page 48, see “Quantifying Costs and Benefits.” For additional examples of
indicators that you can use to measure progress toward a number of goals, see
Appendix C, “Sample Progress Measurements,” on page 523.

Quantifying Costs and Benefits
After identifying indicators you can use, their current measurements, and the
measurements you expect after automation, you can compute monetary values.
Calculating monetary values gives you further information about the types of
automation that can yield the greatest benefit. Calculating monetary values can
also help you determine the level of resources you must allocate to each form of
automated operations.

The projected costs for an automation project derive from assessment of the human
and system resources that implementation requires. The projected benefits derive
from the measurements and projections you have established for each of your
automation goals.

If you have created a project plan, the plan shows many of the steps you expect to
take to plan, design, and implement automation. See Appendix B, “Sample Project
Plan,” on page 515 for a sample automation plan.

Chapter 3. Defining an Automation Project 47

You can use your plan as a basis for determining the resources that each step
requires. Identify the human and system resources you need for each of the
remaining phases of the automation effort.

Next, calculate benefits. Using the measurements and projections you developed
for your automation goals, you can quantify the savings achieved by moving from
manual to automated operations. The savings represent the financial benefits of
automating. Table 1 shows an example of a benefits worksheet.

For example, if one of your goals is to avoid adding operators as your network
expands, your measurable objectives must specify how many operators you expect
to add if you continue manual operations. Similarly, you must project how many
fewer operators you need to add if you implement automation and simplify
operator tasks. Calculate the money you can save to estimate the value of
automation in this area.

Improved availability can be an important benefit. To calculate the value of CICS
availability, for example, you might use the following steps:
1. Calculate the amount of yearly downtime per user for CICS without

automation and subtract the projected amount of downtime per user with
automation.

2. Multiply the difference in downtime by the total of each class of CICS user,
such as operator or programmer.

3. Multiply the result by the chance (in percent) that each user will need CICS
during downtime.

4. Multiply this result by the monetary value for the user’s time.

Some measurements might overlap. For example, a measurement of the personnel
savings per data center might overlap with a measurement of the personnel
savings per application. If you have overlapping measurements, ensure that you
do not include both of them in the total savings.

Table 1. Example of a Financial-Benefit Worksheet

Area Without
Automation

With
Automation

Savings per
Year

5-Year Total

System and Network
Availability

NetView program

CICS program

IMS program

TSO program

VTAM program

Communication controllers

NCP programs

Growth-Constraint
Removal

Maximum capacity

Operator Productivity

Number of personnel

Today

48 Automation Guide

Table 1. Example of a Financial-Benefit Worksheet (continued)

Area Without
Automation

With
Automation

Savings per
Year

5-Year Total

First Year

Second year

Third year

Fourth year

Fifth year

Consistent Operations

Operator-caused failures

Operator turnover

Totals

Securing Commitment
Your investigation of requirements, goals, costs, and benefits can assist you in
obtaining the commitment of management and of your whole organization for
proceeding with the automation project.

It is important to obtain commitment and support from each department or group
that automation affects. The affected groups might include system and network
operations, system programming, technical support, users, and others. You need
the cooperation of these groups to successfully design and implement automated
operations. Therefore, ensure that each group understands your goals and the
benefits that you expect.

Chapter 3. Defining an Automation Project 49

50 Automation Guide

Chapter 4. Designing an Automation Project

This chapter describes the design phase of an automation project. In this phase,
identify specific procedures to automate and the work required to automate them.
Define the scope of the project and the order in which procedures are to be
automated. From this information, determine a structure for your automation. Lay
the groundwork for implementation by establishing common practices and rules
for all of your automation application programs.

After introducing the project design tasks, this chapter describes several guidelines
that can direct your design efforts.

Project Design Tasks
After reviewing your preliminary planning decisions, you are ready to begin the
design tasks.

Identify Procedures and Functions to Automate
You might have already identified many procedures and functions to automate
during initial planning. Talking to operators, examining system and network logs,
and returning to the information sources described in “Understanding Your
Operating Environment” on page 44 can help you find additional candidates for
automation. Good candidates for automation are:
v Procedures that consume operators’ time
v Events that demand quick and accurate responses
v Repetitive procedures that can be performed mechanically

Prioritize Procedures and Functions
After choosing the automation procedures and functions necessary to achieve your
automation goals, you can create a schedule. The schedule can prioritize the
procedures and functions, giving preference to the changes that offer the greatest
return for the least effort. The schedule reflects the speed with which you expect
your organization to implement and assimilate automation.

Schedule Stages for Implementation
When you schedule the implementation of the automation procedures and
functions, consider dividing the project into stages. By doing so, you give yourself
sufficient time to test, tune, and absorb each change in the environment. See
“Stages of Automation” on page 7 for an example of a sequence of stages.

You can devise a sequence to reflect your goals and objectives.

Establish Standards
Besides creating schedules, the design team can establish standards and choose
general automation techniques. For example, you might decide on any of the
following:
v An approach to security issues for all routines
v A format for writing messages to the logs for all routines
v A common way of notifying operators when there are problems

© Copyright IBM Corp. 1997, 2009 51

v A common protocol for using global variables to share information between
routines

By deciding these things in advance, you ensure a unified automation approach
that makes maintenance easier and enhances accurate communication among all
parts of the automation application. “Design Guidelines” describes many of the
issues that you must consider. These include not only programming issues but also
the impact that operational changes might have on your environment and your
organization.

Design Guidelines
Consider the following principles, suggestions, and guidelines when creating your
design:
v Design for easy expansion and propagation - see “Designing for Expansion and

Propagation”
v Design for audibility - see “Designing for Auditability” on page 53
v Design for security - see “Designing Automation Security” on page 53
v Design for availability - see “Designing for Auditability” on page 53
v Automate an event close to its source - see “Automating Close to the Source” on

page 54
v Choose whether to use more than one NetView program per system - see

“Using Multiple NetView Programs on a Single System” on page 54
v Provide effective operator interfaces - see “Providing Operator Interfaces” on

page 55
v Educate your staff for automation - see “Educating Your Staff” on page 55
v Anticipate changing staff roles - see “Anticipating Changing Staff Roles” on page

56
v Provide for automation testing - see “Providing for Testing” on page 56
v Provide for problem and change management - see “Designing for Auditability”

on page 53t
v Choose reliable focal points - see “Choosing Focal Points” on page 57
v Consider using backup focal points - see “Using a Backup Focal Point” on page

58
v Define operator sphere-of-control - see “Defining Operator Sphere-of-Control” on

page 59

Designing for Expansion and Propagation
To save time and effort when adding new software or new equipment to your
automated environment, design your automation for expansion. If you plan to
automate more than one system, ensure that the routines you write for one system
can be easily copied onto other systems.

One way to design for expansion and propagation is to use global variables for
system and resource names and other important information rather than
hard-coding them into command procedures. You can then use a single set of
automation routines and adapt them to new equipment, new software, or new
systems by redefining your global variables.

In a parallel sysplex environment, a copy of NetView might be running on
multiple MVS images in that environment. Because of this, data set names,
partitioned data set member names, and the contents of these members might need
to be unique for each MVS image. Cloning support decreases the amount of
maintenance required by permitting this type of data to be shared across a parallel
sysplex while retaining the uniqueness of each MVS image. It might no longer be

52 Automation Guide

necessary to maintain separate NetView partitioned data sets with unique member
data. To take full advantage of this function, an MVS system of Version 5 Release 2
or later is required.

See the automation samples documented in Appendix I, “The Sample Set for
Automation,” on page 579 for an example of using global variables. You can also
store variable information in a control file rather than using global variables.

Another way to design for expansion and propagation is to use the Resource
Object Data Manager (RODM) for retaining system and resource names and other
important information, rather than hard-coding the information in command
procedures. See “Resource Object Data Manager” on page 25 and Chapter 8,
“Automation with the Resource Object Data Manager,” on page 81 for more
information about using RODM.

If you plan to propagate automation to more than one operating system, consider
writing your command procedures in a language that runs on all of them. See
“Choosing a Language” on page 22 for information about which languages run on
which operating systems.

Designing for Auditability
In any automated operation, a good audit trail is vital. NetView can record
messages in both the network log and the system log. In addition, you can create
sequential logs and sort information into different logs based on any criteria you
choose. For example, you can log messages coming from different subsystems in
separate files, establish separate logs for each NetView operator and autotask, or
set up a separate log to track automation-related activity.

Several basic principles apply to designing for good audit trails:
v Log each action that automation initiates.
v Flag each automation event that you log so it can be identified as an automation

event. For example, you might precede all automation-related log entries with a
greater-than symbol (>).

v Log as much relevant information as possible. For example, you might log the
reason that you issue an automation procedure and the names of global
variables that you update as a result.

v Log each occasion when automation solves a problem.
v Log each occasion when automation fails to solve a problem. You can use this

information to upgrade and improve your automation.

Designing Automation Security
Design your automated environment so that only authorized operators have access
to system and network control facilities. You can control operator access through
passwords, restricting data set access, using command authorization, with span of
control, and other techniques. Refer to the IBM Tivoli NetView for z/OS Security
Reference for more information.

For instance, you can protect which commands can be issued by operator or
automation tasks using either the NetView command authorization table or a
system authorization facility (SAF) product such as RACF (Resource Access
Control Facility).

Ensure that a command procedure issued from the automation table validates the
source of a message or MSU before responding with any potentially disruptive

Chapter 4. Designing an Automation Project 53

commands. For example, you can ensure that a message came from the expected
system, job, or operating-system component. Because people can enter both system
and network commands from NetView consoles in an automated environment, it
becomes especially important to control access to NetView consoles.

Designing for Availability
Because you are entrusting your system or network to automation, you need to
ensure that the automation application is continuously functioning and available.
Think of ways to reduce the number of planned outages and to recover from
unplanned outages quickly. The approach you take in designing for availability
might vary, depending on whether you are automating a single system or a
multiple-system network.

Among the approaches you can take to provide for automated recovery in a single
system is to run two NetView programs on the system, as described in “Using
Multiple NetView Programs on a Single System.” The advantage arises because the
two NetView programs can then monitor each other. If one fails, the other can
restart it.

In a multiple-system network, you can have NetView programs on separate
systems monitor each other and initiate recovery when necessary. However, this
approach depends on having reliable links between your systems.

If you are using a focal-point system to automate several distributed systems,
establish a backup for the focal-point system. This ensures that distributed systems
can continue to forward information that requires external automation or operator
action, even if the primary focal point becomes unavailable.

In any case, your automation applications within NetView can monitor each other,
ensuring that autotasks and the automation table function continuously. For
example, one autotask can monitor another by sending it messages and checking
for timely responses. You can use the EVERY command to perform this sort of
query on a regular basis.

Automating Close to the Source
A guiding rule for automation is to automate an event as close to its source as
possible. If you intend to operate several distributed systems from a focal-point
system, automate everything you can on the distributed systems themselves.
Forward to the focal point only those problems that the distributed systems cannot
handle. Automating close to the source maximizes both performance and reliability.

Similarly, you can suppress unwanted system messages with an MRT action in the
address space where it originates. This saves considerable processing both in the
system and in NetView.

Using Multiple NetView Programs on a Single System
A single NetView program on a system can accomplish all NetView functions,
including network management, network automation, and system automation.
However, some organizations choose to divide these functions among two or more
NetView programs. For example, one NetView program on each system might
perform network-management operations, such as network problem determination,
and another might perform automation. Or, one NetView program might perform
all network functions and another might perform all system functions.

54 Automation Guide

A NetView program for automation can run at a dispatching priority higher than
the tasks that it automates. A NetView program for network management can be
set to a lower priority so it does not interfere with automation and other tasks.

Installing more than one NetView program on a system can help groups within
your organization independently use the NetView functions they need. For
example, a system-operation group and a network-management group can have
separate NetView programs.

However, there are drawbacks to running more than one NetView program per
system, including increased complexity. Running two NetView programs means
maintaining two copies of libraries and logs. You must be careful to avoid endless
loops, in which two NetView programs continually send messages back and forth
to each other. Also, storage requirements are greater with two programs.

If you choose to run NetView Message Revision table from two Net Views in the
same system, be sure to examine the order of SSI invocations (this can be done by
the command D SSI). The later MRT override settings made in an earlier MRT.

For more information about running multiple NetView programs, see Chapter 32,
“Running Multiple NetView Programs Per System,” on page 457.

Providing Operator Interfaces
The operator interface is critical to the design of your automation scheme. Ensure
that operators are receiving the information they require to operate the system or
network, to influence the operation of the automation application program, and to
monitor the automation.

See “Improving Operator Interfaces” on page 11 for options offered by NetView for
monitoring in the automated environment. For example, depending on which
NetView feature is installed, operators can monitor information provided by:
v The command facility
v The hardware monitor
v The status monitor
v NetView management console
v The Automated Operations Network (AON)
v Full-screen panels and help panels

In most environments, operators are accustomed to using messages to judge how
well the system is working. Therefore, operators need to be involved in deciding
which messages must be suppressed and what automated actions must be taken.
Ensure that you still provide operators with the information they need to verify
that the system is functioning correctly.

As you begin automation, you can inform operators of everything, from events
that require action to the issuing of automated command procedures. Eventually,
as automation becomes the standard mode of operation and the operation staff
becomes comfortable with automation, you can curtail notification and inform
operators only when their action is required. However, continue to log messages
that indicate when automation activity occurs in the system or network. These
messages can assist in problem determination if automation fails.

Educating Your Staff
The people who design and implement your automation application programs
need to be adequately trained before they begin. They need to understand both the

Chapter 4. Designing an Automation Project 55

requirements of your organization and the products you are using for automation.
If you divide the duties, you might need different training for different groups. For
example, one group might create automation procedures and another might create
automation displays.

Furthermore, operators need to be informed of the changes in their operating
environment at every stage of automation. They must understand the new
operator interfaces and the changes to their responsibilities. Education is an
ongoing requirement for ensuring the success of automation.

You can continue to train operators to run systems manually, ensuring that they
can resume responsibility for operations if automation fails. However, it is usually
more efficient to train your people to resume automation. Rather than expend the
effort teaching manual operating techniques, you can test your automation and
implement backup and recovery plans to avoid failure. Document your automation
so that operators and programmers can use the documentation to perform
procedures manually if necessary.

Anticipating Changing Staff Roles
Automation can change the roles and interactions of data-processing staff
members. Ensure that you consider these changes and how automation affects
your employees and your organization.

For example, if you are combining system and network automation, you can also
combine system and network operation staffs. Because you are using a common
design for system and network automation, the people who are to resolve
problems that automation cannot handle need to understand both system and
network resources.

Another example of a change in roles is a possible change in operator career paths.
As automation takes over system and network monitoring and routine, repetitive
tasks, operators might spend a greater proportion of their time making decisions,
solving unique problems, and working with the automation application itself. One
way to accommodate these changes is to create a new job category for operators,
such as automation specialist. The specialist must understand system and network
operations, as well as the automation applications used to run them. Operators
who create or help with automation procedures can gain automation skills and
learn to operate the environments of the future.

Providing for Testing
As with any new product or application, plan to test your automated procedures
before placing them in the production environment. Each stage of your
implementation requires thorough testing. In addition, you can do regression
testing of your automation applications when your system or network changes,
ensuring that your routines work with new releases of operating systems and
application programs, and with new hardware.

Providing for Problem and Change Management
Problem management is an important part of automated operations. By logging
problem records before automation takes any recovery action, you can minimize
the risk of losing your record of system and network problems that require
attention.

56 Automation Guide

Implementing automation also affects change management. With automation, it is
helpful to track all changes to the operating environment, possibly in more detail
than you have before. Even slight changes to a message format, for example, can
affect your operations if the message is triggering automation. Keep a list of
messages, alerts, and other data records that are triggering automation. For each
message, record whether you use just the message ID or use other parts of the
message as well. When you learn of changes to a message or alert, compare them
to the list to see whether you need to update your automation.

Choosing Focal Points
In a multiple-system environment, you can perform many automation tasks with
single-system automation running independently on each system. For tasks that
you do not automate locally, you can forward the associated data to a designated
focal-point system. Then you can automate responses to the data with automation
on the focal-point system, or you can display the data for operators.

Before choosing a focal point, consider the kinds of tasks that you want the focal
point to perform. The way you intend to use the focal point influences your choice
of a focal-point system. The following are some considerations that can affect your
decision:
v The focal point can perform automation activities that require coordination

among two or more systems.
v The focal point can monitor your automation facilities in other systems and

recover those facilities if they fail.
v The focal point can monitor the hardware and software of other systems and

recover the hardware or software if it fails.
v Operators at the focal point can respond to exception conditions that automation

cannot handle.

Choose a stable and reliable system for a focal point. In general, avoid choosing a
system that is already heavily used. Also, avoid a system that you use for
developing application programs, installing and testing new products, or other
testing.

The focal-point system must have an information management product installed,
enabling it to log problems that occur in other systems. You might also need
system-management application programs, such as programs for problem
management, change management, and reporting.

If you have a communication management configuration (CMC) system, the CMC
system might have the highest availability of your systems. Therefore, you might
want to use your CMC system as the focal point. Examine the capacity of the CMC
system to ensure that the system can handle the combined processing load of CMC
and automation duties.

Figure 8 on page 58 shows a focal-point system that manages distributed systems.
As shown, the distributed systems can be at more than one site.

Chapter 4. Designing an Automation Project 57

You can forward many types of data from a distributed system to a focal point,
including messages, alerts, status information, and user-defined classes of
information for the LU 6.2 transports.

For an overview of NetView’s forwarding capabilities for each type of data, refer to
Chapter 26, “Centralized Operations,” on page 375. Refer to IBM Tivoli NetView for
z/OS Installation: Getting Started for information about how to set up message, alert,
and status forwarding. See the IBM Tivoli NetView for z/OS Application Programmer’s
Guide for more information.

You can have a single focal point or several. However, if you have more than one
focal point, each distributed system usually sends all types of data to a single focal
point. That is, any alerts, messages, status information, and operations
management information forwarded from a given system can all go to the same
focal point. With this type of design, operators and automation at the focal point
can monitor all types of data from one location.

Using a Backup Focal Point
You can define as many as eight backup focal points. If you intend to have a
focal-point system manage many other systems, you can use a backup to ensure
that a focal-point failure does not disrupt your automation. The backup focal point
can be one of your distributed systems or a dedicated backup system. This system
must be available to take over for the focal point if any outages occur.

NetView NetView NetView

NetView

NetView

Distributed System Distributed System

Distributed System

Focal Point

Distributed
System

Site A Site B

Site C

Figure 8. Example of a Multisite Configuration

58 Automation Guide

For many types of data, you can establish NetView-to-NetView sessions between
the backup focal point and the distributed systems automatically if you lose
communication with the primary focal point. You can do this without operator
intervention. Only status forwarding does not support a backup focal point.

Other advantages and considerations for a backup focal point include:
v You can have primary and backup focal points monitor each other. A loss of

communication can trigger recovery actions.
v The VTAM program and NCP can recover links in the network if link failures

occur.
v You can establish multiple NetView-to-NetView sessions between the primary

focal point and a distributed system. Ensure that the route used by each session
is different.

Defining Operator Sphere-of-Control
Sphere-of-control enables an operator at a focal point to manage the relationships
between that focal point and entry points (distributed nodes). Each entry point is
categorized by type and state, which can be displayed by the focal point operator
using the FOCALPT DISPSOC command.

In Figure 8 on page 58, the focal point is at Site A, and manages a sphere-of-control
encompassing four distributed NetView systems. One entry point is at Site A, two
are at Site B, and one is at Site C.

An operator at the focal point can manage a sphere-of-control through the
sphere-of-control manager (SOC-MGR). The MS-CAPS application within the focal
point or entry points is responsible for establishing and recovering the
sphere-of-control relationship, and for providing status. The focal point operator
can add and delete entry points and add information to the sphere-of-control
configuration file. This file can be used during NetView initialization to set up
sphere-of-control environments.

For information, see Chapter 26, “Centralized Operations,” on page 375.

Chapter 4. Designing an Automation Project 59

60 Automation Guide

Chapter 5. Implementing an Automation Project

This chapter describes the tasks involved in the implementation and production
phases of an automation project.

If you envision an extensive automation project, divide it into stages as described
in Chapter 4, “Designing an Automation Project,” on page 51. You then have an
implementation phase and a production phase for each stage of automation.
Repeat the tasks in this chapter for each stage.

Implementation Tasks
In the design phase, you laid out a schedule for implementing various functions
and procedures. Examine those functions one by one in the chosen order. For each
function to be automated, use the following approach:
1. Analyze your manual method of operation. Often, you can best automate a

function by having NetView facilities closely follow the sequence of steps that
an operator usually takes. In any case, you must understand the manual
method before devising an automated method.

2. Determine the best approach to automating the function.
3. In your development environment, install the products you plan to use for this

function.
4. Develop application programs and command procedures that you plan to use

for this function.
5. Install the application programs and command procedures in a test

environment.
6. Test and debug these application programs and command procedures.
7. Measure the performance of the application programs and command

procedures. Tailor and tune them for efficiency.

When you have thoroughly tested and tuned all automation products, functions,
applications, and procedures, you are ready to go to the production phase.

Production Tasks
The production phase must begin with educating your operators on the changes
you are about to make.

When you have educated your operators, begin installing the products, if any, that
you are adding to the production systems to support automation. Test these
products to ensure that they are running correctly on the production systems.

Next, install the automation functions and procedures that you have developed.
Make necessary changes to adapt these functions to the production systems. If
your design is for easy propagation, as described in Chapter 4, “Designing an
Automation Project,” on page 51, most of the necessary changes require only that
you alter some global variables or data in a control file. Test your automation
functions and make any necessary corrections or enhancements.

If you have divided your project into stages, go to the next stage in your sequence.
See “Stages of Automation” on page 7 for a description of automation stages.

© Copyright IBM Corp. 1997, 2009 61

Continually re-examine and review the automation that you have put in place.
Measure the results that you are achieving and compare them to the expected
values you identified in the project-definition phase. For information about how
measurements are used to track the results of automation, see “Developing
Measurable Objectives” on page 47.

Look for ways to improve your automation. Perhaps there is another message that
you can suppress or another MSU that can receive an automatic response. By
aggressively tuning and enhancing your functions and procedures, you can realize
the maximum benefit from automation.

Use the AUTOCNT command to generate automation table usage reports for your
system. You can use the reports to analyze automation table statements to see how
frequently they are matched. You can move frequently matched statements toward
the top of the table so that less checking of unmatched criteria takes place. You can
also determine whether to delete unmatched statements from the table or to delete
statements changed because of logic errors.

Automation table usage reports also enable you to determine the level of
automation taking place on your system. These statistics can be useful in reports
for management purposes. For information about the AUTOCNT command and
automation table usage reports, see Chapter 15, “The Automation Table,” on page
149.

62 Automation Guide

Part 3. Planning for Automation in Selected Environments
Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 65
Using EMCS Consoles with NetView . 65
Advantages of Using EMCS Consoles with NetView. 65
Planning for Extended Multiple Console Support Consoles 66

Enabling Extended Multiple Console Support Consoles. 66
Developing Console Naming Conventions . 66
Acquiring Extended Multiple Console Support Consoles 67
Defining Task Names for CNMCSSIR Tasks . 67
Defining Consoles in Groups . 68
Using the MRT or the MPF Table to Direct Messages to NetView Automation 68
Using Attribute Values for Extended Multiple Console Support Consoles 68

Defaults for a Console Obtained by the CNMCSSIR Task 68
Defaults for a Console Obtained by an Operator . 69

Using Route Codes . 69
Case 1 . 69
Case 2 . 70
Understanding Effects of Attributes . 70

Implementing Security Access . 70
Avoiding Message Loss because of a Full MVS Message Data Space 70
Avoiding Message Loss because of an Exceeded Queue Limit 70
Balancing MVS Message Storage and Message Queue Limit 71

Comparing Extended Multiple Console Support Consoles with Subsystem Allocatable Consoles 71
Migrating from the Subsystem Interface to Extended Multiple Console Support Consoles 73

Establish Unique Names . 73
Migrate to a Later Release NetView Program at Each Host 73
Continue Using the Subsystem Interface If Needed . 73
Use the RMTCMD Command and LU 6.2 Sessions for Cross-Domain Communication 74
Restrict Operator Access to the MVS VARY Command . 74
Restrict AUTO Attribute of EMCS Consoles . 74
Define Each NetView Program to Use Extended Multiple Console Support Consoles 74

Chapter 7. Automation in an MVS Sysplex . 77
MVS Sysplex . 77
Using NetView Automation in a Sysplex . 77
Planning for Automation in a Sysplex . 78

Stage 1. Become Familiar with EMCS Consoles and How Their Attributes Affect Message Routing in a Sysplex 78
Stage 2. Coordinate MPF Actions with the Definitions of EMCS Consoles. 78
Stage 3. Decide Whether to Centralize Your NetView Automation on One System of the Sysplex 79

How Foreign Messages are Processed. 79

Chapter 8. Automation with the Resource Object Data Manager 81
Introducing the Resource Object Data Manager . 81

Interactions with RODM . 81
Using RODM in Automation . 82

Advantages of Using RODM . 82
Planning for Using RODM in Automation . 82

Determining the Types of Events to Produce Automated Responses from RODM 83
Understanding RODM Automation Capabilities . 83

Chapter 9. NetView Information Routing for Automation 85
NetView Interfaces . 85

Interfaces to the Operating System . 86
Interfaces to Other NetView Programs . 87
Other Message and Command Facilities . 87
Interfaces for Hardware-Monitor Data and MSUs. 87

NetView Message Routing . 87

© Copyright IBM Corp. 1997, 2009 63

||

Solicited Messages . 88
Unsolicited Messages . 88

The Authorized Receiver . 88
Unsolicited Messages from a DST . 89
Unsolicited Messages from MVS . 89

Message Routing Facilities . 89
Routing Messages with the ASSIGN Command . 90

Assigning Messages to Operators . 90
Assigning Operators to Groups . 90
Using ASSIGN to Route Unsolicited Messages . 90
Using ASSIGN to Drop Unsolicited Messages . 92
Using ASSIGN to Route Solicited Messages. 92
Using ASSIGN to Route Messages to Autotasks . 92
Using ASSIGN with Automation Logic . 93
Using the REFRESH and ASSIGN Commands for Dynamic Operator Control 93
ASSIGN Command Versus Automation Table Routing 93

Routing Messages with the MSGROUTE Command . 94
Routing Messages to EMCS Consoles Based on Route Codes 94

Specifying the Route Codes . 94
Eliminating Duplicate Automation of Messages . 95

Message Routing Flow . 95
DSIEX17 Processing . 96
PIPE CORRWAIT . 96
ASSIGN PRI/SEC Processing . 97
Authorized Receiver Processing . 97
DSIEX02A Processing . 97
Wait Processing . 97
Automation-Table Processing . 98

Routing Messages . 98
Setting Message Attributes . 99

DSIEX16 Processing . 99
ASSIGN COPY Processing . 99
Discard or Display Processing . 100

NetView Hardware-Monitor Data and MSU Routing . 100
ALERT-NETOP Application . 103
XITCI Processing . 103
Initial Hardware-Monitor Processing . 103
Automation-Table Processing . 103
DSIEX16B Processing . 104
Continued Hardware Monitor Processing . 104

NetView Command Routing . 104
Compatibility of Commands with Tasks . 105
Command Routing Facilities . 105

Automation-Table ROUTE Keyword. 105
CNMSMSG Service Routine and DSIMQS Macro . 105
EXCMD Command . 106
RMTCMD Command. 106
Command Label Prefixes . 106

Command Priority . 106

64 Automation Guide

Chapter 6. Automation Using MVS Extended Multiple Console
Support Consoles

This chapter describes in more detail the information about extended multiple
console support (EMCS) consoles that was given in “Automation on MVS
Systems” on page 27. This chapter describes:
v Some of the advantages, implications, and planning considerations for using

EMCS in NetView automation
v Some advantages for using EMCS instead of the MVS subsystem interface

Using EMCS Consoles with NetView
EMCS consoles enable an MVS application program to interact with the MVS
system as if the application program were an operator at a terminal. Using
extended multiple console support consoles, NetView automation can interact with
the MVS system as if the NetView operator were an MVS operator.

Using extended multiple console support consoles enables NetView automation to
interact with the MVS system without some of the restrictions imposed in other
versions of the MVS system. For example, extended multiple console support
consoles do not need to be defined in the CONSOLxx member of the PARMLIB
data set.

You can process unsolicited MVS messages using the subsystem interface while
processing solicited command responses using extended multiple console support
consoles. This allows you to extract unsolicited messages earlier in the MVS
process, while allowing operators the flexibility of EMCS.

For information about extended multiple console support consoles, refer to the
MVS library. For more information about attributes for extended multiple console
support consoles that NetView uses, refer to the IBM Tivoli NetView for
z/OS Security Reference.

Advantages of Using EMCS Consoles with NetView
Some advantages for using EMCS consoles with NetView are:
v There is no defined limit on the number of MVS operator consoles that can be

used.
v You can define MVS consoles dynamically for NetView operators.

Note: When you either specify MVSPARM.MSGIFAC=SYSTEM or use the
default value SSIEXT, then operator commands and response use EMCS
consoles allocated for each operator.

v Information appearing on the NetView command facility screen can be made to
look more like MVS operator consoles.

v Consoles do not need to be defined in the CONSOLxx member of the PARMLIB
data set.

v You have the option to have system messages delivered directly based on route
codes.

v You can more easily define authority for your operators.

© Copyright IBM Corp. 1997, 2009 65

Usage Notes::

1. All cross-domain sessions must use the RMTCMD command to prevent loss of
data. Otherwise, if the sessions are established between an operator station task
(OST) and a NetView-NetView task (NNT), messages are sent without any
appended message data block (MDB) data structures. Data structures contain
special information about a message. Data structures also contain some deleted
operator message (DOM) information associated with the message. Such
information in the MDB data structures, therefore, is lost on the OST-NNT
sessions.
Sending a message without the MDB data structures provides compatibility for
earlier levels of NetView that do not process the MDB information.

2. Change in the attributes for your extended multiple console support consoles
might cause more than one console in NetView to solicit the same MVS system
message.

Planning for Extended Multiple Console Support Consoles
This section describes points to consider as you plan for using extended multiple
console support consoles in your NetView automation.

Enabling Extended Multiple Console Support Consoles
You can enable extended multiple console support consoles by specifying certain
values in these situations:
v MVSPARM statements in the CNMSTYLE member
v Subsystem address space procedure (CNMPSSI)

For more information about selecting and coordinating these values, see
“Comparing Extended Multiple Console Support Consoles with Subsystem
Allocatable Consoles” on page 71.

Developing Console Naming Conventions
Develop your naming conventions for consoles before you start to use extended
multiple console support consoles.

Note: You can use the ConsMask keyword in your style specifications to simplify
the task of choosing unique console names.

These are rules for developing console names:
v The length of each name must be between 2 and 8 characters.
v The first character must be from the group of A–Z, @, #, and $.
v The remaining characters must be from the group of A–Z, 0–9, @, #, and $.

When using console naming conventions:
v Each name must be unique within a system and within all systems in a sysplex

configuration.
v Console names that are defined in the CONSOLxx member of the PARMLIB

data set are not available to be used as names of extended multiple console
support consoles.

v Console names might be used by other application programs and must not be
duplicated.

66 Automation Guide

|

Acquiring Extended Multiple Console Support Consoles
You can acquire an EMCS console by using an MVS command or the NetView
GETCONID command. If you issue an MVS command or the GETCONID without
the CONSOLE keyword to acquire an EMCS console and your task has not already
obtained a console, NetView determines the console name in the following order:
1. If a SETCONID command was used, the name specified by it is used.
2. If the ConsMask statement in the CNMSTUSR or CxxSTGEN member that is

included in the CNMSTYLE member is not defined as an asterisk (*), its value
is used as a mask for determining the default console name. Refer to IBM Tivoli
NetView for z/OS Administration Reference for more information.

3. If OPERSEC=SAFDEF was in effect when the operator logged on, NetView uses
the value of CONSNAME specified in the NetView segment of the SAF
product. If there is not a CONSNAME in the NetView segment, see Step 5.

4. If OPERSEC=SAFDEF was not in effect when the operator logged on, NetView
uses the value of CONSNAME specified in the operator’s profile in DSIPRF. If
there is not a CONSNAME in the operator’s profile, see Step 5.

5. If a CONSNAME was not specified in either the NetView segment or the
operator’s profile, NetView uses the operator task name as the console name. In
this case, the operator ID must be greater than one character in length and
abide by the same rules as for console names.

You can issue the GETCONID command to acquire an EMCS console with a name
specified by the invoker as well as specifying other attributes for the console.

For information about the GETCONID and SETCONID commands, refer to the
NetView online command help. For more information about attributes associated
with extended multiple console support consoles, refer to the IBM Tivoli NetView
for z/OS Security Reference.

Defining Task Names for CNMCSSIR Tasks
The subsystem router task (CNMCSSIR) requires a console name if you specify at
least one RTNDEF.BASE.AGENT statement or when you specify
MSGIFAC=SYSTEM in the CNMSTYLE member. If you specify
MSGIFAC=SYSTEM, use the ConsMask keyword in your style specifications to
automatically avoid conflicts in choosing console names. For additional
information on CNMSTYLE, see the IBM Tivoli NetView for z/OS Administration
Reference.

If you cannot use console masking, then if you use extended multiple console
support consoles and you are also running multiple NetView programs or are
defining a sysplex configuration, ensure that you define a unique task name for
each task that uses load module CNMCSSIR.

The task with the load module name CNMCSSIR attempts to obtain an EMCS
console with the task ID as the EMCS console name. If you have multiple tasks
named CNMCSSIR, the first one that is activated gets the EMCS console named
CNMCSSIR. The remaining CNMCSSIR tasks are not able to obtain a console. If
you have more than one NetView program that uses the CNMCSSIR task, ensure
that you assign unique task names to avoid console name conflicts.

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 67

|
|

|

Defining Consoles in Groups
If you want to use the RELCONID command SWITCH parameter to switch
messages to an alternative console when your console is released, define your
console to a group. For more information about console groups, refer to the MVS
library.

Using the MRT or the MPF Table to Direct Messages to
NetView Automation

You can use the NetView’s Message Revision Table (MRT) or the system’s message
processing facility (MPF) to mark messages for automation. When you use
extended multiple console support consoles (MSGIFAC=SYSTEM), messages that
are marked for automation are sent to the EMCS console with the AUTO attribute.
By default, the EMCS console for the CNMCSSIR task is set up with the AUTO
attribute. Information on direct a message for NetView automation can be found in
“Subsystems in Message Processing” on page 526

You can also use the Message Revision table (MRT) to perform the functions
provided by the message processing facility (MPF). Additional information about
the Message Revision table can be found in “Message Revision Table” on page 25.

Using Attribute Values for Extended Multiple Console Support
Consoles

Use specific attributes and their values for extended multiple console support
consoles are provided as defaults. Refer to the IBM Tivoli NetView for z/OS Security
Reference for a chart of the full set of defaults.

Defaults for a Console Obtained by the CNMCSSIR Task
For a console obtained by the CNMCSSIR task, some defaults and their meanings
are:

MSCOPE = *
The console receives messages from the system on which it is running.

Note: The value of MSCOPE can be overridden by the
RTNDEF.BASE.AGENT.sysname statement in the CNMSTUSR or
CxxSTGEN member that is included in the CNMSTYLE member. For
more information, refer to IBM Tivoli NetView for z/OS Administration
Reference.

AUTO(YES)
The console receives messages that are marked with AUTO(YES) or
AUTO(token) in the MPF table. This condition cannot be changed after the
console is activated. (For more information, refer to the chart of defaults in
the IBM Tivoli NetView for z/OS Security Reference.)

ROUTCODE = NONE
The console does not solicit system messages by route code.

The CNMCSSIR task avoids duplicate automation by discarding messages that are
also received by console NAME on another NetView task. MVS messages that are
broadcast to all consoles are submitted to NetView automation by CNMCSSIR and
not by other NetView tasks.

For all values of MSGIFAC, the CNMCSSIR task attempts to avoid duplicate
automation for messages, such as command responses, that are delivered to a

68 Automation Guide

|
|

NetView operator by console name. The method works only for messages
delivered by console name, and not, for example, for messages delivered by route
code to a console owned by a NetView operator. Be sure to avoid duplicate
automation when assigning route codes to a NetView operator’s console.

Defaults for a Console Obtained by an Operator
For a console obtained for an operator, some defaults and their meanings are:

MSCOPE = *ALL
The console can receive messages from any member of a sysplex, and
command responses can be received from all systems.

ROUTCODE = NONE
The console does not solicit system messages by route code.

Using Route Codes
If you decide to solicit messages for your extended multiple console support
consoles by using route codes, be aware that you might create duplicate
automation. When you set up an EMCS console to receive messages with a certain
route code, a message with that route code is delivered to that console, as well as
to any other console that solicited the message.

Some messages have more than one route code. When messages are solicited by
route code, multiple instances of a message can be delivered to extended multiple
console support consoles used by NetView. When setting console attributes, it is
preferable to ensure that you do not solicit multiple instances of the same message.
If you choose to solicit multiple instances of the same message, you can use the
automation table to select which task is to process a message if two tasks receive
the same message.

These examples illustrate cases in which duplicate message solicitation can cause
NetView to produce duplicate automation.

Case 1
Consoles in use:

v EMCS console CON4 is set up to receive messages with route code 4.
This might have been set up with the MVS VARY command or the
RACF OPERPARM segment.

v EMCS console CON6 is set up to receive messages with route code 6.
v EMCS console A01CSSIR is receiving messages marked for automation,

or which are subject to NETVONLY or REVISE('Y' AUTOMATE) revision
table actions or similar.

Event: The MVS system issues message IEExxxx with route code 4, and this
message is marked for automation..

Result:
CON4 receives the message from the MVS system because the message is
assigned route code 4. A01CSSIR also receives the message from the MVS
system because the message is marked for Automation in the Revision
AUTO(YES). Both tasks drive automation. Unless the automation table
contains a statement to disregard one of the messages (for example, by
operator ID), automation occurs twice because two identical messages are
delivered to NetView.

Note: If NETVONLY, rather than REVISE(’Y’ AUTOMATE) had been
specified in NetView’s MRT, the duplicate automation is avoided.

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 69

Case 2
Consoles in use:

Same as for case 1.

Event: The MVS system issues message IEEyyyy with route codes 4 and 6, and
this message is marked AUTO(NO) in the MPF table.

Result:
CON4 receives the message from the MVS system because the message is
assigned route code 4. CON6 receives the message because it is assigned
route code 6. Both tasks drive automation as in case 1.

Understanding Effects of Attributes
From the preceding examples, you must realize that the attributes set for extended
multiple console support consoles affect the delivery of MVS system messages. For
more information about the attributes of extended multiple console support
consoles, see the IBM Tivoli NetView for z/OS Security Reference.

If you solicit messages by route code, be aware that some messages have no route
codes. Therefore, a console defined to receive all messages with route codes does
not receive all the messages in the system. For example, monitor type messages do
not have route codes. Refer to the MVS library for a list of MVS system messages
and their route codes.

Implementing Security Access
You can implement a security access facility product such as the Resource Access
Control Facility (RACF) to provide security for NetView operator tasks and
autotasks. Refer to the IBM Tivoli NetView for z/OS Security Reference for
information about using RACF to protect access to names of extended multiple
console support consoles and about protecting system commands for operators and
autotasks.

Avoiding Message Loss because of a Full MVS Message Data
Space

Messages to be written to extended multiple console support consoles are
temporarily stored in an MVS message data space until NetView retrieves them. If
the maximum storage value set for the MVS message data space is exceeded
during operation, message delivery is halted temporarily from the MVS system to
the message data space for the extended multiple console support consoles that
NetView uses. To avoid this problem, you can use the defaults that the NetView
GETCONID command sets for the maximum data space for message transfer. This
data space is managed by the MVS system and is used only as needed.

Avoiding Message Loss because of an Exceeded Queue Limit
Each EMCS console has an attribute called QLIMIT. This attribute defines the
number of messages that can be queued at one time in the data space for this
console. If the queue limit is reached, the MVS system temporarily stops delivering
messages for this console, and these messages are lost.

Another attribute for each EMCS console is called ALERTPCT. You can use this
attribute to help determine whether you are approaching the queue limit for a
particular console. The ALERTPCT attribute defines the percentage of the queue
limit that causes a warning message to be issued.

70 Automation Guide

If the message queue limit for a console is reached, a task might not have enough
time to process all the messages directed to it. Some tasks run at a lower priority
than other tasks and do not get sufficient time for processing all messages.

Balancing MVS Message Storage and Message Queue Limit
You need to obtain a balance among the amount of storage reserved for the MVS
message data space, the number of operators using extended multiple console
support consoles, and the values defined for the message queue limits. Use the
STORAGE parameter of the GETCONID command to reserve storage for the
message data space. Use the QLIMIT parameter of the GETCONID command to
define the queue limit.

Note: The QLIMIT and STORAGE attributes can also be set using the RACF
OPERPARM segment.

The STORAGE parameter sets the maximum allowable size for the data space. The
first active console in NetView sets the maximum storage value. Ensure that the
first EMCS console to be activated sets the maximum storage value that you want.
The queue limit value defined by the QLIMIT parameter for each console applies
only to that console.

These messages are related to reaching the storage limit and queue limit for
extended multiple console support consoles. Correct responses to these messages
are especially important:
v DWO201I
v DWO202I
v DWO204I

For explanations of these messages, refer to the NetView online help.

Comparing Extended Multiple Console Support Consoles with
Subsystem Allocatable Consoles

Note: Beginning with z/OS v1r8, subsystem allocatable consoles are not
supported.

EMCS consoles provide improvements over the subsystem allocatable interface for
transferring MVS messages between the MVS system and NetView. Improvements
in message communication also result in improved automation.

EMCS consoles use a message data block (MDB) to transfer information between
NetView and the MVS system. This MDB is an architected MVS structure that
provides more information about a message than is available with the subsystem
interface. For example, message attributes, such as highlighting (which includes
color), can be retained in the messages. Because more attributes are retained, more
attributes are available for manipulation by automation procedures.

Use the extended multiple console support consoles or the subsystem interface for
transferring messages. A specific coding combination determines which method is
used. The coding involves a MSGIFAC parameter in both the MVSPARM statement
in the CNMSTUSR or CxxSTGEN member that is included in the CNMSTYLE
member and a start option in the start procedure for NetView subsystem address

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 71

|
|

space (CNMPSSI). A MSGIFAC parameter is used in both places. If SSI.ProcString
is specified in the CNMSTYLE member, then the value MVSPARM.MSGIFAC is
used when starting the SSI.ProcString.

Coordinate the coding of two MSGIFAC parameters. Some coding combinations of
the two parameters cause a mismatch and are not valid. Table 2 lists the
combinations that produce acceptable results.

Note: Messages queued to NetView through the subsystem interface are time
stamped when they are submitted to the subsystem interface except when
MSGIFAC=SYSTEM is specified. You can examine this time stamp in several
ways, including use of the ACQUIRE function in the automation table and
the PIPE EDIT IFRAUGMT order in combination with any of the time
conversion orders.

Table 2. Acceptable Combinations of MSGIFAC Values for MVSPARM and Subsystem Address Space Procedure

CNMSTYLE
MVSPARM
MSGIFAC=

Subsystem
Address Space
Procedure
MSGIFAC= Effects of the Combination of MSGIFAC Values

CMDONLY SYSTEM Extended Multiple Console Support Consoles are used for delivery of MVS
system messages. The CNMCSSIR task does not obtain an EMCS console for
receiving MVS system messages.

For any MVS level, NetView commands entered from EMCS consoles use
the subsystem interface.
Note: A message revision table is not allowed when CMDONLY is specified
.

SSIEXT SSIEXT Unsolicited messages are buffered as soon as the NetView Subsystem
completes initialization.

The NetView subsystem interface router task (CNMCSSIR) does not have to
be active for message buffering to occur. The automation token character
position 8 is replaced with '@' if the CNMCSSIR task is inactive.

NetView operators and autotasks use extended multiple console support
consoles instead of subsystem interface delivery. This gives you the queuing
of unsolicited messages with all the benefits of extended multiple console
support consoles.

SYSTEM NOSSI Extended Multiple Console Support Consoles are used for delivery of MVS
system messages.

The CNMCSSIR task obtains an extended multiple console support console.
By default, this EMCS console has the AUTO attribute. This console
attribute causes all messages that are marked AUTO(YES) or AUTO(token)
in the MPF table to be delivered to the CNMCSSIR task.

For any MVS level, NetView commands cannot be entered from EMCS
consoles because the NetView subsystem is not active.
Note: The Message Revision Table cannot be used when MSGIFAC=NOSSI.

72 Automation Guide

|

Table 2. Acceptable Combinations of MSGIFAC Values for MVSPARM and Subsystem Address Space
Procedure (continued)

CNMSTYLE
MVSPARM
MSGIFAC=

Subsystem
Address Space
Procedure
MSGIFAC= Effects of the Combination of MSGIFAC Values

SYSTEM SYSTEM Extended Multiple Console Support Consoles are used for delivery of MVS
system messages.

The CNMCSSIR task obtains an EMCS console. By default, this EMCS
console has the AUTO attribute. This console attribute causes all messages
that are marked AUTO(YES) or AUTO(token) in the MPF table to be
delivered to the CNMCSSIR task.

For any MVS level, NetView commands entered from EMCS consoles use
the NetView subsystem interface.

Migrating from the Subsystem Interface to Extended Multiple Console
Support Consoles

Migration from the subsystem interface to EMCS consoles must be done in stages.
These are the suggested stages. For information about using the subsystem
interface and EMCS consoles, see “Comparing Extended Multiple Console Support
Consoles with Subsystem Allocatable Consoles” on page 71.

Establish Unique Names
Establish naming conventions for EMCS consoles before you start to use the
consoles. For information about console naming conventions, see “Developing
Console Naming Conventions” on page 66.

To avoid name conflicts, establish unique names for all tasks that use load module
CNMCSSIR. For information about names for CNMCSSIR tasks, see “Defining Task
Names for CNMCSSIR Tasks” on page 67.

Migrate to a Later Release NetView Program at Each Host
In networks that use a communication management configuration (CMC) or a
focal-point organization, start migrating to a later release of the NetView program
(V2R4 or later) at the CMC or the focal-point host. Then distribute the migration to
other hosts throughout the network.

Continue Using the Subsystem Interface If Needed
If you want the NetView program to use the subsystem interface for transferring
messages, override these two parameters:
v MVSPARM.MSGIFAC parameter in the CNMSTUSR or CxxSTGEN member that

is included in the CNMSTYLE member
v MSGIFAC parameter in the subsystem address space procedure (CNMPSSI)

For information about selecting values for MSGIFAC, see “Comparing Extended
Multiple Console Support Consoles with Subsystem Allocatable Consoles” on page
71.

The default in the sample JCL procedure specifies that NetView is to use extended
multiple console support consoles. Otherwise, the default is the subsystem

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 73

|
|

interface. You can change the JCL procedure default when the required MVS
operating system, NetView program, and cross-domain communication support are
available.

With NetView, you can process unsolicited MVS messages using the subsystem
interface while processing solicited command responses using EMCS consoles.

Use the RMTCMD Command and LU 6.2 Sessions for
Cross-Domain Communication

You can gradually migrate older NetView nodes to use the RMTCMD command
and LU 6.2 sessions.

In a multiple CMC or multiple focal-point enterprise, update all CMCs or focal
points to use the RMTCMD command and LU 6.2 sessions before you migrate
these nodes to use extended multiple console support consoles. Also, in networks
that use distributed automation, update all NetView programs that exchange
messages to use the RMTCMD command and LU 6.2 sessions before you migrate
the programs to use EMCS consoles. In both cases, if possible, complete the
migration to the RMTCMD command and LU 6.2 sessions before you use extended
multiple console support consoles, to avoid losing MDB data such as highlighting
and some DOM information.

Restrict Operator Access to the MVS VARY Command
Unless restricted from doing so, an operator can use the VARY command to
change attributes of an EMCS console, such as the route codes that the console
receives. This type of change can cause duplicate message delivery and duplicate
automation. Therefore, restrict the use of the NetView MVS command by using
NetView command authorization checks, or by protecting the VARY command in a
system authorization facility (SAF) product. For instance, protect the NetView MVS
command using NetView command authorization table, or a system authorization
facility (SAF) product such as RACF (Resource Access Control Facility). Refer to
the IBM Tivoli NetView for z/OS Security Reference for information about command
authorization.

Restrict AUTO Attribute of EMCS Consoles
The AUTO attribute causes a console to receive messaged marked for automation
using the MPF or the MRT statement (’Y’ AUTOMATE). When using
MSGIFAC=SSIEXT (the default), avoid duplicate automation by ensuring that no
NetView console has the AUTO attribute. If you are using MSGIFAC=SYSTEM,
ensure that only one console has the AUTO attribute. Note that messages affected
by the MRT action NETVONLY are always delivered directly to NetView through
the subsystem router (CNMCSSIR) and not to any console.

Define Each NetView Program to Use Extended Multiple
Console Support Consoles

After the preceding steps are completed, individually migrate each NetView
program to use extended multiple console support consoles. To do so, make
appropriate changes in these two parameters:
v MVSPARM.MSGIFAC parameter in the CNMSTUSR or CxxSTGEN member that

is included in the CNMSTYLE member
v MSGIFAC parameter in the subsystem address space procedure (CNMPSSI)

74 Automation Guide

|
|

For more information about values for the MSGIFAC parameters, see “Comparing
Extended Multiple Console Support Consoles with Subsystem Allocatable
Consoles” on page 71.

Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles 75

76 Automation Guide

Chapter 7. Automation in an MVS Sysplex

This chapter describes an MVS sysplex, some of the advantages, suggestions for
automation in a sysplex, and how to plan for automation in the sysplex.

MVS Sysplex
An MVS sysplex is a configuration of multiple MVS operating systems working as
a single system by sharing functions and programs. An MVS component that
enables these multiple MVS systems to operate as a sysplex is the cross-system
coupling facility (XCF). The XCF provides coupling services so that authorized
programs on one of the MVS systems can communicate, or exchange data, with
programs on the same MVS system or other MVS systems. A major purpose of
XCF is to enable multiple MVS systems to appear to be one system.

With XCF, a multiple-system environment is defined as two or more MVS systems
residing on one or more processors. If there are two or more processors, the
processors must:
v Be interconnected by one or more channel-to-channel (CTC) connections, or one

or more coupling facilities
v Use the External Time Reference (ETR)
v Share an XCF couple data set

The set of one or more coupled MVS systems in a sysplex is given an XCF sysplex
name so that authorized programs in the systems can use the XCF coupling
services. XCF monitors the systems in the sysplex and can remove a failing system
from the sysplex with minimal operator intervention.

In the sysplex, messages can be routed to a console on one MVS system from the
other systems in the sysplex. Also, commands can be routed from a console on one
MVS system to the other systems in the sysplex.

Each console name used in the sysplex must be unique.

Refer to the MVS library for information about planning the management of a
sysplex.

Using NetView Automation in a Sysplex
One important advantage for using NetView automation in a sysplex is that
NetView can receive messages from any or all members of a sysplex and can issue
automatic responses to the appropriate member of the sysplex.

These are some methods for using NetView automation in a sysplex:
v Use extended multiple console support (EMCS) consoles as the mechanism for

delivering MVS system messages, rather than using the subsystem interface.
v Develop a strategy for using different segments of the NetView automation table

to handle messages for different systems in the sysplex. You can add SYSID
condition items to your existing automation table statements to block messages
from certain systems, or to invoke certain automation table actions based on the
system ID.

© Copyright IBM Corp. 1997, 2009 77

v Develop a strategy for naming consoles. The default is to assign console names
to be the same as the operator names, but you can override the default.
For details about the GETCONID and SETCONID commands, see NetView
online help.

Planning for Automation in a Sysplex
Before you can start to plan for automation in a sysplex, you must be familiar with
the planning required for managing a sysplex. Refer to the MVS library for
information about managing a sysplex.

You can also use the Message Revision table (MRT) to perform the functions
provided by the message processing facility (MPF). Additional information about
the Message Revision table can be found in “Message Revision Table” on page 25.

Because a sysplex involves coordinated interaction among several MVS systems,
planning for automation in a sysplex can be an intricate process. To help you in
the planning process, the remainder of this section is divided into major stages.
These stages are units of information presented in the order that you must
consider the information when planning. Consider all of this information carefully.

Stage 1. Become Familiar with EMCS Consoles and How Their
Attributes Affect Message Routing in a Sysplex

Review the information about extended multiple console support consoles given in
Chapter 6, “Automation Using MVS Extended Multiple Console Support
Consoles,” on page 65. Next, consider these items:
v Console names must be unique across the sysplex.
v The value of the MSCOPE console attribute determines the MVS system or

systems from which a console receives messages. Carefully consider these
MSCOPE values in a sysplex, especially if you do not plan to use the NetView
defaults. You can set the MSCOPE value for a console to receive messages from:
– The system on which the console is running
– All systems in the sysplex
– A list of systems within the sysplex

v The CMDSYS console attribute defines which system in a sysplex acts on MVS
commands. With the CMDSYS attribute, a NetView operator can automatically
direct all of that operator’s MVS commands to a particular system of the sysplex.
Consider what function each console has in the sysplex. Consider also that:
– The default CMDSYS setting is the local MVS system; the system on which

NetView is running.
– One operator on a particular NetView program might want to issue

commands to another member of the sysplex, exclusively. Therefore, the
CMDSYS attribute must be set to that system.

Stage 2. Coordinate MPF Actions with the Definitions of EMCS
Consoles

Because the automation of responses to MVS messages is affected by the message
processing facility (MPF) table, coordinate the actions performed in MPF with the
definitions you plan to use for extended multiple console support consoles. For
example, decide which console receives messages marked with the AUTO(YES)
keyword, and decide what MSCOPE values to use. Consider this information:

78 Automation Guide

v Each message is processed by only one MPF table, which is the MPF table in the
system that originated the message. However, the message can be processed by
other facilities, such as the NetView automation table, in the other systems in the
sysplex.

v Defining the MPF tables the same way in all systems in the sysplex is not
necessary, but might be wanted to ease maintenance or if workloads can be
moved from one system to another during recovery actions.

v Define the MPF table for each system to provide processing for all MVS
messages generated on that system. Understand and anticipate the effect of the
additional processing or automation that the messages might undergo on other
systems in the sysplex.

Stage 3. Decide Whether to Centralize Your NetView
Automation on One System of the Sysplex

Although it is usually most efficient to provide automation as close to the source
as possible, you can centralize system automation. If you run JES3, see Chapter 36,
“Job Entry Subsystem 3 (JES3) Automation,” on page 493 for considerations in
centralizing automation in a JES3 environment.

During NetView initialization, if you specify the RTNDEF.BASE.AGENT.sysname
statement that is included in the CNMSTYLE member, the console obtained by the
CNMCSSIR task receives messages from each system that you define.

You can set MSCOPE values for extended consoles so that one system in the
sysplex can receive all system message traffic and provide automated responses.
Use the MVS VARY command or the OPERPARM segment in RACF (or equivalent
system authorization facility) to set the MSCOPE attribute for EMCS consoles.

Your automation actions, command lists, and command processors must use the
MVS ROUTE command to route the automation action back to the appropriate
system. You can determine which system in the sysplex issued the message by
checking the SYSID condition item in the automation table. The SYSID information
is also available to command lists written in REXX and the NetView command list
language or command processors. Refer to IBM Tivoli NetView for
z/OS Programming: REXX and the NetView Command List Language for information
about using SYSID.

If the message traffic is extremely heavy, centralizing your system automation
might not be a good option for your enterprise. Criteria have not been established
for determining how much traffic can be handled with acceptable performance
when using centralized system automation.

How Foreign Messages are Processed
A foreign message is defined as a message that originated in a different system from
the local system in a sysplex. There are various ways to control how foreign
messages are processed. When foreign messages are received by the local system,
they are first passed through any SSI exits that are active, unless the .FORNSSI
MPFLSTxx statement prevents the SSI exit from receiving them. (See the
description of the .FORNSSI statement in the z/OS MVS Initialization and Tuning
Reference, SA22-7592, for more information.) Because Message Revision Table
(MRT) processing occurs during SSI exit processing, actions can be taken for
foreign messages at that time (see Chapter 13, “The Message Revision Table,” on
page 129 for additional information on this topic). MVS then determines which
consoles are to receive the foreign message. If the message is destined for a console

Chapter 7. Automation in an MVS Sysplex 79

|

|

|
|
|
|
|
|
|
|
|
|
|

owned by a NetView operator, the message is delivered there and the message is
considered solicited. If it is not destined for a NetView operator, it is considered
unsolicited and the following are true:
v The NetView SSI determines whether a copy of the message should be

forwarded to the NetView address space. By default, foreign messages are not
forwarded to the NetView address space. This can be overridden by setting
AUTOMATE=Y in the MRT.

v If MSGIFAC is set to SYSTEM, the task with the load module named
CNMCSSIR will receive the message if the message is marked as automatable
and the EMCS console owned by that task has an MSCOPE setting that allows
messages to be received from the originating system. Note that the MSCOPE
value is automatically changed by specifying RTNDEF.BASE.AGENT statements
in the CNMSTYLE member. If no RTNDEF.BASE.AGENT statements are
specified, the default MSCOPE setting is for the local system only.

v In order to reduce the chances of re-revising or re-automating a message, MRT
processing and message automation should be performed as close to the source
of the message as possible.

v Once an unsolicited foreign message is received by the NetView address space,
automation is performed against it as normal.

80 Automation Guide

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

Chapter 8. Automation with the Resource Object Data
Manager

This chapter introduces the Resource Object Data Manager (RODM) and describes
some of the advantages, implications, and planning considerations for using
RODM in automation.

For more information about the object-oriented terms used by NetView to describe
RODM and its data model, refer to the IBM Tivoli NetView for z/OS Resource Object
Data Manager and GMFHS Programmer’s Guide.

Introducing the Resource Object Data Manager
RODM is a data cache that is maintained in high-speed storage. RODM can hold
many types of information about network and system resources. Because RODM
keeps this information in high-speed storage, NetView can retrieve and update the
information faster than if it were held in most other types of storage.

NetView can use RODM and the resource information held in RODM to assist in
network and system automation.

Interactions with RODM
RODM can use programs called methods to perform many functions that retrieve,
update, and manipulate information within RODM. To perform special
user-defined functions in RODM, users can write their own methods and have
RODM call the methods. Users can write methods in either PL/I or C language.
Methods can be called directly from application programs (such as NetView
command processors) or can be triggered automatically when RODM fields (such
as the status of an object) change.

Non-NetView users of RODM can interact with RODM through an application
program interface that RODM provides. Through the API, an application program
can retrieve and update the resource information held in RODM or can call RODM
methods. You can write application programs for RODM in PL/I, C, or assembler
language.

The MultiSystem Manager RODM Access Facility provides a fast and efficient
REXX program interface to RODM. It gives you the ability to create, update, query,
and delete objects from RODM.

NetView command processors can get values from RODM, change information in
RODM, and call RODM methods. You can write NetView command processors in
PL/I, C, or assembler language. REXX programs, NetView automation table
statements and, to some degree, command lists can also call methods and can
change information in RODM by using the ORCONV or the FLCARODM
command.

See Chapter 28, “Automation Using the Resource Object Data Manager,” on page
409 for examples of using method EKGSPPI and the ORCONV command.

© Copyright IBM Corp. 1997, 2009 81

The RODM methods can call any NetView command list or command procedure
by using the EKGSPPI object-independent method. For an example of using
EKGSPPI, see Chapter 28, “Automation Using the Resource Object Data Manager,”
on page 409.

Using RODM in Automation
As an example of how you can use RODM, an application program for RODM can
enable some external event, such as a change in status of a resource, to update the
associated resource information in RODM. This update starts a specific RODM
method. The method, in turn, can compare the updated information with other
information in RODM, according to a predefined algorithm, and issue an
appropriate response. Thus, by maintaining resource information in storage and by
providing rapid access to the information through an API and through some of the
methods, RODM can assist in determining the correct automatic responses to
various network and system events.

Also, an “automation in progress” indicator is maintained in RODM for each
resource affected by automation. This enables operators who are viewing the
resource with the NetView management console to wait until the automation is
complete before attempting to fix a problem with the resource.

For more information about RODM and about writing RODM application
programs and methods, refer to the IBM Tivoli NetView for z/OS Resource Object
Data Manager and GMFHS Programmer’s Guide.

Advantages of Using RODM
RODM can accept and retain many types of information about resources, such as
status, history, and configuration information. With the types and amount of
information retained, more data is available to help in analyzing the causes and
remedies for resource problems. Because RODM retains information in memory,
you can quickly update and retrieve this resource information.

RODM retains information as objects and collections of objects and can associate
objects according to program-defined relationships. Because the relationships
among pieces of information can be specified in RODM, you can determine
interactions between events and use this information in analyzing problems.

You can use RODM methods to provide automatic responses to network and
system events. RODM methods can start NetView routines, and NetView routines
(including automation table statements) can start RODM methods.

Note: You might need to write NetView command lists, NetView command
processors, or NetView automation table statements to retrieve and update
RODM information from NetView.

Planning for Using RODM in Automation
This section describes items to consider as you plan how to use RODM in the
NetView automation of your network and system. Refer to the IBM Tivoli NetView
for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for more
information.

82 Automation Guide

Determining the Types of Events to Produce Automated
Responses from RODM

RODM can produce automated responses to many types of network and system
events. For some events, however, automated responses are best generated by the
automation table alone or by a combination of the automation table and RODM.
You need to determine the best method and best component (or components) to
use for responding to each type of event.

For example, the automation table is best suited for automating responses to
simple, quick events because the automation table is faster than RODM for such
automation tasks and is simpler to code. RODM is best suited for automating
responses to complex events that result from multiple messages or alerts. RODM is
also best suited for automating responses that:
v Require more information to determine an appropriate response than is usually

available with the automation table alone
v Require analysis of conditions before issuing a response
v Can take advantage of the algorithms in existing RODM methods or RODM

application programs

Understanding RODM Automation Capabilities
Before using RODM in automation, review an outline of events (a scenario) that
uses RODM capabilities for automation. For an example of a RODM scenario, see
Chapter 28, “Automation Using the Resource Object Data Manager,” on page 409.

Chapter 8. Automation with the Resource Object Data Manager 83

84 Automation Guide

Chapter 9. NetView Information Routing for Automation

The chapter explains how automation information is routed. These routing details
include topics such as:
v NetView interfaces
v NetView Message Routing
v NetView Hardware-Monitor Data and MSU Routing
v NetView Command Routing

In many cases, NetView message and data flows are complex. However, being
familiar with the general path of information can help you ensure that the
messages and MSUs you want to automate go to the automation facility.

For example, you might want the automation table to generate automatic responses
to network management vector transports (NMVTs) from the VTAM program’s
communication network management (CNM) interface. To do so, ensure that
nothing impedes the flow of NMVTs to the automation table.

Another use of routing information is to determine what happens when two
NetView facilities specify conflicting attributes for a single message or MSU. For
example, an MSU might go to the hardware monitor, then to the automation table,
then to installation exit DSIEX16B. Knowing that exit DSIEX16B processes the data
last can help you determine that the attributes set by the exit take priority.

NetView Interfaces
NetView automation can monitor data-processing events by receiving messages,
MSUs, and other data from a variety of sources. Similarly, NetView can issue
commands to many different targets and destinations. Figure 9 on page 86 shows
commonly used interfaces for receiving event notifications and issuing commands.
See Chapter 2, “Overview of Automation Products,” on page 21 for diagrams that
elaborate on the interface to the operating system.

© Copyright IBM Corp. 1997, 2009 85

Interfaces to the Operating System
To implement system automation, begin by giving NetView access to information
that describes the state of the operating system, subsystems, and applications. Also
set up NetView to send commands to the system and receive command responses.
You can enter commands and receive responses using the subsystem interface or
extended multiple console support (EMCS) consoles. Other interfaces that you can
use for system automation include:
v System Automation for OS/390 Processor Operations can intercept traffic on

system consoles.
v The NetView terminal access facility (TAF) can intercept messages from other

applications, including system applications, to their own consoles.
v Local devices of MVS can pass certain types of system problem notifications to

NetView for processing.
v The MS transport and the high-performance option of the MS transport allow

LU 6.2 communication between two applications. One use of the transports is to
pass information between a system application and NetView.

v The program-to-program interface accepts MSUs from system applications
running with NetView on the same system and can pass them to the NetView
hardware monitor or to the automation table.

External
Database

NetView
Consoles

VTAM

LUC
session

OST

CNMI POI Service
point

High
performance
transport

MS
transport

TSCF

NetView
Processing
Facilities

Target
system

Non-SNA
network

TAF
session

Bridge

OST-NNT
session

System
commands

System
messages

PPI

MCS
Consoles (MVS)

Other
NetView
programs

Other
nodes

RMTCMD

Autotask

Interface to operating system

Local device
records (MVS)
or IUCV (VM)

Other
VTAM
applications

Figure 9. NetView Interfaces Used in Automation

86 Automation Guide

If you intend to automate your system, ensure that the messages and other
information you want to automate come to NetView.

See Chapter 2, “Overview of Automation Products,” on page 21 for an overview of
the relationship between the operating system and NetView in system automation.

For step-by-step information about how to set up system communication, see
“Establishing Communication between NetView and the Operating System” on
page 293.

If you need system flow information in more detail, see Appendix D, “MVS
Message and Command Processing,” on page 525.

Interfaces to Other NetView Programs
With these interfaces, you can send information between two systems running
NetView:
v The RMTCMD command, for sending commands to other NetView programs

and receiving any messages generated in response
v OST-NNT sessions, an alternative way of sending messages and commands

between NetView programs
v LUC sessions, for forwarding alerts or status information to a focal point

You can also use TAF sessions, the MS transport, and the high-performance option
of the MS transport for NetView-to-NetView communication. See Chapter 26,
“Centralized Operations,” on page 375 for a discussion of NetView-to-NetView
communication.

Other Message and Command Facilities
Other NetView facilities for receiving messages and sending commands include:
v The program operator interface (POI) for VTAM messages
v NetView Bridge for communication with Information/Management and other

external databases

Interfaces for Hardware-Monitor Data and MSUs
NetView enables direct automation of MSUs. You can also automate
hardware-monitor data other than MSUs, by first converting them to messages.
Hardware-monitor data and MSUs come to NetView from these sources:
v The communication network management interface (CNMI), for problem records

from an SNA network
v Service points for NMVTs from non-SNA sources
v Local devices, for problem records from the operating system
v The program-to-program interface, for MSUs from other applications running

with NetView on the same system
v The LU 6.2 transports, for MSUs from LU 6.2 applications

NetView Message Routing
After NetView receives a message, NetView routing facilities control the
destination of the message within NetView. You can use routing facilities to choose
the operators who see the message or the autotasks that process it. To control
message routing effectively, you must understand the distinction between solicited
and unsolicited messages. You must also be familiar with the major routing

Chapter 9. NetView Information Routing for Automation 87

facilities and the path of a message through NetView. If you need more
information about message paths, see Appendix F, “Detailed NetView Message and
Command Flows,” on page 539.

NetView treats a message as solicited if a specific destination for the message is
known; otherwise, the NetView program treats the message as unsolicited.

Solicited Messages
NetView queues solicited messages to the known destination task: a NetView
operator, an autotask, or a NetView-NetView task (NNT). These are examples of
solicited messages:
v Responses to NetView commands.
v MVS system messages delivered directly to a NetView operator station task

(OST) that has obtained an EMCS console.
v Responses to system commands issued from a NetView operator console. See

“Command Flow” on page 527 for details about how solicited messages are
returned in response to system commands.

v Responses to VTAM commands.
v Messages issued from a terminal access facility (TAF) operator-control session

with an application such as CICS or Information Management System (IMS),
including all messages received from those applications on a TAF session.

v Messages issued as a result of an &CONTROL ALL, &CONTROL ERR, or
&CONTROL CMD specification in a NetView command list language command
list.

v Messages issued as a result of an &WRITE or &BEGWRITE statement in a
NetView command list language command list.

v Messages issued as a result of a TRACE or SAY instruction in a NetView REXX
command list.

v Messages issued by the NetView MSG command or the MVS and TSO SEND
commands.

System messages from MVS can be either solicited or unsolicited. See “Unsolicited
Messages from MVS” on page 89 for a description of unsolicited MVS system
messages.

Unsolicited Messages
A message is unsolicited if a specific destination task is not known. For example,
VTAM might send a message to NetView that is unrelated to any request by
NetView, through the primary POI (program operator interface). The NetView
program also regards a message as unsolicited if it is directed to the primary POI
task (PPT), because the PPT cannot display messages. An MVS message that is a
response to a command issued by the PPT routed through the subsystem interface
is also regarded as unsolicited.

However, an MVS message routed through an EMCS console is considered
solicited. Unlike solicited messages sent to any other task, these solicited messages
can be processed with the ASSIGN PRI and ASSIGN SEC commands.

Note: The hardware-monitor submits only unsolicited MSUs to automation.

The Authorized Receiver
Because there is no specific destination task for an unsolicited message, NetView
routes all unsolicited messages to the authorized receiver, unless you use the

88 Automation Guide

ASSIGN command or the automation table to provide a destination. The
authorized receiver is simply a NetView operator you have authorized to receive
unsolicited and authorized messages that do not have another destination.

Use the AUTH statement in an operator profile to determine the authority of a
particular operator. All operators with AUTH MSGRECVR=YES in their profiles
are permitted to be the authorized receiver. However, NetView has only one
authorized receiver at a time.

Unsolicited Messages from a DST
Unsolicited messages from a data services task (DST) go to the task that started the
DST (if it is still active), rather than to the authorized receiver. Although the
ASSIGN command cannot affect routing of unsolicited DST messages, the
automation table can affect the routing.

Unsolicited Messages from MVS
Unsolicited messages received from MVS are not sent to the authorized receiver.
You can use the ASSIGN command to re-route these messages to another task. See
“Using ASSIGN to Route Solicited Messages” on page 92 for more information
about the ASSIGN command.

If you do not use the ASSIGN command, the CNMCSSIR task scans the
automation table for each unsolicited message. The scan might result in a match in
the automation table.

If one of the actions specified for the matching statement is to run a command and
if the command is not routed to a logged-on task, the command specified in the
automation table statement is ignored and a DWO050E message related to Invalid
cmd: is added to the netlog.

If an operator is specified with the ROUTE action in the automation table, the
command runs under that operator task instead of under the task that started
CNMCSSIR.

If you are using EMCS consoles, all MVS system messages received by the
CNMCSSIR task are unsolicited messages. System messages received by any other
NetView operator task are solicited messages.

Message Routing Facilities
You can control message routing in NetView with installation exits, the automation
table, and the ASSIGN command, the MSGROUTE command, and the Pipes
ROUTE command. For MVS systems with EMCS consoles, you can also set your
EMCS console attributes to control message routing. For example, you can route
messages to an EMCS console based on the message route code. The MVS system
messages with that route code are directly delivered to the NetView task that
obtained the EMCS console.

Attention: If you use route codes to route messages directly to EMCS consoles,
duplicate automation of some messages can result. For more information, see
Chapter 6, “Automation Using MVS Extended Multiple Console Support
Consoles,” on page 65.

Chapter 15, “The Automation Table,” on page 149 and Chapter 17, “Installation
Exits,” on page 287 describe the automation table and installation exits,
respectively. These sections discuss the ASSIGN command, the MSGROUTE
command, and routing messages based on route codes.

Chapter 9. NetView Information Routing for Automation 89

Routing Messages with the ASSIGN Command
These sections describe how to use the ASSIGN command. For most message
routing, use the automation table rather than using the ASSIGN command, as
discussed in “ASSIGN Command Versus Automation Table Routing” on page 93.
However, the ASSIGN command is useful for such things as assigning operators to
groups and routing messages to autotasks to speed up automation.

The MVS system messages that are delivered directly to EMCS consoles in use by
NetView OSTs are considered solicited, and therefore are not subject to ASSIGN
PRI and ASSIGN SEC processing. There is one exception: If the PPT has an EMCS
console, the solicited messages sent to the PPT can be processed with ASSIGN PRI
and ASSIGN SEC. The MVS system messages that are delivered to the EMCS
console obtained by the CNMCSSIR task are considered unsolicited messages.

Assigning Messages to Operators
The MSG option enables you to direct copies of solicited, unsolicited, or authorized
messages to:
v A particular operator
v A group of operators
v The system operator (SYSOP)
v The network log (LOG)

The ASSIGN command enables the operator to change message routing without
editing and reloading the automation table.

Assigning Operators to Groups
The GROUP option enables you to assign a list of operators to a particular group.
You can then use the operator group with other ASSIGN commands, with the
MSGROUTE command in a command list, and with the EXEC(ROUTE) action in
the automation table.

If you specify ROUTE(+groupname) in the automation table to route a message to a
group, you can change the list of operators who receive the message by changing
the contents of the group. You can issue the ASSIGN command with the GROUP
option whenever you need to modify the list of operators belonging to a particular
group.

Note: Because assignment changes are difficult to monitor, when you are setting
the ASSIGN Options, consider authorizing operators to issue only the
GROUP option. You can use the NetView LIST command to monitor what is
assigned at any given time.

For more information, refer to the IBM Tivoli NetView for z/OS Security
Reference.

Using ASSIGN to Route Unsolicited Messages
With the PRI option of the ASSIGN command, you can specify a list of operators
to receive unsolicited or authorized messages. You can specify:
v An operator
v An autotask
v A list of operators and autotasks
v A group ID
v The system operator (SYSOP)
v The network log (LOG)

90 Automation Guide

Only one operator receives each message. If you specify a list or a group ID, only
the first operator in the list or group that is logged on receives the message.

The message sent to the primary receiver is flagged with a percent sign (%) in the
last position of the DOMAINID field. NetView displays the percent sign on the
screen with the message and also records the percent sign in the network log. The
percent sign does not appear in the HDRDOMID field of BUFHDR.

Installation exits that need to determine whether a message is a primary copy must
check the IFRAUPRI and IFRAUSEC fields of the internal function request.

If you issue the ASSIGN command for a message with PRI=SYSOP or PRI=LOG,
the NetView automation table does not process the message.

With the SEC option of the ASSIGN command, you can specify a list of operators
to receive secondary copies of the unsolicited or authorized messages. Before you
can generate SEC copies, you must have a PRI assignment for a message.

All operators, or groups of operators, in the SEC list receive the message if:
v They are logged on
v At least one operator in the PRI list is logged on

The message sent to the SEC receiver is flagged with an asterisk (*) in the last
position of the DOMAINID field. NetView displays the asterisk when displaying
the message and also places the asterisk in the network log. The asterisk does not
appear in the HDRDOMID field of BUFHDR.

Installation exits can check the IFRAUSEC field in the automation internal function
request (AIFR) to determine whether a message is a secondary copy.

If no primary receiver is logged on, NetView continues as if you had not made an
assignment. The routing of the message does not change, and a secondary copy of
the message does not go to secondary receivers. To ensure that a message
assignment does take effect and that secondary copies go to secondary receivers,
you might want to include several operators on the PRI list or use a stable
autotask as one of your primary receivers.

These points apply to secondary copies:
v They are not subject to automation table processing unless they are routed

cross-domain to another NetView operator. Secondary copies routed
cross-domain are subject to automation table processing in the cross-domain
NetView program.

v They are subject to WAIT processing in command procedures.
v They are useful for displaying messages to several operators.

You can use the ASSIGN command to route unsolicited messages. The command
in Figure 10 routes all unsolicited messages to the first operator who is specified on
the PRI option and who is logged on.

ASSIGN MSG=*,PRI=(OPER1,AUTO1),SEC=(NETOP1,LOG)

Figure 10. Using the ASSIGN Command to Route Unsolicited Messages

Chapter 9. NetView Information Routing for Automation 91

NetView logs each copy in the network log unless you indicate otherwise in
installation exit DSIEX04. In the previous example, because LOG is specified in the
SEC list of operators, duplicate logging occurs unless OPER1, AUTO1, and
NETOP1 have suppressed logging.

Using ASSIGN to Drop Unsolicited Messages
You can also use the DROP option of the ASSIGN command with the MSG option
or the GROUP option. When used with the MSG option, DROP=AUTH drops the
specified messages from the PRI and SEC assignments. For example if you type the
command shown in Figure 11, the system does not drop all assignments; it drops
the assignments you made using MSG=*. (AUTH is the default value and does not
have to be specified.)

Using ASSIGN to Route Solicited Messages
With the COPY option of the ASSIGN command, you can specify a list of operators
who receive a copy of a solicited message. You can specify:
v An operator
v A list of operators
v A group ID
v The system operator (SYSOP)
v The network log (LOG)

Copies of the solicited message go to all recipients who are in the copy list and are
logged on.

The message sent as a copy is flagged with a plus sign (+) in the last position of
the DOMAINID field. NetView displays a plus sign on the screen when the
message is issued and also places a plus sign in the network log. The plus sign
does not appear as part of the HDRDOMID field of BUFHDR. Installation exits can
check the IFRAUCPY field of the internal function request to determine whether a
solicited message is a copy.

These points apply to copies generated by the ASSIGN COPY option:
v They are not subject to automation-table processing unless they are routed

cross-domain to another NetView operator. Such copies are subject to
automation table processing in the cross-domain NetView program.

v They are subject to WAIT processing in command procedures.

The first command in Figure 12sends copies of all solicited messages to both
NETOP1 and OPER1 (if they are logged on).

If you issue the ASSIGN command with DROP=COPY, the COPY assignments are
dropped for the specified messages. The second command in Figure 12 drops those
messages assigned with MSG=* from the COPY assignment, type ASSIGN
MSG=*,DROP=COPY.

Using ASSIGN to Route Messages to Autotasks
If your automation slows because many messages are queued on a single task,
waiting for automation table processing, you can use the ASSIGN command to

ASSIGN MSG=*,DROP=AUTH

Figure 11. Using the ASSIGN Command to Drop Unsolicited Messages

ASSIGN MSG=*,COPY=(NETOP1,OPER1)

Figure 12. Using the ASSIGN Command to Route Solicited Messages

92 Automation Guide

split the messages among several tasks. In this case, you can still use the
automation table for final routing of the message.

Note: The ASSIGN command cannot route messages to an optional task. See
“Actions” on page 211 for details.

Using ASSIGN with Automation Logic
Independently from the specification of the destination of the ASSIGN command,
you can apply automation logic to determine whether messages are routed to their
assigned destination. When used with the MEMBER option, the ASSIGN command
can be used to denote a DSIPARM member or PIPE message data that has
automation table statements. These statements are compiled into an automation
table. When messages pass through this table, it is determined whether they satisfy
ASSIGN routing criteria. For more information on the ASSIGN command, refer to
the IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N) or the online
help.

Using the REFRESH and ASSIGN Commands for Dynamic
Operator Control
Using the REFRESH command, you can dynamically delete operators and
dynamically add operators without predefining the operators to NetView. The
ASSIGN command enables you to assign messages to operators that are not
presently defined to NetView. If you assign messages to an operator before you
define the operator to NetView, you receive a message informing you that the
operator specified in the ASSIGN command is not presently defined to NetView.
The assignment is then completed successfully.

When the defined operator logs on, the operator begins receiving messages.
Regardless of whether an operator is defined to NetView, messages assigned to
operators that are not logged on are delivered to the next assigned operator or to
the original destination.

If an operator definition is deleted using the REFRESH command, the operator
session continues until that operator logs off. Messages assigned to operators that
are logged on but no longer defined to NetView are still delivered to that operator.

ASSIGN Command Versus Automation Table Routing
You can use the ASSIGN command to route solicited and unsolicited messages.
ASSIGN is most useful for assigning operators to groups, for preliminary routing
of messages to autotasks to get messages to the automation table faster, and for
assigning messages to the system operator. Otherwise, it is usually preferable to
use the automation table for message routing, for these reasons:
v Message routing with the ASSIGN command occurs in a specific-to-general

order, regardless of the order in which you issue ASSIGN commands. Figure 13
shows examples.

Notice that the routing specified in the second command occurs first because
IST5* is more specific than IST*. If a third ASSIGN command, such as this
example, is issued to undo the message routing specified in the first ASSIGN
command, the second ASSIGN command is still processed.
ASSIGN MSG=IST*,DROP

ASSIGN MSG=IST*,PRI=(VTAMOPER,AUTO1)

ASSIGN MSG=IST5*,PRI=(VTAMOPER,AUTO2)

Figure 13. General and Specific Message Routing

Chapter 9. NetView Information Routing for Automation 93

An operator who wants to drop all ASSIGN commands for IST messages needs
to know about the second command as well as any other commands issued for
IST messages. The operator can then issue the appropriate commands to drop
the ASSIGN commands.
When several different operators, command lists, and command processors are
issuing ASSIGN commands, they are not necessarily aware of other assignments.
Therefore, message routing with the ASSIGN command can be difficult to
monitor. With the automation table, message routing is centralized, and thus is
easier to monitor.

v If you route all messages with the automation table, the table is easier to
maintain because all of the routing instructions are in one file or set of files. You
are less likely to create conflicting route instructions and can correct them more
easily if you do.

v When you route messages with the NetView automation table, you usually do
not need to be concerned about whether messages are solicited or unsolicited.
However, you can use the automation table to identify whether messages are
solicited if you desire. Bit 16 of IFRAUIND indicates whether the NetView
program treats a message as unsolicited. You can use the IFRAUIND automation
table action to check this bit.

Routing Messages with the MSGROUTE Command
You can use the MSGROUTE command to direct copies of messages to:
v A particular operator or autotask
v A group of operators
v The system operator (SYSOP)
v The NetView hardcopy log
v The network log (LOG)

You can issue the MSGROUTE command from a command list initiated from the
NetView automation table. Like the NetView automation table, MSGROUTE can
set such actions as BEEP or DISPLAY for the message. However, actions specified
on the MSGROUTE command cannot override the actions specified in the NetView
automation table for a given message. NetView does not send the message to the
automation table again when the message is routed with the MSGROUTE
command. However, if a copy is routed cross-domain, the cross-domain
automation table processes the message.

Using the MSGROUTE command can help you decide where to route a message or
what action to take without more information. For example, you can review a
command list to check the second line of a multiline message before deciding
where to route the message.

Routing Messages to EMCS Consoles Based on Route Codes
To route MVS system messages based on their route codes, set up your EMCS
consoles to receive the route code or codes that interest you. To route messages
based on route codes, also eliminate any duplicate message automation.

Specifying the Route Codes
You can use the Resource Access Control Facility (RACF) OPERPARM segment or
the ROUT keyword on the MVS VARY command to specify the route codes you
want to receive at an EMCS console. NetView treats these messages as solicited
messages because by requesting a specific route code, you have given the messages
a known destination.

94 Automation Guide

Eliminating Duplicate Automation of Messages
By default, all messages marked AUTO(YES) or AUTO(token) in the MVS message
processing facility (MPF), or which are subject to NETVONLY or REVISE(″1″
AUTOMATE) revision table actions or similar, are delivered to the EMCS console
obtained by the CNMCSSIR task. Also, by default, no MVS system messages are
routed to this console based on route code. Refer to the IBM Tivoli NetView for
z/OS Security Reference for information about attributes for EMCS consoles.

If you use route codes to send messages directly to EMCS consoles, some messages
might be automated twice because they are also delivered to other EMCS consoles
based on other routing criteria. Examine the attributes of every EMCS console in
your system to avoid duplicate automation.

The best way to avoid duplicating automation is to avoid using route codes to
send messages directly to EMCS consoles. However, if you do use route codes to
send messages directly to EMCS consoles, you can use the automation table to
help avoid duplicate automation.

Some causes of duplicate automation include:
v Action messages routed to multiple operators
v Command lists called more than once for a single message

You can use NetView automation table condition items such as OPID and
ROUTCDE to ensure that specific automation actions are performed only once for
a given message.

Message Routing Flow
The message routing flow in NetView is:
1. DSIEX17 processing
2. PIPE CORRWAIT
3. ASSIGN PRI/SEC processing
4. Authorized receiver processing
5. DSIEX02A processing
6. Wait processing
7. Automation table processing
8. DSIEX16 processing
9. ASSIGN COPY processing

10. Discard or display processing

Table 3 on page 96 shows the routing steps for these message types:
v Unsolicited messages from the MVS subsystem interface
v Other unsolicited messages
v Solicited messages

Read the table as if a message enters the top and flows down through the table. If
the classification of a message changes, the flow of the message continues in the
new column of the table without repeating any steps already taken. NetView
invokes the automation table and each installation exit only once for each original
message.

For example, an unsolicited message from VTAM flows through the steps in the
All Other Unsolicited Messages column. The unsolicited message undergoes

Chapter 9. NetView Information Routing for Automation 95

ASSIGN (PRI/SEC), authorized receiver, DSIEX02A, and automation-table
processing. Suppose that the automation table routes the message to an autotask.
Thereafter, NetView treats the message as solicited. The message flow proceeds as
described in the All Other Solicited Messages column without repeating any of the
processing that has already taken place. The solicited message undergoes wait,
DSIEX16, ASSIGN(COPY), logging, and display processing.

Table 3. NetView Message Routing

Step
Unsolicited
MVS Messages

All Other
Unsolicited
Messages

Solicited MVS
Messages

All Other
Solicited
Messages

DSIEX17 * *

PIPE CORRWAIT Note 2 Note 2

ASSIGN (PRI/SEC) * *

Authorized Receiver *

DSIEX02A * * * *

Wait Processing Note 1 Note 1 * *

NetView Automation
Table

* * * *

DSIEX16 * * * *

ASSIGN (COPY) * *

Logging * * * *

Display to NetView * *

Display to System * * *

Discard *

Notes:

1. Wait processing for unsolicited messages occurs only when the message is routed to a
task that is waiting.

2. When a message is solicited by a command in a pipeline, all subsequent routing is
superseded and does not occur. If the pipeline re-issues the message, it is treated like a
non-MVS solicited message.

DSIEX17 Processing
Installation exit DSIEX17 is called to process all inbound MVS messages, solicited
or unsolicited, or delete operator messages (DOMs). This exit can change, replace,
or delete messages before the automation table is invoked. This exit enables you to
delete a message or a DOM.

PIPE CORRWAIT
You can use the CORRWAIT stage of the NetView PIPE command to identify
messages that:
v Are in response to a command issued from the pipeline
v Are to be processed by the pipeline

Messages are marked by exposure to installation exit DSIEX02A, ASSIGN routing,
and automation. If a message has been through any of these steps and is later

96 Automation Guide

captured by a pipeline and reissued, it is not re-exposed to the same steps. Refer to
exceptions under the ONLY option of the CONSOLE stage in the IBM Tivoli
NetView for z/OS Programming: Pipes.

ASSIGN PRI/SEC Processing
ASSIGN PRI/SEC processing can be used only on unsolicited messages. If you are
using EMCS consoles, MVS system messages that, based on route codes, are
delivered directly to NetView OSTs are considered solicited messages; therefore,
these messages are not subject to ASSIGN PRI/SEC processing. Solicited MVS
system messages sent to the PPT can be processed with ASSIGN PRI and ASSIGN
SEC.

When you use EMCS consoles, the only unsolicited MVS system messages are
those delivered to the CNMCSSIR task. Unsolicited messages are checked to
determine if they are assigned to a primary receiver.

A primary receiver is an operator or autotask to which you have assigned the
message with the PRI operand of an ASSIGN command. If a primary receiver is
logged on, the message is assigned to that operator ID. Secondary copies of the
message are then created for any operators specified in the SEC operand of the
ASSIGN command. Secondary copies are not subject to automation table
processing, except that secondary copies routed to a cross-domain NetView
program are processed by the automation table of the cross-domain NetView
program.

Authorized Receiver Processing
Unsolicited messages for which no primary receiver was found are directed to the
authorized receiver, if one is available.

However, unsolicited messages going to a DST go to the task that started the DST
in preference to the authorized receiver, if the DST was started by a task that is
still active. Also, NetView does not send unsolicited messages from MVS to the
authorized receiver.

DSIEX02A Processing
Installation exit DSIEX02A is called to process standard output to an operator’s
terminal. It can change, replace, or delete messages before the automation table is
invoked.

If this exit deletes a message (with the USERDROP return code from the exit or by
setting the IFRAUTBA field to B'0'), NetView does not search the automation table
for that message or call exit DSIEX16.

If DSIEX02A sets the IFRAUMTB bit on for a message, NetView does not search
the automation table for the message. However, DSIEX16 processes the message.
For more information about DSIEX02A, see Chapter 17, “Installation Exits,” on
page 287.

Wait Processing
After DSIEX02A processing, all routed messages are checked to determine if they
satisfy an outstanding wait condition for a command procedure operating under
the task to which the message was routed.

Chapter 9. NetView Information Routing for Automation 97

Command procedures written in PL/I, C, REXX, and the NetView command list
language allow you to suspend processing while waiting for a particular message
or group of messages. PL/I, C, and REXX command procedures use the TRAP and
WAIT commands for this function. The NetView command list language uses
&WAIT.

Messages that are subject to wait processing include:
v All messages solicited by an operator or autotask
v Copies of solicited messages created with ASSIGN COPY
v Unsolicited messages assigned to an operator or autotask with ASSIGN PRI or

authorized receiver processing
v Secondary copies of unsolicited messages created with ASSIGN SEC

If the message satisfies the wait condition, processing of the waiting command
procedure resumes. If you do not suppress the message at this point it continues
with the message flow. If you suppress the message, however, NetView marks it
for deletion. In this case, automation-table processing does not occur and NetView
does not display or log the message. The message does go to installation exit
DSIEX16. You can suppress messages in a PL/I or C command processor or REXX
command list with TRAP and SUPPRESS. In the NetView command list language,
you can use the &WAIT SUPPRESS statement.

Messages rerouted by the automation table can undergo wait processing a second
time on the new task, as explained in “Automation-Table Processing.”

Automation-Table Processing
Except for messages written directly to the network log, solicited and unsolicited
messages from all sources are subject to automation table processing for the
original instance of the message. Copies of the message produced by the ASSIGN
command with the SEC or COPY operands, by the MSGROUTE command, or by
the ROUTE keyword in the automation table itself are not subject to
automation-table processing. However, if you route a copy cross-domain, the
automation table in the other domain processes the message.

Routing Messages
In automation-table processing, the ROUTE keyword can reroute an unsolicited
message that you previously routed with ASSIGN PRI or authorized receiver
processing. Similarly, you can change the automatic assignment of a solicited
message to add other receivers or even to eliminate the original receiver. Copy
assignment for solicited messages is not affected. Copies always go to the
operators you specified with the ASSIGN COPY command.

You can code automation-table statements that direct messages or commands to
any combination of operators, autotasks, operator groups, and the PPT. Routed
commands can include command processors and command lists. The list of
operator IDs that are to receive the message does not have to be the same as the
list of operator IDs that are to process the commands you are issuing in response.

Assume that a message with an ID of DSI374A is ready to undergo
automation-table processing and that the statement in Figure 14 on page 99 is in
your automation table.

98 Automation Guide

In this example, copies of message DSI374A are to be sent to OPER1, OPER2, and
the operator associated with the message when it entered automation-table
processing. Copies of messages created by the ROUTE keyword in the automation
table and sent to a new task are subject to wait processing on the new task, as
described in “Wait Processing” on page 97.

If a message has no match in the automation table, it goes to the receiver that was
associated with that message when it entered automation-table processing. For a
solicited message, that receiver is the task whose input generated the message. For
an unsolicited message, that receiver is a primary receiver you assigned for the
message if you assigned primary receivers and one of them is logged on.

For an unsolicited MVS system message with no primary receiver, the CNMCSSIR
task scans the automation table. If a match exists, any command issued using
EXEC(CMD) must be routed to a specific task using the ROUTE keyword. If no
ROUTE keyword exists, the message is routed to the task that started the
CNMCSSIR task. If the task that started the CNMCSSIR task is no longer active or
if the CNMCSSIR task was started with INIT=Y in the CNMSTYLE member, the
message is discarded, and the automation action is not processed.

For an unassigned message from a DST, the default receiver can be one of these
items:
v The task that started the DST (if that task is logged on)
v The authorized receiver (if there is one)
v The system console operator

Other unsolicited messages (without a primary receiver assigned) go either to the
authorized receiver or to the system console operator.

Setting Message Attributes
The automation table can check or set the color and highlighting attributes of the
messages. The automation table can set attributes, such as logging and display
characteristics, for messages.

These automation table settings take precedence over attributes specified with the
NetView DEFAULTS command. Except for message color and intensity as set with
the SCRNFMT keyword, attributes specified with the NetView OVERRIDE
command take precedence over the automation table settings.

DSIEX16 Processing
NetView calls installation exit DSIEX16 after a message is considered for
automation. The exit allows the user to change message text and processing
options.

For more information about DSIEX16, see Chapter 17, “Installation Exits,” on page
287.

ASSIGN COPY Processing
After automation-table processing, NetView makes a copy of a solicited message
for each designated operator if an ASSIGN COPY command is in effect. The copies
take their display and logging attributes, such as DISPLAY, NETLOG, and BEEP,

IF MSGID='DSI374A' THEN
EXEC(ROUTE(ALL OPER1 OPER2 *));

Figure 14. MSGID Statement in Automation Table

Chapter 9. NetView Information Routing for Automation 99

|

from the original instance of the message. Therefore, an automation table entry for
the original message can also affect the copies made using the ASSIGN COPY
command.

Secondary copies, created by the SEC operand for unsolicited messages, have
NetView system defaults (unless you change the defaults with a DEFAULTS or
OVERRIDE command). Copies created by the ASSIGN COPY process undergo the
wait processing described in “Wait Processing” on page 97.

Discard or Display Processing
NetView either discards or displays a message after completion of routing.
NetView discards all unsolicited MVS system messages if they have not been
rerouted. Regardless of the operating system, the NetView program displays all
other unsolicited messages and all solicited messages unless an installation exit or
the automation table has turned off the display option for a message or messages.

NetView Hardware-Monitor Data and MSU Routing
This section describes the flow of data to the hardware monitor and the flow of
MSUs to automation. You have several ways of sending data to the hardware
monitor:
v Forwarding an alert from one NetView program to another over an LUC session
v Sending a multiple domain support message unit (MDS-MU) over the MS

transport to the ALERT-NETOP application
v Sending a control point management services unit (CP-MSU) or network

management vector transport (NMVT) to the hardware monitor over the
program-to-program interface

v Receiving a hardware-monitor problem record (NMVT, record maintenance
statistics [RECMS], or record formatted maintenance statistics [RECFMS]) over
the CNM interface

v Using the GENALERT command to generate a hardware-monitor record from
within NetView

v Receiving a system-format record for the hardware monitor (OBR, MDR, MCH,
CWR, or SLH) from local MVS devices

Many of the records that the hardware monitor receives go to the automation table
during normal processing. The automation table can change filtering and
highlighting attributes or issue automatic responses. Specifically, the records that
go to the automation table are NMVTs, CP-MSUs, MDS-MUs, RECMSs, and
RECFMSs, collectively known as MSUs. The hardware monitor sends only MSUs
containing:
v Alerts, key X'0000'
v Link events, key X'0001'
v Resolution, key X'0002'
v PD statistics, key X'0025'
v RECMSs, encapsulated in a X'1044'
v RECFMSs, encapsulated in a X'1045'
v Link configuration data, key X'1332'

A routing and targeting instruction GDS variable (key X'154D') can go to the
automation table attached to an alert or resolution major vector. The hardware
monitor converts certain other major vectors, such as many link events (key
X'0001'), into alert major vectors. In these cases, the original major vector and the
converted alert major vector go to the automation table.

100 Automation Guide

NetView also enables you to send MSUs to the automation table directly without
sending them through the hardware monitor. This capability can help you if, for
example, you want to automate an MSU that does not contain a major vector that
is automatically sent through the automation table.

To send an MSU directly to automation, use the CNMAUTO service routine for
PL/I or C, or the DSIAUTO macro for assembler. Alternatively, use the MS
transport interface and direct an MSU to the generic automation receiver
(NVAUTO). The generic automation receiver is an application that simply presents
an MSU to the automation table and then discards the MSU.

Figure 15 on page 102 shows the interfaces for sending problem records to the
hardware monitor, the interfaces for sending MSUs to automation, and the path
the data takes in each case. In the figure, each multiple domain support message
unit (MDS-MU) going into the hardware monitor must contain a control point
management services unit (CP-MSU). CP-MSUs going from the hardware monitor
to the automation table must contain a major vector that is supported for
automation. A description of the major steps is illustrated in Figure 15 on page 102.

Chapter 9. NetView Information Routing for Automation 101

LUC
session

MS
transport

CNM
interface

GENALERT
command

Program-
to-program
interface

CP-MSU
or NMVT

NMVT,
RECMS,
or RECFMS

NMVT or
RECFMS

System Format
(OBR, MDR, MCH,
CWR, or SLH)

MDS-MU

NMVT NMVT in MDR Other system format

CP-MSU

MS
application
(such as
EP-ALERT)

XITCI exit
for DSICRTR

CNM router
(DSICRTR Task)

ALERT-NETOP
MS application

XITCI exit
for BNJDSERV

ApplicationMS application

CNMAUTO
or DSIAUTO
function

MS
Transport

Generic
receiver
(NVAUTO)

MDS-MU

-
-

Initial Hardware Monitor Processing
A CP-MSU with more than one major vector is split up.
Alert attributes, such as filtering and highlighting
options, receive initial settings based on SRFILTER
commands you have issued.

Alert is put
in a CP-MSU.

-

Automation
table

DSIEX16B
exit

AIFR is
built.

-

CP-MSU

NMVT, CP-MSU
or MDS-MU

Continued Hardware Monitor Processing
Depending on a record's current filter settings, the
hardware monitor can record an event and an alert.
Viewing filters determine who can view the alert.

-

The alert goes to another NetView
program if the alert's filter settings
now specify forwarding and the alert
has not been previously forwarded.

--

- Processing for the MDS-MU ends.

- Control returns to the application.

Operator or
application

Local
hardwareApplication VTAM

Local device
records

Forwarded alert
originally
in an NMVT,
CP-MSU, MDS-MU,
RECMS, or RECFMS

Another
NetView
program

NetView program generates BNJ146I
amd BNJ030I messages, if the
alert's filter settings now
specify message generation.

NMVT, CP-MSU, MDS-MU,
RECMS, or RECFMS

System format or forwarded
alert originally of one of
these types

Figure 15. Flow of Data to the Hardware Monitor and MSUs to Automation

102 Automation Guide

ALERT-NETOP Application
ALERT-NETOP, which is an MS application that is supplied with the NetView
program, receives MSUs and passes them to the hardware monitor.

XITCI Processing
NetView calls installation exit XITCI for the BNJDSERV task whenever the
hardware monitor receives an MSU or other problem record. If the problem record
comes through the CNM router, NetView also calls exit XITCI for the DSICRTR
task.

Either XITCI installation exit can change, replace, or delete the problem record.
Any alert forwarded by an LUC session from another NetView domain is in a
special forwarding format at this point. For more information about the XITCI exits
or the forwarding format, refer to IBM Tivoli NetView for z/OS Programming:
Assembler and to IBM Tivoli NetView for z/OS Programming: PL/I and C.

Initial Hardware-Monitor Processing
When you send a CP-MSU through the ALERT-NETOP application to the
hardware monitor, either alone or in an MDS-MU, the CP-MSU can contain more
than one major vector. If so, the hardware monitor first splits the data into separate
CP-MSUs containing one major vector each. Thereafter, NetView processes each
major vector separately. If the CP-MSU being split is in an MDS-MU, each of the
new CP-MSUs goes in an MDS-MU with the same header information as the
original. There are two exceptions:
v Basic encoding rules (BER)-encoded data that does not go through automation

Specifically, major vector X'000F' followed by a X'130F' major vector, and major
vector X'1330' followed by a X'132F' major vector, do not go through automation.

v Routing and targeting instructions GDS variables (X'154D')
Routing and targeting information stays in the CP-MSU with the major vector
that immediately follows it, but NetView moves the routing and targeting
information to the end of the new CP-MSU.

A user-written application can submit record maintenance statistics (RECMSs) and
record formatted maintenance statistics (RECFMSs) to automation just as you
might submit a X'0000' major vector to automation. An application can encapsulate
a RECMS in a X'1044' major vector or a RECFMS in a X'1045' major vector, and
then encapsulate them again in a X'1212' CP-MSU.

You can send a RECFMS record through the ALERT-NETOP application by
encapsulating the record in a X'132E' major vector within a CP-MSU in an
MDS-MU. The RECFMS is then extracted and processed as normal by the
hardware monitor.

Next, for all alert-type data coming to the hardware monitor, the NetView program
initially sets filter and highlighting attributes based on your SRFILTER settings.

Automation-Table Processing
All MSUs processed by the hardware monitor are subject to automation-table
processing if they contain X'0000', X'0001', X'0002', X'0025', X'1332', RECMSs, or
RECFMSs. Forwarded alerts that were originally in MSUs on a distributed
NetView system return to MSU format for automation. The hardware monitor
places these alerts in CP-MSUs. System-format records, such as outboard record

Chapter 9. NetView Information Routing for Automation 103

|
|

(OBR), machine check handler (MCH), channel recovery word (CWR), and second
level interrupt handler (SLIH), do not go to the automation table.

The automation table can check or set any of these conditions:
v Color
v Highlighting
v Filtering attributes hardware monitor for MSUs

MSUs that do not come through the hardware monitor can come directly to
automation through the CNMAUTO service routine of PL/I and C, the DSIAUTO
macro of assembler, or the generic automation receiver MS application (NVAUTO),
which invokes the automation table. Setting highlighting or filtering attributes does
not work in these cases, because the hardware monitor does not process the MSU.
However, you can use the automation table to initiate automatic commands in
response to the MSU.

When automating the response to an MSU, route the command to an autotask. If
the hardware monitor data services task (DST) BNJDSERV sends an MSU to the
automation table and the matching statement in the table has an EXEC action
specifying a command to be run has no ROUTE specification, the command goes
to the OST that started BNJDSERV. If the OST is not active, NetView cannot route
the command and issues a message to the network log to indicate the problem.
Therefore, either start BNJDSERV from a stable autotask or always use ROUTE
when applying an EXEC action to an MSU from the hardware monitor.

DSIEX16B Processing
NetView invokes installation exit DSIEX16B after an MSU is considered for
automation. This exit enables you to change, replace, or delete an MSU. For more
information, see Chapter 17, “Installation Exits,” on page 287.

Continued Hardware Monitor Processing
Problem records of the types processed by the hardware monitor can go into the
event and alert databases, depending on the final settings of the ESREC and AREC
filter attributes for the record.

If a record passes the ESREC or AREC recording filters and gets recorded as an
event or an alert, operators can view the event or alert on the hardware monitor
panels. Viewing filters determine which operators can view the event or alert. A
percent sign (%) on the right side of the hardware monitor console marks any
event or alert that matched at least one statement in the automation table.

If a record passes both the ESREC and the AREC recording filters, other filters
apply including ROUTE, OPER, TECROUTE, and TRAPROUTE. For more
information, see “Filtering Alerts” on page 301.

NetView Command Routing
You can control the routing of commands to NetView tasks. These sections describe
which commands you can route to which tasks and the facilities for routing
commands.

104 Automation Guide

Compatibility of Commands with Tasks
You must ensure that the command, command processor, or command list that you
are routing can run under the destination task. The different classes of tasks that
run under the NetView main task are:
v Tasks that can receive messages and control the processing of commands,

command processors, and command lists. These tasks include autotasks, other
operator station tasks (OSTs), NetView-NetView tasks (NNTs), and the primary
POI task (PPT). You can route commands, command lists, and command
processors that run as regular commands (TYPE=R) or immediate commands
(TYPE=I) to this type of task.
However, some restrictions apply. Autotasks cannot run commands that produce
full-screen panels. Also, use caution when having an autotask run a command
procedure that includes wait processing. To avoid the possibility of indefinite
waiting that ties up an autotask, use a timeout value on the WAIT instruction.
Some commands cannot run under the PPT. These include commands that
produce full-screen panels, commands that do wait processing, and several
others.
Refer to IBM Tivoli NetView for z/OS Programming: REXX and the NetView
Command List Language for information about wait processing.

v If the BNJDSERV DST or the CNMCSSIR task sends an MSU to the automation
table and the matching statement in the table runs a command but has no
ROUTE specification, the CMD action goes to the OST that started BNJDSERV or
CNMCSSIR.

v DSTs that provide services such as I/O operations for the user. You can route
commands that run as data services commands (TYPE=D) to DSTs.

v Hardcopy task. You cannot route commands to the hardcopy task. Route only
messages to this task.

Command Routing Facilities
The primary facilities for routing commands are:
v The automation table ROUTE keyword, for choosing a task when issuing a

command from the automation table
v The NetView EXCMD command, for sending a command from one task to

another
v The CNMSMSG service routine and the DSIMQS macro, for initiating commands

from command processors
v The NetView RMTCMD command, for sending commands to other NetView

domains
v Command label prefixes, which route commands in the same manner as

RMTCMD and EXCMD

Automation-Table ROUTE Keyword
You can route a command by putting a ROUTE keyword in the automation table
with an EXEC(CMD) action. When an incoming message or MSU matches the
entry and NetView issues a command in response, the command goes to the task
or tasks you specify with the ROUTE keyword. If you do not use ROUTE on an
EXEC(CMD) action, NetView uses the rules explained in Note 5 on page 218 to
select a task for the command.

CNMSMSG Service Routine and DSIMQS Macro
You can use the CNMSMSG service routine in PL/I or C and the DSIMQS macro
in assembler to send commands to specific tasks, logs, and other destinations.

Chapter 9. NetView Information Routing for Automation 105

EXCMD Command
Using the EXCMD command, you can route a command, command list, or
command processor to a designated task to be run. Ensure that the command can
run under the type of task to which you are routing. For example, data-services
command processors can run only under a DST.

In Figure 16, the LOGOFF command is routed to the AUTO1 task, which processes
the command. As a result, AUTO1 is logged off.

Note: Do not queue commands to run under these server tasks: DSIIPLOG,
DSIRXEXC and DSIRSH. These tasks must be free to process TCP/IP
requests.

RMTCMD Command
The RMTCMD command sends system, subsystem, and network commands to
another NetView program elsewhere in the network. The commands are processed
by the other NetView program. Use the RMTCMD command instead of the
ROUTE command because the RMTCMD does not require you to start OST-NNT
sessions.

Command Label Prefixes
Using command label prefixes enables you to route commands as you would with
the NetView RMTCMD or EXCMD commands, and correlate the responses.
Correlation of responses is useful with the CORRCMD pipe stage. For a
description of labeled commands, refer to the IBM Tivoli NetView for z/OS User’s
Guide: NetView.

Command Priority
Each of the NetView tasks that process regular commands (autotasks, other OSTs,
NNTs, and the PPT) recognize NetView command priority for queued commands.
Queued commands have a priority of either low or high. Priority helps to
determine how soon NetView runs a command.

You can set the command priority globally with the DEFAULTS command. You can
set the priority for a task with the OVERRIDE command and for a single
command with the CMD command. Other means of queuing commands have
rules for setting the priority.

Command priority affects regular commands issued by an operator, including:
v Operators entering NetView commands from an MVS system console
v Commands relayed by means of the EXCMD command

Command priority does not affect:
v Commands in a command list

These commands are run sequence rather than being queued.
v Commands that you issue from the automation table

These commands are always queued at low priority.

Do not use the CMD prefix from the automation table to change the priority to
high. When you schedule a command with an AT, EVERY, or AFTER timer
command, the DEFAULTS and OVERRIDE settings that apply to the scheduled
command are those in effect when the timer expires.

EXCMD AUTO1 LOGOFF

Figure 16. EXCMD Command Example

106 Automation Guide

If your automation application queues commands at both low and high priority, be
aware that the high-priority commands can run out of sequence before the
low-priority commands. Low-priority commands run in order with respect to each
other; the first command queued for a task runs first. High priority commands also
run in order with respect to each other, except in the case of command procedures.

Command procedures give up control at several points to enable service for the
task’s high-priority queue; so a high-priority command can interrupt a command
procedure, even if the command procedure itself had a high priority. Command
procedures enable interruption when running long-running commands and when
performing wait or pause processing (for example, a WAIT or PARSE PULL in
REXX). In addition, procedures in REXX or the NetView command list language
enable interruption immediately upon invocation (before the first instruction) and
after each command in the command list.

To process command procedures in the order issued, queue them all at low
priority. Command procedures allow interruption by low-priority commands only
when processing long-running commands.

For more information about command priority, along with the syntax of the CMD,
DEFAULTS, and OVERRIDE commands, refer to the NetView online help or the
IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N).

Chapter 9. NetView Information Routing for Automation 107

108 Automation Guide

Part 4. NetView Automation Facilities
Chapter 10. Command Lists and Command Processors 113
Available Languages . 113
Obtaining Messages and MSUs . 113

Message Functions . 114
MSU Functions . 114

Saving Information . 114
Global Variables . 114

Task Global Variables . 115
Common Global Variables . 115
Choosing a Type of Variable . 115

MVS Data Sets . 115
Waiting for a Specific Event . 116

NetView Command List Language Waiting . 116
REXX Waiting . 116
PL/I and C Waiting . 117

Additional Command-List Capabilities for MVS . 117
Sending Messages to an MVS Console . 117
Allocating Disk, Tape, and Print Files . 118

Loading Command Lists into Storage . 118

Chapter 11. Timer Commands . 119
Overview of Timer Commands . 119

AFTER . 119
AT . 120
EVERY . 120
TIMER . 120
CHRON . 120

Choosing a Task . 121
Saving and Restoring Timer Commands . 121
LIST TIMER and PURGE TIMER . 122

LIST TIMER . 122
PURGE TIMER . 122

Chapter 12. Autotasks . 123
Defining Autotasks . 123
Activating Autotasks . 123
Using the AUTOTASK Command . 124
Associating Autotasks with Multiple Console Support Consoles 124
Deactivating Autotasks . 124
Automating with Autotasks . 125

Managing Subsystems . 125
Processing Unsolicited Messages . 125
Processing Commands . 126
Starting Tasks . 126
Sending Commands to an Autotask Using the EXCMD Command 126

Chapter 13. The Message Revision Table . 129
What Is the Message Revision Table? . 129

Elements of Message Revision Table Statements . 129
Message Revision Table Processing . 130
Message Revision Table Searches . 130

Coding a Message Revision Table . 130
Changing Route Codes and Descriptor Codes . 131
DoForeignFrom Statement . 131
END Statement . 131
EXIT Statement. 132

© Copyright IBM Corp. 1997, 2009 109

||

NETVONLY Statement . 132
OTHERWISE Statement . 132
REVISE Statement . 132
SELECT Statement . 133
UPON Statement . 133
WHEN Statement . 134
Example of a Message Revision Table . 134
Usage Reports for Message Revision Tables . 135
Message Revision Table Testing . 135

Chapter 14. The Command Revision Table. 137
What Is the Command Revision Table? . 137

Elements of Command Revision Table Statements . 137
Command Revision Table Processing . 138
Command Revision Table Searches . 138

Coding a Command Revision Table . 138
Command Revision Table Statements . 138

TRACKING.ECHO Statement . 139
ISSUE.IEE295I Statement . 139
UPON Statement . 140
SELECT Statement . 141
WHEN Statement . 141
OTHERWISE Statement . 142
END Statement . 142
REVISE Statement . 142
NETVONLY Statement . 143
WTO Statement . 143
Edit Orders . 144

Command Revision Table Example . 145
Usage Reports for Command Revision Tables . 146
Command Revision Table Testing. 147

Chapter 15. The Automation Table . 149
What Is the Automation Table? . 149

Elements of Automation-Table Statements . 149
Automation-Table Processing . 150
Automation-Table Searches . 150

Types of Automation-Table Statements . 150
Determining the Type of Statement . 151
Statement Types and Processing . 151

Coding an Automation Table . 151
BEGIN-END Section . 152
IF-THEN Statement . 154
Condition Items . 158

Bit Strings as Compare Items . 206
Parse Templates as Compare Items . 207

Literals . 207
Variable Names . 208
Variable Values . 209
Placeholders . 210
Nulls . 210

Actions . 211
ALWAYS Statement . 229
%INCLUDE Statement . 230
SYN Statement . 231
Design Guidelines for Automation Tables . 232

Limit System Message Processing . 233
Streamline the Automation Table . 233
Group Statements with BEGIN-END Sections. 233
Isolate Complex Compare Items . 235
Include Other Automation Tables. 235

110 Automation Guide

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

Tailor Automation Tables for Your Operation . 236
Use Synonyms . 236
Place Statements Carefully . 236
Use Automation-Table Listings . 237
Use the ALWAYS Statement . 237
Use the CONTINUE Action Carefully . 237
Set Automation-Table Defaults. 238
Limit Automation of Command Responses . 238
Automation as the NetView Program Closes . 238

Example of an Automation-Table Listing . 238
Automation-Table Usage Reports . 240

The AUTOCNT Command . 240
Example of Usage Reports Output . 241

Assumptions of Message and MSU Processing for This Example 243
Detailed Automation-Table Usage Report . 244

Summary Automation-Table Usage Report . 247
General Reminders about Automation-Table Usage Reports 250

Managing Multiple Automation Tables . 250
Getting Started . 250
Using Automation-Table Management . 251

Using Commands for Selected Tables . 252
Inserting an Automation Table. 253
Using the Display Options Pop-up window . 255

Using Global Commands . 256
Using the Global Display Panel . 257
Enabling and Disabling Automation-Table Statements 257
Displaying the Labels/Blocks/Groups Panel . 259

The Confirmation Panel . 260

Chapter 16. Policy Services Overview . 263
Using Policy Services . 263

Customizing DSITBL01 (optional) . 264
Defining Your Policy Files . 264

Required NetView Tasks. 264
Policy File Syntax . 264
Policy File Management . 266
Using the Policy API . 267

POLICY Syntax. 267
Determining Which Policy Files are Loaded . 269
Syntax Testing the Policy Files. 269
Loading Policy Files . 269
Querying a Policy Definition . 270
Querying a Group of Policy Definitions . 270
Modifying a Policy Definition . 271
Deleting a Policy Definition . 272
Adding a Policy Definition . 272
REXX API Usage . 273

Timer APIs . 273
EZLETAPI . 273
EZLEQAPI . 282
EZLEDAPI . 284
EZLEQCAL . 285

Chapter 17. Installation Exits . 287
What Are Installation Exits? . 287
Installation Exit DSIEX02A . 287
Installation Exit XITCI for BNJDSERV . 287
Installation Exits DSIEX16 and DSIEX16B . 287

Part 4. NetView Automation Facilities 111

||

Installation Exit DSIEX17 . 288

112 Automation Guide

Chapter 10. Command Lists and Command Processors

To perform complex actions when you issue a single command, use command lists
and command processors to create automation procedures.

Command lists are sets of commands and special instructions written in either
REXX or the NetView command list language. Command lists written in the
NetView command list language are interpreted, and command lists written in
REXX can be either interpreted or compiled. Command processors are modules
written in assembler, PL/I, or C. Command processors (written in PL/I or C) and
command lists are also known collectively as command procedures. You can issue a
command list or command processor as if it were a NetView command.

Those who can use command lists and command processors to simplify the job of
the operator and to assist in automation are:
v Operators
v The automation table
v Timer commands
v The EXCMD command
v Other command lists
v Other command processors

You can also designate initial command lists to be processed during NetView
initialization and OST initialization. These are functions that can be done by
command lists and command processors:
v Use a single command to replace a series of queries, replies, and commands

normally issued by an operator.
v Issue different replies based on input criteria.
v Ensure consistency among operator responses for lengthy or complex functions.
v Run under an autotask.

Available Languages
The languages available for writing NetView command lists and command
processors are:
v NetView command list language
v REXX
v PL/I
v C
v Assembler

For a discussion of the capabilities of each language, see the IBM Tivoli NetView for
z/OS Customization Guide.

Obtaining Messages and MSUs
To automatically issue command procedures when the automation table receives a
message or management services unit (MSU), use the NetView automation table.
When issued in this way, the command procedure has access to information
pertaining to the message or MSU that issued the command procedure. When

© Copyright IBM Corp. 1997, 2009 113

NetView receives an MSU over an LU 6.2 transport, NetView can issue a specified
command procedure. This command procedure also has access to information for
the MSU that was received.

Because the message or MSU information is available to the command procedure,
much of the data associated with the message or MSU does not need to be parsed
in the automation table statement and then sent explicitly to the command
procedure. The attributes for the message or MSU are accessed using various
functions in the command procedure. For more information, refer to IBM Tivoli
NetView for z/OS Programming: REXX and the NetView Command List Language.

You can also use the EDIT action in the automation table to make changes to
automated messages and MSUs. The changes are made using the syntax and
functions provided by the PIPE EDIT stage. For more information about the EDIT
specifications, refer to the online help for PIPE EDIT.

Message Functions
The command-procedure languages provide keywords for obtaining access to
various message attributes. For example, you can examine the message ID,
message type (HDRMTYPE), and message text. For MVS system messages, you can
also examine the job name or reply ID.

MSU Functions
Command procedures can also examine and work with MSUs. In REXX, an HIER
function gives the hardware monitor resource hierarchy of an alert. An MSUSEG
function gives the contents of an MSU, which can include an MDS-MU’s header
information. The HIER and MSUSEG REXX functions are similar to the HIER and
MSUSEG compare items in the automation table, although the syntax details differ.
The NetView command list language offers similar &HIER and &MSUSEG control
variables. In addition, REXX provides a CODE2TXT function that can translate
hardware monitor generic alert code points into the text strings they designate.
This function is also available in PL/I and C with the CNMC2T (CNMCODE2TXT)
service routine.

Saving Information
You can save information with either global variables or MVS data sets.

Global Variables
Command lists and command processors offer functions that enable you to
automate operating procedures. One function is the ability to create and update
global variables, which you can use to pass information between command lists,
command processors, and the automation table. Global variables are useful in
creating automation procedures for purposes such as:
v Maintaining the current status of system and network elements when

automation monitors your environment
v Eliminating the need to code system names into automation procedures, which

enables you to adapt the procedures to other systems by redefining the global
variables rather than by making coding changes in numerous places

v Eliminating the need to code specific parameter values when automating
parameter-driven processes, which enables you to change the parameter values
without re-coding your command lists and command processors

v Maintaining job names and subsystem commands to be issued as required

114 Automation Guide

The two types of global variables are Task and Common.

Use the QRYGLOBL command to view the number of your common global and
task global variables and their values. Refer to the NetView online help for
information about the QRYGLOBL command.

Task Global Variables
Each command list or command processor running under the task can set, inspect,
or update a task global variable. Other NetView tasks do not have direct access to
the variables. Therefore, several NetView tasks can use the same names for task
global variables without referring to the same variables. NetView gives no
indication that two tasks are using the same names.

For a task to inspect or update a task global variable belonging to another task, it
must issue a request to the owning task. Therefore, tasks can maintain control of
their own variables. Each task has its own task global dictionary for storing task
global variables. You can save, restore, and purge task global variables.

Common Global Variables
Any task that can run a command list or a command processor can also use
common global variables. One common global dictionary exists for storing all
common global variables.

You can save, restore, and purge common global variables. When you save a global
variable, NetView places it in a VSAM database. Later, you can restore the
variables to the global dictionary from which they were saved. If you no longer
need a global variable you have saved, purge it from the database. Saving critical
global variables can facilitate recovery from a failure or from a planned outage.

Choosing a Type of Variable
Task global variables are the best choice for data used in a single, local frame of
reference. If only one task needs a variable, you can avoid potential naming
conflicts with other tasks by using a task global variable. However, use common
global variables for information that you want to check or update from more than
one task. If you want to pass information to the automation table, common global
variables are best, because you do not need to be concerned with which task uses
the automation table.

For more information about global variables, refer to the IBM Tivoli NetView for
z/OS Programming: REXX and the NetView Command List Language, the IBM Tivoli
NetView for z/OS Programming: Assembler, and IBM Tivoli NetView for
z/OS Installation: Getting Started.

For a description of how to read the value of a global variable from the automation
table with ATF('DSICGLOB') and ATF('DSITGLOB'), see DSICGLOB “DSICGLOB”
on page 165.

MVS Data Sets
Another way of saving data from command lists and command processors is to
use a data set. REXX EXECIO and PIPE QSAM can read from and write to
sequential data sets. You can use this ability for a wide variety of purposes.

Command processors written in PL/I and C can use high-level language service
routines that provide read access to NetView partitioned data sets (CNMMEMO,
CNMMEMR, CNMMEMC) and request VSAM I/O (CNMKIO). You can also use
PL/I and C I/O services to read from and write to data sets.

Chapter 10. Command Lists and Command Processors 115

Command processors written in assembler can use NetView macros that provide
read access to NetView files (DSIDKS) and request VSAM I/O (DSIZVSMS).

Waiting for a Specific Event
NetView enables you to wait for the receipt of messages and other events and to
modify processing based on the information received. For best performance, use
the CORRWAIT stage of the PIPE command. Refer to IBM Tivoli NetView for
z/OS Programming: Pipes for more information.

NetView also enables you to solicit input from an operator, such as &PAUSE in the
NetView command list language, PARSE PULL and PARSE EXT in REXX, and
WAIT FOR OPINPUT in high-level languages. However, because autotasks are
unattended, avoid using input-soliciting facilities in automation command lists and
command processors running under an autotask.

The commands used in waiting for events differ between the languages for
command lists and command processors. The differences are described in the
following sections. For automation command lists and command processors
running under an autotask, try to avoid having the autotasks wait for events. If
you use a wait facility, ensure that you specify a time-out value to prevent the
autotask from waiting endlessly.

NetView Command List Language Waiting
The basic form of the &WAIT control statement causes a command list to suspend
processing until a specified event occurs. The &WAIT control statement is made up
of two parts. The first part, which is optional, specifies a command or another
command list that is to be processed when the &WAIT statement is reached in the
processing of the command list. The second part is a list of event-label pairs that
specify where processing is to be transferred when specified events occur. The
events you can specify include:
v Receipt of messages that are displayed to the NetView console
v Receipt of a nonzero return code from the called command or command list
v The expiration of a specified amount of time
v The operator’s entry of a GO command

If receipt of a message satisfies the &WAIT statement, use NetView control
variables to obtain the contents of the message.

For more information about waiting for events in the NetView command list
language, refer to IBM Tivoli NetView for z/OS Programming: REXX and the NetView
Command List Language.

REXX Waiting
REXX uses several instructions that interact to provide a method of waiting for
messages and analyzing messages and other events. The TRAP instruction specifies
messages to be trapped and specifies whether messages that are trapped are
displayed to the operator. Messages that are trapped are placed in a message
queue, so more than one message can be processed. The WAIT instruction causes a
command list to suspend processing until a specified event occurs. Possible events
include:
v Messages that you trap
v A time-out value in seconds or minutes
v The operator’s entry of a GO command

116 Automation Guide

The MSGREAD instruction causes NetView to read a trapped message from the
messages currently trapped. The command list can then take action based on the
message received. The FLUSHQ instruction is used to discard all trapped messages
from the message queue.

For more information about waiting for events in REXX, refer to IBM Tivoli
NetView for z/OS Programming: REXX and the NetView Command List Language.

PL/I and C Waiting
The high-level language application program interface (API) provides several
commands and service routines that interact to create a method of waiting for
messages and analyzing messages and other events similar to the method used by
REXX. The TRAP command specifies messages to be trapped and specifies whether
trapped messages are displayed to the operator. Messages that you trap go into a
message queue for the command processor, enabling you to work with more than
one message. The WAIT command causes a command processor to suspend
processing until a specified event occurs. The possible events follow:
v Messages are displayed to the NetView console.
v The interval set for the time-out value, in seconds or minutes, elapses.
v The operator enters a GO command.
v Data is sent by the CNMSMSG service routine.

The CNMGETD service routine provides access to data queues, one of which is a
message queue that contains all messages trapped using the TRAP and WAIT
commands. The CNMGETD service routine provides equivalent functions to the
REXX MSGREAD and FLUSHQ instructions and other functions.

For more information about waiting for events in high-level language command
processors, refer to IBM Tivoli NetView for z/OS Programming: PL/I and C.

Additional Command-List Capabilities for MVS
On MVS systems, command lists can send messages to MVS consoles. Command
lists can also allocate disk, tape, or print files. Command lists can also save
commands and text for later manipulation by operators.

Sending Messages to an MVS Console
To send messages to and remove messages from an MVS console, use these
NetView commands in automation command lists:

WTO Sends a message to an MVS console. For example, you can use the
WTO command if operator intervention (such as adding paper to a
printer or choosing among processing alternatives) is required.

WTOR Sends a message to an MVS console and requests a reply.
Command lists that use WTOR are not completed until the
operator replies.

DOM Removes a WTO message from an MVS console. You can use DOM
to remove action messages when you know that the action has
already been taken.

For more information about these commands, refer to IBM Tivoli NetView for
z/OS Programming: REXX and the NetView Command List Language.

Chapter 10. Command Lists and Command Processors 117

Allocating Disk, Tape, and Print Files
Use the ALLOCATE command with REXX EXECIO or the data set access
capabilities of command processors to allocate disk, tape, print files, and the
internal reader. These abilities enable you to build JCL from an automated
procedure and submit it. For example, if NetView receives the message indicating
that a system management facilities (SMF) data set is full, define the automation
table to pass the SMF data set name to the appropriate command list or command
processor. The data set name is embedded in the JCL and the job is submitted to
dump the data set using the NetView SUBMIT command.

Note: You cannot allocate a Job Entry Subsystem (JES) data set (internal reader or
SYSOUT) if running under a NetView program that started before JES
started.

Loading Command Lists into Storage
To promote better performance of your system, you can load command lists into
main storage before processing. When you invoke a command list that was not
preloaded, it is loaded into main storage, processed, and then dropped from main
storage. Therefore, every time the command list is processed, it is retrieved from
the auxiliary storage device where it resides. If you preload the command list, it
can be processed several times without having to be retrieved from auxiliary
storage each time.

These NetView commands move command lists into and out of main storage and
identify command lists that are currently in main storage:

LOADCL Loads command lists into main storage shared by all operators.

DROPCL Drops a command list that was previously loaded into main
storage using the LOADCL command.

MAPCL Identifies command lists that currently reside in main storage.

NetView provides a sample command list (CNMS8003) that can help you manage
the command lists that have been loaded into storage using the LOADCL
command. The sample uses the MAPCL and DROPCL commands to conditionally
drop command lists from main storage. You can also use the MEMSTORE
command to manage command lists and other NetView data set members that are
loaded into storage.

For more information about these commands, refer to the NetView online help and
to IBM Tivoli NetView for z/OS Programming: REXX and the NetView Command List
Language.

118 Automation Guide

Chapter 11. Timer Commands

In NetView automation, you can use timer commands to schedule the processing
of other commands. Any command or command list that can be issued from a task
can be scheduled using a timer command. This chapter describes the timer
commands and some related commands.

Overview of Timer Commands
Timer commands inform NetView that you want to issue other commands,
including command lists and command processors. You can issue timer commands
to schedule activities many days in advance or to schedule an activity that takes
place once a day or once a month. Use a timer command to schedule another
command:
v After the lapse of a specified time
v At a specified time
v Repeatedly at specified intervals

The timer commands are AFTER, AT, EVERY, and CHRON. Two related
commands, LIST TIMER and PURGE TIMER, can help you manage command
scheduling.

This section describes the AFTER, AT, EVERY, and CHRON commands. An
operator can issue them directly, or you can use them in other automation
facilities, such as command lists and command processors. Refer to the NetView
online help for the syntax and parameter descriptions of these commands.

Note: The AFTER, AT, EVERY, and CHRON commands support customized date
and time formats. All examples shown in this chapter assume default
formats.

Note: Avoid scheduling interactive commands unless they are to be run on an
operator’s task with an operator present.

AFTER
The AFTER command enables you to schedule a command or command procedure
to run after a specified period of time.

The AFTER command can be useful for waiting a certain amount of time for
something that is expected to happen and then checking to ensure that it did
happen. For example, if you use NetView to initialize a product and the product is
to be initialized within 5 minutes, you can schedule a command list to run after 5
minutes to check whether the product started successfully.

The AFTER command, shown in Figure 17, schedules the MVS D A,L command to
be issued after 5 minutes to solicit status information about system elements.

Consider using the AFTER command instead of the DELAY command. When the
DELAY command is issued from a command list or command processor, the

AFTER 00:05:00,ID=DISPSTAT,MVS D A,L

Figure 17. Sample AFTER Command

© Copyright IBM Corp. 1997, 2009 119

command list or command processor and the task on which it is executing wait the
specified amount of time, thus preventing other work from executing on that task.
In contrast, the AFTER command schedules a command and then frees the
command list or command processor and the task to do other work during the
specified time interval.

AT
The AT command schedules a command or command procedure to be run at a
specific time.

For example, the AT command in Figure 18 schedules the STOPSYS command list
to shut down the system at 6:00 p.m. on December 24 and saves the command in
the Save/Restore database.

AT is useful for scheduling commands that you want to happen once, at a specific
time or on a specific day.

EVERY
The EVERY command schedules a command or command procedure to be
processed repeatedly at a timed interval. The intervals can be specified in seconds,
minutes, hours, or days. The command or command procedure is processed at the
indicated interval until the EVERY command is purged.

The EVERY command in Figure 19 schedules the command list CHEKSTAT every
hour, starting one hour after the timer command is run.

Use an EVERY command similar to the one in Figure 19 to check the status of your
autotasks to ensure that they are logged on and are not in a wait condition that
prevents other work from executing. The automation sample set provided with
NetView includes an example of a method for checking on autotasks. This example
method uses timer commands as well as the automation table and command lists.
The samples are described in Appendix I, “The Sample Set for Automation,” on
page 579.

TIMER
The TIMER command displays a panel that enables you to display, add, change,
test, or delete scheduled timers. The command operates in fullscreen mode only.

CHRON
The CHRON command provides efficient timed command scheduling by
decreasing the amount of code in REXX procedures that are used in determining
exception cases and time shifts. CHRON also reduces the number of timer
elements by combining criteria that previously required multiple timers or
combinations of AT and EVERY commands.

The CHRON EVERY command provides the ability to specify starting times that
are earlier than the current time. This is useful for scheduling timed events for

AT 12/24 18:00:00,ID=EVESAVE,SAVE,STOPSYS

Figure 18. Sample AT Command

EVERY 01:00:00,ID=CHEKST,CHEKSTAT AUTOVTAM

Figure 19. Sample EVERY Command

120 Automation Guide

multiple days during a shift, and starting the first timer during the shift. This also
helps when using CHRON EVERY in a procedure, because the intervals start with
the next one in the sequence.

For example, you can schedule a command to be issued on certain days. The
CHRON command in Figure 20 issues the LOGTSTAT command once every hour
from 8:00 a.m.. until 5:00 p.m. on all weekdays except holidays, from now until the
last day of the year 2000. The LOGTSTAT command runs on the PPT task. If this
CHRON is entered between 8:00 A.M. and 5:00 P.M., LOGTSTAT runs at the next
hour. This enables you to specify a shift for following days and have a partial shift
run today. This is an example of such a command:

Choosing a Task
A scheduled command runs on the same task that issued the timer command,
unless you use the primary program operator interface task (PPT) option to specify
the PPT. If the task that issued the timer command is no longer active, the
scheduled command cannot run. Therefore, it is a good practice to issue timer
commands from autotasks. You can do this by using a command-routing facility,
such as EXCMD, to send the timer command (AT, EVERY, or AFTER) to an
autotask.

By running your scheduled commands on a continuously available autotask, you
ensure that the scheduled command is able to run. By using an autotask instead of
the PPT, you avoid overburdening the PPT. You also avoid the restrictions about
commands that can run on the PPT.

Saving and Restoring Timer Commands
If NetView ends, you lose all scheduled timer commands that you have not saved.
You can save timer commands in a database to ensure that critical scheduled
commands are not lost when you stop and restart NetView. You do not have to
re-enter the saved timer commands. You can restore them with the RESTORE
command. Issue the RESTORE command after the DSISVRT (Save/Restore) task is
activated.

When you issue the RESTORE command, any scheduled command or command
list that ran while NetView was down results in a multiline message CNM465I.
You, or your automation, can use the message to get information about the
scheduled command. You can then decide whether to run the scheduled command
that was skipped because NetView was down.

Figure 21 shows a multiline message you might get for a skipped timer command
when you issue RESTORE.

CHRON AT=(08:00:00) EVERY=(INTERVAL=(01:00:00 OFF=17:00:00)
REMOVE=(12/31/00 00:00:00) DAYSWEEK=(WEEKDAY)
CALENDAR=(NOT HOLIDAY)) COMMAND=LOGTSTAT ROUTE=PPT

Figure 20. Sample CHRON Command

CNM465I TIMER EVENT CANNOT BE RESTORED - CURRENT TIME PAST EXECUTION
TYPE: AFTER TIME: 12/15/98 16:42:17

COMMAND: MAJNODES
OP: OPER1 ID: AFTMAJ

Figure 21. Message Resulting from a Skipped TIMER Command

Chapter 11. Timer Commands 121

The message in the sample code contains the following information:
v Line one contains the message ID and text, including the reason NetView cannot

restore the timer event.
v Line two gives the type of timer command (AT, EVERY, or AFTER), along with

the date and time the command was to run.
v Line three gives the scheduled command.
v Line four gives the ID of the operator who issued the command.

If the operator had used the PPT parameter with the command, lines two and four
indicate that fact as well.

After the DSISVRT task is activated, a command procedure can issue a RESTORE
command and wait for CNM465I messages. If any arrive, the command procedure
can examine the information in each message to determine whether to reissue the
timer command.

LIST TIMER and PURGE TIMER
The LIST TIMER and PURGE TIMER commands can help you manage timer
commands. With LIST TIMER, you can display a list of pending timer commands.
With PURGE TIMER, you can cancel them. Refer to the NetView online help for
the syntax and parameter descriptions of these commands.

LIST TIMER
LIST TIMER lists all commands and command procedures currently timed for
processing, along with associated information. For example, the first command in
Figure 22 displays the command or command procedure scheduled by operator
OPER1 using AT, EVERY, and AFTER with a timer ID of DISPSTAT (if it exists).

The second command in Figure 22 displays a list of all commands and command
procedures scheduled by AT, EVERY, or AFTER on your system regardless of
scheduling operator or timer ID.

PURGE TIMER
PURGE TIMER cancels currently scheduled timer commands. For example, the
first command in Figure 23 purges the command scheduled by OPER1 with a timer
ID of DISPSTAT (if it exists).

The second command in Figure 23 cancels all AT, EVERY, and AFTER commands
scheduled by OPER1. Use all-inclusive purges with caution.

LIST TIMER=DISPSTAT,OP=OPER1

LIST TIMER=ALL,OP=ALL

Figure 22. LIST TIMER Command Examples

PURGE TIMER=DISPSTAT,OP=OPER1

PURGE TIMER=ALL,OP=OPER1

Figure 23. PURGE TIMER Command Examples

122 Automation Guide

Chapter 12. Autotasks

Autotasks are a special kind of operator station task (OST) that require neither
operators nor NetView terminals. Like other operator OSTs, autotasks can receive
messages, process commands and command procedures, and establish
NetView-NetView sessions. Autotasks can run full screen commands using the
NetView full screen automation function. Because autotasks are not associated with
a terminal, they can run when VTAM is not active. For this reason, and because
they can perform tasks similar to those that an operator can perform, autotasks are
ideal for performing much of your system and network automation.

Defining Autotasks
The requirements for defining autotask IDs are the same as those for defining
NetView operator IDs. Autotasks are OSTs, and you can dynamically define
autotask OSTs to NetView by editing DSIOPF or system authorization facility
(SAF) definitions and then using the REFRESH command.

Sample DSIOPF shows sample definition statements for NetView OSTs, including
autotasks. The statements define each operator’s profile. The definition statement
for AUTO1, an autotask used in the NetView initialization process, is shown in
Figure 24:

The password for an autotask prevents intruders from gaining access to the
NetView program by logging on to an autotask operator ID. You can use an SAF
product, such as Resource Access Control Facility (RACF), to require a password or
password phrase before logging on to an MVS system. If you do not use an SAF
product, you can use DSIOPF to define a password for each autotask.

Define a password or password phrase and keep it confidential to protect your
autotask IDs. If you are not using an SAF product for password or password
phrase checking, you can also prevent someone from logging on to an autotask
operator ID by not defining a password in DSIOPF. If you do not define a
password, only an AUTOTASK command can start that operator ID. You can then
use command authorization on the NetView AUTOTASK command to limit its use.

Activating Autotasks
An autotask is differentiated from other NetView OSTs by the way an operator
starts it. An operator OST starts when a NetView operator logs on at a terminal,
but autotasks start when an operator issues the AUTOTASK command. Because
either an operator or an autotask can start a single operator ID, it is important to
maintain the proper level of security for all IDs defined in the NetView program.
Refer to the IBM Tivoli NetView for z/OS Security Reference for an explanation of
security issues.

AUTO1 OPERATOR PASSWORD=AUTO1
PROFILEN DSIPROFC

Figure 24. Definition Statements for AUTO1

© Copyright IBM Corp. 1997, 2009 123

|
|

|
|
|
|
|
|

You can use the AUTOTASK statement in the CNMSTYLE member to start an
autotask when the NetView program initializes. For more information, refer to the
IBM Tivoli NetView for z/OS Administration Reference.

Using the AUTOTASK Command
A single primary program operator interface (POI) task (PPT) is started when you
start NetView. During NetView initialization, the PPT can start automation tables
and AUTOTASKs if they are specified in the CNMSTYLE member. For more
information, refer to the IBM Tivoli NetView for z/OS Administration Reference.

An operator with the proper level of authority can also issue the AUTOTASK
command, either at the terminal or with a command list or command processor.

Associating Autotasks with Multiple Console Support Consoles
You can associate an autotask with a multiple console support console when using
the AUTOTASK command or AUTOTASK statement in the CNMSTYLE member.
This can also be done later after the task is active. Association enables the console
to display all messages that the autotask receives and to accept NetView
commands and forward them to the autotask.

For example, if you want the autotask AUTOMVS to act as the interface between
MVS and NetView:
1. Determine which MVS console name to use to access NetView. In our example,

the console name is netvsys2.
2. To associate the autotask with console netvsys2, issue this command:

AUTOTASK OPID=AUTOMVS,CONSOLE=netvsys2

You can associate the autotask with the console even when the multiple console
support console is not online. If the console is not already active, the
association is completed when the console is varied online.

If you define an autotask for this purpose and also use the autotask for other
automation, remember that all messages sent to the autotask appear on the
console.

If a write-to-operator (WTO) message comes from MVS to NetView over the
subsystem interface and if you use an associated autotask to route the message
back to a multiple console support console, the message appears in the system log
twice: once in its original format and once as NetView sent it to the multiple
console support console. To avoid duplication, define dedicated autotasks that you
use for multiple console support consoles only.

For more information about the AUTOTASK command, see the NetView online
help or the IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N).

Deactivating Autotasks
You can deactivate an autotask with one of these commands:
v EXCMD autoid,LOGOFF

v %LOGOFF (issued from a multiple console support console associated with the
autotask)
Here % is the default NetView subsystem descriptor. The subsystem address
space must be active for this command to work.

124 Automation Guide

|

|

|

Note: Any command entered on the multiple console support console and
prefixed by the descriptor automatically restarts the autotask, unless you
use the AUTOTASK command to drop the console association.

If an autotask is stuck in an infinite loop, issue EXCMD autoid,RESET to stop the
command list that is running before attempting a logoff. If necessary, you can also
use STOP FORCE=autoid to deactivate an autotask that is in an infinite loop. The
EXCMD and %LOGOFF commands simply queue the LOGOFF command under
the autotask along with other queued command lists and commands. STOP
FORCE is an immediate command.

Automating with Autotasks
This section describes some of the many ways you can use autotasks for
automation.

Managing Subsystems
Because they do not depend on the VTAM program, autotasks are useful when the
system is running without VTAM. For example, when NetView initializes, you can
start an autotask and have it manage the subsystems, including VTAM. The
autotask can help VTAM activate or recover from failure, as appropriate. Keep in
mind that although autotasks are not associated with an operator console, they still
require APPL statements in the VTAM definition, and they can issue commands to
VTAM.

Attention: If NetView is started before VTAM, any autotasks started while VTAM
is inactive are assigned a specific VTAM application identifier (APPLID) using the
hexadecimal numbering scheme. Because NetView does not know whether the
assigned APPLID is available when VTAM is started, it must assume that the
APPLID is available for use. Therefore, you must define consecutively numbered
VTAM APPL statements for each of these autotasks. Numbering uses the
hexadecimal scheme, starting after those reserved by any POS terminals. For
example, if 12 POS terminals have been defined, and 6 autotasks are started before
VTAM is started, and your domain name is CNM01, you must define APPL names
CNM0100C, CNM0100D, CNM0100E, CNM0100F, CNM01010 and CNM01011 for
these autotasks.

Processing Unsolicited Messages
Autotasks can process all of your unsolicited messages and the commands you
issue in response. This approach has two advantages related to processing
messages:
v Does not depend on a specific user being logged on
v Processing can be faster

For example, if an operator is executing a long-running command and receives an
unsolicited message, the command that the operator issues in response to the
message is queued until the long-running command ends. If autotasks receive an
unsolicited message, the command in response runs immediately.

To ensure that your autotasks are continually available, you can have automation
monitor the autotasks. The advanced automation sample set demonstrates one
technique for monitoring autotasks.

Chapter 12. Autotasks 125

See “Using the Advanced Automation Sample Set” on page 587 for more
information.

Processing Commands
An autotask can process commands and command procedures sent by the
automation table. If you use the ROUTE keyword to explicitly choose a destination
for a command, you can use an autotask. A command might also go to an autotask
through default routing if you do not use the ROUTE keyword. This is the case,
for example, if the autotask solicited the message that is triggering the command.

An autotask can process commands and command procedures that are scheduled
under it by an AFTER, AT, CHRON, or EVERY command. You can define and start
several autotasks to monitor different resources or types of resources. Each
autotask can then use different time intervals for monitoring and different
collections of task global variables for storing information.

A NetView command procedure can wait for the receipt of a message or another
event before continuing processing. This is referred to as WAIT processing. Use
caution when running command procedures containing WAIT processing under an
autotask. If you must run such a command procedure under an autotask, ensure
that you specify a timeout value for the WAIT command within the procedure. In
addition, you might want to limit the autotasks that run such command
procedures.

For more information about WAIT processing, see “Waiting for a Specific Event”
on page 116.

Starting Tasks
Consider starting the BNJDSERV task and the CNMCSSIR task from autotasks.
Table 4 shows the destination of commands when messages or MSUs are
automated in the NetView automation table and you do not use a ROUTE
keyword or you specify a destination of *.

Table 4. Command Destinations When Using Autotasks to Start Tasks

Command in response to: Goes to:

Unsolicited subsystem interface message Task that started the CNMCSSIR task

MSU from BNJDSERV Task that started the BNJDSERV task

By having an autotask start these tasks, you can ensure that a task is ready to
process such commands and messages.

To define an autotask for a specific function during NetView initialization, use the
function.autotask statement in the CNMSTYLE member. For more information,
refer to the IBM Tivoli NetView for z/OS Administration Reference.

Sending Commands to an Autotask Using the EXCMD
Command

Other tasks can use the EXCMD command to send commands to an autotask.
v Operators can use autotasks to perform work that might otherwise require time

on their OSTs.
v Autotasks can send commands to each other to perform work that logically

requires serial processing.

126 Automation Guide

|

v You can send slow commands to an autotask to avoid interfering with the
throughput or response time of tasks that are performing more critical activities.

v An autotask can process commands that are sent to it by other operators using
the EXCMD command.

Used this way, an autotask creates a kind of background processor to support
work that:
v Logically requires serial processing under a single task
v Might interfere with more critical operator tasks

However, NetView does not automatically return the resulting messages to the
originating operator.

Chapter 12. Autotasks 127

128 Automation Guide

Chapter 13. The Message Revision Table

This chapter describes:
v The NetView message revision table (MRT)
v The statements you can use in a message revision table
v How to code a message revision table
v Message revision table statements
v Example of a message revision table listing
v Usage reports for message revision tables
v Managing multiple message revision tables

For information on testing the logic of the message revision table, see “Message
Revision Table Testing” on page 135.

The WHEN and REVISE statements consist of PIPE EDIT orders. See the NetView
online help or IBM Tivoli NetView for z/OS Programming: Pipes for information
about how to use these edit orders.

What Is the Message Revision Table?
The message revision table (MRT) enables you to intercept MVS messages before
they are displayed, logged, automated, or routed through your sysplex. You can
make decisions about the message based on its message ID, job name, and many
other properties.

You can make changes to many aspects of the message, including these:
v Message text
v Color
v Route codes
v Descriptor codes
v Display and system log attributes

The MRT can remain active even while NetView is not, but the SSI address space
is required. However, loading or querying the MRT, or gathering statistics,
depends on the functional NetView address space being active.

Elements of Message Revision Table Statements
These elements comprise a message revision automation table:
v Use the DoForeignFrom statement (“DoForeignFrom Statement” on page 131) to

indicate that foreign messages are to be processed by the MRT.
v Use the END statement (“END Statement” on page 131) to close a section started

with a SELECT statement.
v Use the EXIT statement (“EXIT Statement” on page 132) to stop any further

message revision when an action is matched.
v Use the NETVONLY statement (“NETVONLY Statement” on page 132) to provide

for NetView automation, but suppress display, logging, and sysplex routing.
v Use the OTHERWISE statement (“OTHERWISE Statement” on page 132) to

provide for NetView automation, but suppress display, logging, and sysplex
routing.

v Use the REVISE statement (“REVISE Statement” on page 132) to include revision
actions.

© Copyright IBM Corp. 1997, 2009 129

|
|
|

v Use the SELECT statement (“SELECT Statement” on page 133) to introduce a
series of WHEN statements.

v Use the UPON statement (“UPON Statement” on page 133) to introduce each
section.

v Use the WHEN statement (“WHEN Statement” on page 134) or the OTHERWISE
statement to specify a condition.

v Use the %INCLUDE statement (“%INCLUDE Statement” on page 230) to include
separately coded and maintained sections of the message-revision table to divide
your message-revision table maintenance among several groups or individuals.
You can view your INCLUDE structure using the automation-table management
function (AUTOMAN). See sample CNMSMRT1 for additional information on
this function.

Message Revision Table Processing
You can use the REVISE MSG command to activate, deactivate, test, list, or check
the status of a message revision table. See the NetView online help or the IBM
Tivoli NetView for z/OS Command Reference Volume 1 (A-N) for more information
about using the REVISE MSG command.

Message Revision Table Searches
When an MVS message is issued, the NetView SSI code employs a fast search
algorithm to locate the particular UPON statement that is relevant for that
message. Conditions and actions under that UPON are then applied sequentially. If
a message matches no particular UPON condition, this is quickly determined and
the message is then subject to conditions and actions under the
UPON(OTHERMSG) condition, if any.

You can include an UPON statement with no subordinate conditions or actions,
simply to cause your MRT report to contain a count of matching messages. An
UPON statement with no subordinate conditions or actions is called a null UPON.

Conditions subordinate to an UPON statement, including UPON(OTHERMSG), are
examined sequentially. Therefore, you might improve performance by including a
specific null UPON statement to match common messages, to prevent their being
examined by the UPON(OTHERMSG) conditions.

Coding a Message Revision Table
These directions and restrictions apply to coding the message revision table:
v Comments can begin with an asterisk (*) in column 1 or following an

exclamation point (!) anywhere in the file.
v You can use blanks to indent lines and to separate keywords, logical operators,

and parentheses.
However, blanks used within a comparison string are considered characters in
that string.

v You must use single or double quotation marks as the delimiters for comparison
text and for synonym values. If a literal has one kind of quotation mark, use the
other as the delimiter.

v You can include actions such as REVISE and NETVONLY directly under an
UPON statement without any SELECT, WHEN, or OTHERWISE statement. Such
actions are labeled as type OTHERWISE in an MRT report.

130 Automation Guide

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

v WHEN and REVISE statements consist of PIPE EDIT orders. See the NetView
online help or IBM Tivoli NetView for z/OS Programming: Pipes for information
about how to use these edit orders.

v If the MVS Message Processing Facility (MPF) has suppressed a message or has
disabled system logging, then the DISPLAY order and the SYSLOG order can
neither detect nor override the suppression. This is a z/OS system limitation. To
overcome this restriction, use a REVISE statement to obscure the message ID,
and then use NETVONLY and NetView message automation to reissue the
disguised message.

v If any message is unnecessarily transmitted across your sysplex, you can
improve performance dramatically by using the NETVONLY and REVISE(’N’
DELETE) MRT actions to prevent such a transmission.

Changing Route Codes and Descriptor Codes
There are 16 routing code FLG orders named FLGRTCD1 through FLGRTCD16
that correspond to the 16 bytes of extended routing codes defined in the WQE.
There are four descriptor code FLG orders named FLGDSCD1 through FLGDSCD4.

ROUTEZERO can be used to set all route codes to zero. Here are some examples:
* zero out all route codes and set route codes 8 and 16
REVISE (ROUTEZERO "xxxxxxx1" FLGRTCD1 "00000001" FLGRTCD2)
* set descriptor code 2 meaning immediate action required and retain message
* in AMRF
REVISE ("x1xxxxxx" FLGDSCD1 'Y' AMRF)

DoForeignFrom Statement
Foreign messages are not processed by the MRT by default (see “How Foreign
Messages are Processed” on page 79 for additional detail on this topic). The
DoForeignFrom statement can be used to indicate that foreign messages are to be
processed by the MRT. When specified, the DoForeignFrom statement must occur
prior to any UPON statement. The format of the DoForeignFrom statement is as
follows:
DoForeignFrom = *ALL | *NONE

v When DoForeignFrom is set to *ALL, the MRT processes foreign messages that
originated at any other system in the sysplex (in addition to messages that
originated at the local system). MRT processing can be limited to specific system
names using the SYSNAME edit order on the WHEN statement. If MSGIFAC is
set to a value other than SYSTEM, the value of AUTOMATE can be set to Y
using a REVISE statement which will cause the message to be sent to the
NetView address space.

v When DoForeignFrom is set to *NONE, the MRT processes only those messages
that originated at the local system. Note that the NetView SSI, and therefore the
MRT, does not receive foreign messages if they are disallowed by the FORNSSI
statement in the MPFLSTxx MVS PARMLIB member.

END Statement
An END statement closes a section started with the corresponding SELECT
statement.

Chapter 13. The Message Revision Table 131

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

EXIT Statement
Typically, a message is matched against everything in a given UPON group
(counting each SELECT-WHEN-END entry as one item). When an EXIT action is
matched, however, the remaining actions under the same WHEN or OTHERWISE
are performed, but subsequent SELECT statements in that UPON group are
bypassed.

NETVONLY Statement
The NETVONLY statement causes the message to be marked for suppression from
display, but allows the message to be sent to NetView. When the NETVONLY
statement is received in the NetView address space, the message is either
submitted to an automation task or is routed as a command response. The
NETVONLY statement always queues messages to NetView over the SSI and also
queues them when NetView is not active, regardless of the value of the MSGIFAC
statement.

OTHERWISE Statement
An OTHERWISE statement is like a WHEN statement, except that there is no
condition and it must follow all the WHEN statements under a given SELECT
statement.

REVISE Statement
A REVISE statement is followed by a set of parentheses enclosing a single edit
script. Such a script is called a revision script. For this case only (not for WHEN,
EDIT, or ACQUIRE conditions, for example), an exception is made for text
handling: if no output order changes the message text, then the entire text is
replicated into the output message (in other scripts, this results in null text).
Multiple REVISE statements can be in any group, with each acting on the result of
the previous revision. If a subsequent SELECT group reexamines the message, it
sees the result of the action of the preceding REVISE action.

Examples of the REVISE statement:
REVISE("Cr" COLOR) * turn msg red
REVISE("CY" COLOR "ABCDEFGH" autotoken) * turn msg yellow and set autotoken
REVISE(ROUTEZERO) * set all routecodes to false/zero
REVISE('1xxxxxxx' FLGDSCD2) * set descriptor code 9 to true
REVISE('1xxxxxx0' FLGDSCD3) * set descriptor code 17 to true

* and descriptor code 24 to false

REVISE('1xxxxxxx' FLGRTCD4) * set route code 25 to true
REVISE("cr hr" color) * turn msg color to red with reverse video
REVISE("ct hu" color) * turn msg color to turquoise and underline
REVISE ('N' automate) * do not automate this message
REVISE ('Y' automate) * automate this message
REVISE ('Y' AMRF) * retain Action message in AMRF
REVISE ('N' DISPLAY) * do not show message at the console
REVISE ('Y' DISPLAY) * show message at the console
REVISE ('Y' BROADCAST) * send message to all active consoles
REVISE ('Y' PROG) * for programmer information (route code 11)
REVISE ('N' SYSLOG) * do not write this message to the system log
REVISE ('80'x SYSLOG) * write this message to the system log
REVISE ('Y' DELETE) * totally delete message

* turn msg blue and append "SHOULD BE BLUE" to the end of message
REVISE("CB" COLOR 1.* 1 "SHOULD BE BLUE" NW)

132 Automation Guide

* same as previous example except using ALL
REVISE("CB" COLOR ALL 1 "SHOULD BE BLUE" NW)
REVISE (ALL UPCASE) * UPPER case the entire message
revise (MSGID 1 "changed message" NW) * Keep msgid and append "changed message"
REVISE("0000000x" FLGRTCD1) * turn off routecodes 1-7 leave 8 as before
REVISE ("WHOKNOWS" CONSNAME) * send message to console with the name WHOKNOWS

See the NetView online help or IBM Tivoli NetView for z/OS Programming: Pipes for
information about using PIPE EDIT orders.

Note: MVS imposes a limit of 127 characters in text output. The MRT does not
provide a warning or condition when longer messages are truncated.

SELECT Statement
A SELECT statement introduces a series of WHEN statements, followed by a
required OTHERWISE statement and an END statement. The SELECT statement
does not include any arguments.

UPON Statement
An UPON statement is a top-level conditional that introduces each section. There
are four types of conditions:
v MSGID, which can be in the range of 1 - 12 characters
v JOBNAME, which can be in the range of 1 - 8 characters
v PREFIX, which is always three characters
v OTHERMSG

They are tested in the order provided here and the first three conditions are always
compared with a literal. The MSGID literal can be in the range of 1 - 12 characters,
the JOBNAME literal can be in the range of 1 - 8 characters, and the PREFIX literal
is always three characters.

These are examples of the conditions:
UPON (msgid = 'CNM233I' | JOBNAME='VTAM' | prefix = 'IST')
UPON (MSGID="TST102A" |

MSGID="TST102B" |
MSGID="TST102C" |
MSGID="TST102D")

If any message matches one type of an UPON statement, the message is not
compared with lower-ranking UPON statements. For example, if message
CNM233I is presented to the preceding table, it is not compared for the JOBNAME
or PREFIX conditions and it is not submitted to any statements listed under the
UPON(OTHERMSG) section. Note that MSGID is tested first even if that UPON
statement is not physically first in the table definition.

Limit your use of UPON(OTHERMSG) statements to avoid performance
degradation.

Within a given UPON statement, multiple conditions can be joined by an OR
symbol (|), but not AND.

Subordinate to each UPON statement, there can be zero or more statements of type
SELECT, REVISE, NETVONLY, and EXIT. This group of statements is called an
UPON group and it is evaluated in the same order that it is specified.

Chapter 13. The Message Revision Table 133

|

|
|
|
|
|
|

|
|

When a message has matched an UPON statement and acted on by the UPON
group, no further action is taken by the MRT. In particular, such a message is not
compared with other UPON conditions.

Note that only the first line of a MLWTO message is examined.

WHEN Statement
The WHEN statement is subordinate to a SELECT statement and is always
followed by an expression enclosed in parentheses. Each WHEN statement is
followed by a set of zero or more action statements preceding the next WHEN or
OTHERWISE statement. This is called a WHEN group. The expression is a pair of
edit scripts separated by either an equal sign (=) or a not equal set of symbols (¬=).
The two scripts are run against a message and the results are compared, after the
leading and trailing blanks or null values are removed. If the two are equal (or not
equal, depending on the separator value), then the message is considered to have
matched that WHEN statement. Such a message is acted upon by the action
statements of the WHEN group and is not compared with other WHEN statements
under the same SELECT statement, and it is not matched to the OTHERWISE
statement.

Examples of the WHEN statement:
WHEN (msgid right 1 = 'A') * when action message
WHEN (MSGID SUBSTR 5.* RIGHT 1 = 'E') * when error message
WHEN (SYSLOG yesno = 'Yes') * when SYSLOG is on. 'Yes' is case sensitive.
WHEN (SYSLOG yesno = 'No') * when SYSLOG is off. 'No' is case senstive.
WHEN (SYSLOG = '80'x) * when SYSLOG is on
WHEN (SYSLOG = '00'x) * when SYSLOG is off
WHEN (FLGRTCD1 SUBSTR 2.1 = '1') * when routing code 2 is on

See the NetView online help or IBM Tivoli NetView for z/OS Programming: Pipes for
information about using PIPE EDIT orders.

Example of a Message Revision Table
This is an example of an MRT:
UPON (MSGID = 'IEA404A' ! SEVERE WTO BUFFER SHORTAGE - 100% FULL

| MSGID = 'IRA200E' ! AUXILIARY STORAGE SHORTAGE
| msgID = 'DSI125I') ! CRITICAL STORAGE SHORTAGE FOR NCCF

REVISE('CR HR' COLOR) ! make msgs red/reverse
* note, when adding to text, be sure to put text in there first!

SELECT
WHEN (MSGID = 'DSI125I') !

REVISE("N" AUTOMATE) ! do not try to automate dsi125
EXIT ! skip further revision, too.

OTHERWISE
END
REVISE('11xx0xxx' FLGRTCD1 ! send to Rt Cd 1,2 but not 4 ...

1.* 1 "919-555-5677") ! and add my phone number to text

* Some VTAM related messages ...
UPON (MSGid = 'CNM233I' |MSGID = 'CNM234I' |MSGID = 'CNM235I'

| MSGID = 'CNM385I' |MSgID = 'CNM386I' |MSGID = 'CNM435I'
|MSGID = 'CNM439I'
| JOBNAME = 'VTAM' | preFix = 'IST')

SELECT
WHEN (MSGID LEFT 3 = 'CNM') ! like "prefix" for WHEN statment

REVISE("CP" COLOR) ! nv msgs above turn pink
OTHERWISE

134 Automation Guide

|
|
|
|
|
|
|

REVISE("CP HR" COLOR) ! others also underscored
NETVONLY ! sys consoles not to see these

END
UPON (PREFIX = 'DSI' | prefix = 'CNM' | prefix = 'DWO')

revise ('xxxx11xx' flgRtCd1) ! in addition to route codes already
! set, add 5 and 6

! Despite being specified first, the prefix condition above is
! evaluated AFTER all MSGID conditions. Due to the following,
! DSI802A & 803A are not affected by the Rt Cd 5 & 6 revision.
UPON (MSGID = 'DSI802A' ! changing text of these msgs

| MsgID = 'DSI803A')
revise(w1 1 msgid nw ! put in reply ID and msgid

"reply CLOSE or MSG" nw)! list valid cmds
! note: above revision sets text, so text placed by the edit is the
! ONLY text in the resulting message.

SELECT
WHEN(MSGID RIGHT 2 = '3A') ! for one of the above MSGIDs,...
REVISE(1.* 1 'ONLY!') ! make addtional text changes
OTHERWISE

END
SELECT

WHEN(W3 ¬= '&DOMAIN.') ! msg from other NetView?
NETVONLY ! steal msg from MVS, give only

! to this NetView, for automation
! Be sure your automation does something with these msgs!

OTHERWISE
END

UPON(OTHERMSG) ! more performance cost for these tests...
SELECT

WHEN (MSGiD RIGHT 1 = 'A') ! action msg
REVISE("HB" COLOR) ! keep same color, add blink

WHEN (MSgid RIGHT 1 = 'E') !
REVISE('xx1xxxxx' FLGRTCD2 ! add Rt Cd 11 to any present

'CY' color) ! and color
OTHERWISE

END

Usage Reports for Message Revision Tables
You can use the REVISE MSG REPORT command to gather statistics and usage
information about the active revision table. If successful, a BNHRVaaaI message is
issued. When the REPORT keyword is specified with the MEMBER operand, the
information displayed is about the table being replaced and the time it was
replaced.

See the NetView online help or the IBM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N) for more information about using the REVISE MSG command.

Message Revision Table Testing
You can use these steps to test your message revision table and verify that the
route codes, descriptor codes, and console name specified on a REVISE statement
are working as expected:
1. Issue a message using the WTO command. For example:

WTO TST125A First test message

2. Allow the message to go through your message revision table and modify the
console name, a descriptor code, and a route code.

3. Use the NetView automation table to call a REXX routine to print the
descriptor code, route code and console name information. This is an example

Chapter 13. The Message Revision Table 135

|
|
|
|
|

of an example of an automation table entry, a section of the Message Revision
Table, and a REXX example that the Automation Table entry calls:
v Automation table entry

IF MSGID = 'TST' . THEN
HOLD(N) EXEC(CMD('RexxExec') ROUTE(ONE ConsoleName)); * where ConsoleName
*is the NetView console name obtained using GETCONID

v A section of the Message Revision Table
UPON (MSGID="TST125A")
SELECT
When (MSGID="TST125A")
REVISE('1xxxxxxx' FLGDSCD1)
REVISE('xxxxxxx1' FLGRTCD2)
REVISE ("ConsoleName" CONSNAME) * where ConsoleName is a valid Console Name
Otherwise
END

v REXX example called by the Automation table entry
/* RexxExec */
say ROUTCDE()
say "desc code =" DESC()
say "CONSNAME=" SYSCONID()
exit

See the NetView online help or the IBM Tivoli NetView for z/OS Command Reference
Volume 2 (O-Z) for more information about the WTO command.

136 Automation Guide

Chapter 14. The Command Revision Table

This chapter describes:
v The NetView command revision table (CRT)
v How to code a command revision table
v Command revision table statements
v Example of a command revision table listing
v Usage reports for command revision tables
v Testing the logic of the command revision table

Note: The MVS Command Revision function replaces the existing MVS Command
Management function. For information on migrating to the MVS Command
Revision function, see the IBM Tivoli NetView for z/OS Installation: Migration
Guide.

What Is the Command Revision Table?
The command revision table (CRT) enables you to intercept MVS commands before
they are processed. Command sources include the MVS console and the NetView
MVS command.

The CRT intercepts any text entered on an MVS console command line, as an SDSF
system command, using the JCL COMMAND parameter, or by any program using
the MGCRE macro or direct SVC 34. The text entered might or might not be a
valid MVS command before being altered or redirected by CRT processing.
However, any MVS commands that you issue as part of the CRT processing will be
exempt from CRT action (see “NETVONLY Statement” on page 143). You can make
decisions about the command based on its source, command verb, and command
parameters.

You can make changes to the command text, write a message to the command
issuer, and then run the command or suppress the command. You can also transfer
the command to the NetView program for more involved actions. The CRT can
remain active even while the NetView program is not, but the SSI address space is
required. However, loading or querying the CRT, or gathering statistics, depends
on the functional NetView address space being active.

Elements of Command Revision Table Statements
These elements comprise a command revision automation table:
v Use the UPON statement to introduce each section.
v Use the SELECT statement to introduce a series of WHEN statements.
v Use the WHEN statement or the OTHERWISE statement to specify a condition.
v Use the END statement to close a section started with a SELECT statement.
v Use the REVISE statement to include revision actions.
v Use the EXIT statement to stop any further command revision when an action is

matched.
v Use the NETVONLY statement to provide for NetView automation.
v Use the WTO statement to generate a message to the console from which the

command was issued. If the command originated from an INTERNAL,
INSTREAM, INTIDS, or HC console, the message is written to SYSLOG only.

© Copyright IBM Corp. 1997, 2009 137

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|

|

|

|
|

|

|
|
|

v Use the %INCLUDE statement to include separately coded and maintained
sections of the command-revision table to divide your command-revision table
maintenance among several groups or individuals. You can view your INCLUDE
structure using the automation-table management function (AUTOMAN). See
sample CNMSCRT1 for additional information.

Command Revision Table Processing
You can use the REVISE CMD command to activate, deactivate, test, list, or check
the status of a command revision table. See the NetView online help or the IBM
Tivoli NetView for z/OS Command Reference Volume 1 (A-N) for more information
about using the REVISE CMD command.

Command Revision Table Searches
When an MVS command is issued, the NetView SSI code employs a fast search
algorithm to locate the particular UPON statement that is relevant for that
command. Conditions and actions under that UPON are then applied sequentially.
If a command matches no particular UPON condition, this is quickly determined
and the command is then subject to conditions and actions under the
UPON(OTHERCMDS) condition and then the UPON(ALLCMDS) condition.

You can include an UPON statement with no subordinate conditions or actions,
simply to cause your CRT report to contain a count of matching commands. An
UPON statement with no subordinate conditions or actions is called a null UPON.

Conditions subordinate to an UPON statement are examined sequentially.
Therefore, you might improve performance by including a specific null UPON
statement to match common commands, to prevent their being examined by the
UPON(OTHERCMDS) or UPON(ALLCMDS) conditions.

Coding a Command Revision Table
These directions and restrictions apply to coding the command revision table:
v Comments can begin with an asterisk (*) in column 1 or following an

exclamation point (!) anywhere in the file.
v You can use blanks to indent lines and to separate keywords, logical operators,

and parentheses.
Blanks used within a comparison string are considered characters in that string.

v You must use single or double quotation marks as the delimiters for comparison
text and for synonym values. If a literal has one kind of quotation mark, use the
other as the delimiter.

v You can include actions such as REVISE, NETVONLY, and WTO directly under
an UPON statement without any SELECT, WHEN, or OTHERWISE statement.
These actions are labeled as type OTHERWISE in an CRT report.

v PIPE EDIT orders can be used with the WHEN, REVISE, and WTO statements.
See “Edit Orders” on page 144 for more information.

Command Revision Table Statements
You can use the following statements in a CRT:
v “TRACKING.ECHO Statement” on page 139
v “ISSUE.IEE295I Statement” on page 139
v “UPON Statement” on page 140

138 Automation Guide

|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|

|

|

|

|

v “SELECT Statement” on page 141
v “WHEN Statement” on page 141
v “OTHERWISE Statement” on page 142
v “END Statement” on page 142
v “REVISE Statement” on page 142
v “NETVONLY Statement” on page 143
v “WTO Statement” on page 143

TRACKING.ECHO Statement
By default, the z/OS operating system issues an additional command echo when
the CRT makes a change to a command. This will appear in your system log. This
new message reflects the command as it was changed by the CRT.

Notes:

1. System APAR OA28464 is required for this statement to be in effect.
2. If specified, the TRACKING.ECHO statement must precede any UPON

statement.

The TRACKING.ECHO statement uses the following syntax:

TRACKING.ECHO

��
YES

TRACKING.ECHO =
NO

��

Parameter Description

YES Specify YES to allow the extra echo. This is the default.

NO Specify NO to suppress the extra echo.

ISSUE.IEE295I Statement
By default, the z/OS operating system issues an additional IEE295I, a multi-line
message, to document changes made directly in your CRT. This will appear in
your system log. The message is not issued when you specify the NETVONLY
action. This new message reflects the command as it was prior to and after the
changes made by the CRT.

Notes:

1. System APAR OA28464 is required for this statement to be in effect.
2. If specified, the ISSUE.IEE295I statement must precede any UPON statement.

The ISSUE.IEE295I statement uses the following syntax:

ISSUE.IEE295I

��
YES

ISSUE.IEE295I =
NO

��

Parameter Description

YES Specify YES to allow the tracking message. This is the default.

NO Specify NO to suppress the tracking message.

Chapter 14. The Command Revision Table 139

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

|

|

||||||||||||||||

|

||

||

||

|

|
|
|
|
|

|

|

|

|

|

||||||||||||||||

|

||

||

||

UPON Statement
An UPON statement is a top-level conditional statement that introduces each
section.

The UPON statement uses the following syntax:

UPON

�� �

�

|

UPON (CMDCONS=’console_name’)
|

(CMDVERB=’first_token’)
(OTHERCMDS)
(ALLCMDS)

��

Parameter Description

CMDCONS='console_name'
Name of the console issuing the command.

CMDVERB='first_token'
Value of the first token delimited by a blank or comma, which can
be in the range of 1 - 12 characters. Command synonyms are not
resolved.

OTHERCMDS
All commands not matched by the preceding conditions.

ALLCMDS All commands.

Usage Notes®:

1. The CMDCONS and CMDVERB conditions can accept multiple values or can
be coded multiple times with different values.

2. Code the OTHERCMDS and ALLCMDS conditions only once in a table.
3. The parameters are examined in the following order:

a. CMDCONS
b. CMDVERB
c. OTHERCMDS
d. ALLCMDS

4. If any command matches one type of an UPON statement, the command is not
compared with lower-ranking UPON statements.

5. Limit your use of UPON(OTHERCMDS) and UPON(ALLCMDS) statements to
avoid performance degradation.

6. Within a given UPON statement, multiple conditions can be joined by an OR
symbol (|), but not AND.

7. Subordinate to each UPON statement, there can be zero or more statements of
type SELECT, REVISE, NETVONLY, and WTO. This group of statements is
called an UPON group and it is evaluated in the same order that it is specified.

8. OTHERCMD is a synonym for OTHERCMDS. ALLCMD is a synonym for
ALLCMDS.

Examples:

These are examples of the UPON conditions:

140 Automation Guide

|

|
|

|

|

|||

|

||

|
|

|
|
|
|

|
|

||

|

|
|

|

|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|

UPON (CMDVERB ='CONTROL' | CMDVERB='K' | CMDCONS='SAMSOWN')
UPON(CMDVERB='FORCE')
UPON(OTHERCMDS)

SELECT Statement
A SELECT statement introduces a series of WHEN statements, followed by a
required OTHERWISE statement and an END statement. The SELECT statement
does not include any arguments.

The SELECT statement uses the following syntax:

SELECT

�� SELECT ��

WHEN Statement
The WHEN statement is subordinate to a SELECT statement and is always
followed by an expression enclosed in parentheses. Each WHEN statement is
followed by a set of zero or more action statements preceding the next WHEN or
OTHERWISE statement. This is called a WHEN group. The expression is a pair of
edit scripts separated by either an equal sign (=) or a not equal set of symbols (¬=).
The two scripts are run against a command and the results are compared, after the
leading and trailing blanks or null values are removed. If the two are equal (or not
equal, depending on the separator value), then the command is considered to have
matched that WHEN statement. Such a command is acted upon by the action
statements of the WHEN group and is not compared with other WHEN statements
under the same SELECT statement, and it is not matched to the OTHERWISE
statement.

The WHEN statement uses the following syntax:

WHEN

�� WHEN (action_statement) ��

Parameter Description

action_statement
Edit orders that you can specify. See Table 5 on page 144 for a list
of the edit orders that you can specify.

Examples:

These are examples of the WHEN statement:
WHEN(CONSAUTH = 'I') ! console's authority is "I/O"
WHEN(CONSNAME left 3 = 'MST') ! console's name begins with "MST"
WHEN(WORD 2 = '') ! command entered with no arguments
WHEN(ASTYPE = 'D') ! command from USS persistent procedure
WHEN(CMDVERB = 'SWITCH') ! switch command issued -- or
WHEN(CMDVERB = 'I') ! switch command issued

See the NetView online help or IBM Tivoli NetView for
z/OS Programming: Pipes for information about using PIPE EDIT orders.

Chapter 14. The Command Revision Table 141

|
|
|

|

|
|
|

|

|

|||||||
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|||||||||||||
|

||

|
|
|

|

|

|
|
|
|
|
|

|
|

OTHERWISE Statement
An OTHERWISE statement is like a WHEN statement, except that there is no
condition and it must follow all the WHEN statements under a given SELECT
statement.

The OTHERWISE statement uses the following syntax:

OTHERWISE

�� OTHERWISE ��

END Statement
An END statement closes a section started with the corresponding SELECT
statement.

The END statement uses the following syntax:

END

�� END ��

REVISE Statement
The REVISE statement modifies the command string (text).

The REVISE statement uses the following syntax:

REVISE

�� REVISE (action_statement) ��

Parameter Description

action_statement
Edit orders that you can specify. See Table 5 on page 144 for a list
of the edit orders that you can specify.

Usage Notes:

1. A REVISE statement is followed by a set of parentheses enclosing a single edit
script. This script is called a revision script. If no output order changes the
command text, the entire text is replicated into the output command.

2. Multiple REVISE statements can be in any group, with each acting on the result
of the previous revision. If a subsequent SELECT group reexamines the
command, it sees the result of the action of the preceding REVISE action.

Restriction:

MVS imposes a limit of 126 characters per command. The CRT does
not provide a warning or condition when longer commands are
truncated.

Examples:

These are examples of the REVISE statement:

142 Automation Guide

|

|
|
|

|

|

|||||||
|

|

|
|

|

|

|||||||
|

|

|

|

|

|||||||||||||
|

||

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|

REVISE(ALL 1 ",AREA=BLD410" N) ! adding a parameter to a command
REVISE('Y' DELETE) ! command is deleted (forbidden)
REVISE(ALL 1 ",L" NEXT) ! adding a parameter

See the NetView online help or IBM Tivoli NetView for
z/OS Programming: Pipes for information about using PIPE EDIT orders.

NETVONLY Statement
The NETVONLY statement specifies the REXX procedure (command) that is to be
run in the NetView address space. The parameters of the procedure will be the
command text submitted to the CRT and includes any revisions made in the CRT
prior to the NETVONLY action.

The NETVONLY statement uses the following syntax:

NETVONLY

�� NETVONLY=procedure ��

Parameter Description

procedure 1 to 8 character REXX procedure name

Usage Notes:

1. When the procedure (command) is received by the NetView address space, it is
submitted to the command revision environment automation task. The
automation task is identified by the ?MVSCmdRevision statement in the
CNMSTYLE member. The NETVONLY statement queues commands to the
NetView program over the SSI.

2. Only one NETVONLY statement can be specified in each WHEN or
OTHERWISE statement.

3. Review the CNMSRVMC sample for example coding techniques.

WTO Statement
The WTO statement creates text for a WTO message that is sent to the console
from which the command was issued.

The WTO statement uses the following syntax:

WTO

�� WTO (action_statement) ��

Parameter Description

action_statement
Edit orders that you can specify. See Table 5 on page 144 for a list
of the edit orders that you can specify.

Restrictions:

1. You cannot set route codes, descriptor codes, or other parameters of the WTO.
2. Text exceeding 126 characters is truncated.

Chapter 14. The Command Revision Table 143

|
|
|

|
|

|

|
|
|
|

|

|

|||||||
|

||

||

|

|
|
|
|
|

|
|

|

|

|
|

|

|

|||||||||||||
|

||

|
|
|

|

|

|

Edit Orders
Table 5 lists the edit orders that you can use with the WHEN or REVISE
specifications.

Table 5. Edit Orders

Edit Order Description

ALL Indicates to use the entire text of the command. This is the same as "1.*".

ASID Indicates the address space ID of the MVS originator of the command
(2-byte binary value).

ASTYPE Indicates how the address space was started (job type):

Value Description

D USS persistent procedure.

The address space has a name for initiated programs, appropriate
for a JOB. However, the existence of an OpenMVS address space
block indicates a special purpose USS persistent procedure.

J The address space is a JOB.

N The address space is a system address space started during
operating system initialization (NIP) processing.

S The address space is a Started Task (STC).

T The address space is a Time-Sharing User (TSO).

U The address space is a USS forked or spawned procedure.

* Error: the address space where the command originated has
closed.

? Error: inconsistent data (might be a transient condition).

! Error: inconsistent data.

> Error: should not occur.

C2B Converts input binary to a Boolean string (EBCIDC ″0″ and ″1″ values)

C2D Converts input to a string representing a decimal number.

C2X Converts input to a string representing its hexadecimal notation.

CMDX Inputs the first 88 (X'58') bytes of the IEZVX101 control block.

CONSAUTH Indicates authority of the console issuing the command:

Value Description

M Master

I I/O

S SYS

C CONSOLE

CONSNAME Returns the issuing console name.

D2C Converts a signed integer number into a full-word.

D2X Converts a signed decimal number to a hexadecimal representation

DELETE Output order, binary input ″Y″ or ″1″ indicates that the command is to be
deleted.

JOBNAME Input order, specifies the 8-character JES job name of the originator of the
command.

144 Automation Guide

|

|
|

||

||

||

||
|

||

||

||

|
|
|

||

||
|

||

||

||

||
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

||
|

Table 5. Edit Orders (continued)

Edit Order Description

LEFT Truncates or pads the input to the length specified. Characters are counted
from the beginning, or left, of the input.

NEXT Specifies that the input is to be placed into the output without an
intervening blank.

NEXTWORD Specifies that the input is to be placed into the output with an intervening
blank.

NVABLE Returns ″Yes″ if a NETVONLY action can succeed, otherwise returns an
″No″.

ONTO Sets the logical end of command text for all input order.

PAD Specifies the padding character to be used by subsequent orders. Examples
of orders which use the padding character include the LEFT conversion
order and the position output order.

PARSE Specifies how the WORD input order counts words.

PREFIX Conversion order; adds a literal string to the beginning of input text.

RESET Cancels all previous SKIPTO and UPTO orders. The original input line is
made available to input orders specified subsequent to RESET.

RIGHT Truncates or pads the input to the length specified. Characters are counted
from the end, or right, of the input.

RVAR From the input revision variable name, returns the current value or a null
string.

SKIPTO Sets the logical start of the line for input orders position length and WORD
to be a point other than the first character in the line.

STRIP Specifies that padding characters at the start or end of the data are to be
removed.

STRIPL Specifies that padding characters at the beginning of the data are to be
removed.

STRIPR Specifies that any padding characters at the end of the data are to be
removed.

SUBSTR Specifies that a subset of the input data is to be selected.

SYSNAME Specifiees the 8–character name of the system from which the command
originated.

UPTO Redefines the logical end of the input line.

WORD Specifies the subset of the input line to be processed. The subset is defined
by specifying a starting word and the total number of words.

X2C Converts a hexadecimal EBCIDC string into binary notation.

YESNO Converts a 1-byte field to the character string Yes or No.

See the NetView online help or IBM Tivoli NetView for z/OS Programming: Pipes for
more information on the PIPE EDIT orders.

Command Revision Table Example
This is an example of an CRT (CNMSCRT1 sample):
UPON(CMDVERB = 'V' | CMDVERB = 'VARY')

SELECT
WHEN(WORD 2 = 'NETVIEW') ! V NetView,(anytext)

NETVONLY=CNMSRVMC ! handle in NetView

Chapter 14. The Command Revision Table 145

|

||

||
|

||
|

||
|

||
|

||

||
|
|

||

||

||
|

||
|

||
|

||
|

||
|

||
|

||
|

||

||
|

||

||
|

||

||
|

|
|

|
|

|

|
|
|
|

OTHERWISE ! all other VARY cmds untouched
END

UPON (CMDVERB='T' | CMDVERB='SET')
SELECT
WHEN (W2 next W3 = 'MPF NO') ! SET MPF=NO ?

WTO("What do you think you're doing, Dave?") ! Think about it
OTHERWISE
END

UPON (CMDCONS='ROOT') ! For special console...
* Note this "empty" UPON is tested first by cmd revision. For this
* special console is thus exempt from all CMDVERB & OTHERCMD actions
UPON (ALLCMD) ! THIS applies even to console ROOT

SELECT
WHEN (CMDVERB ¬= 'SEND')

* The above means that the following is only for the SEND cmd.
WHEN (SKIPTO /USER=/ 1 FOUND ¬= 'Yes') ! default = "ALL"

WTO("TLH447E Please do not broadcast to all.") ! explain to op
REVISE('Y' DELETE) ! disallow default

OTHERWISE
END
SELECT ! Note: second, independent SELECT under the ALLCMD

WHEN (CMDVERB ¬= 'IMSTDIS') ! special to IMS cmd
WHEN (W2 = 'CCTL')

WTO("TLH851I Please review guidelines for SYSTAR1.")
!! Adding a message to the command response

OTHERWISE
END

* NOTE: The following depends on NetView having set a CHRON command
* to issue SETRVAR (or clist containing SETRVAR) to establish a
* value for SHIFT: NORMAL (working hours), NIGHT (other times of
* day, or HOLIDAY (non work days)
UPON (CMDVERB='S' | CMDVERB='START')
SELECT

WHEN (W2 ¬= /STATCOMP/) ! starting special proc? see next WHEN
WHEN ("SHIFT" RVAR = "NORMAL") !

NETVONLY=CNMSRVMC ! double use of sample clist!
WHEN ("SHIFT" RVAR = "HOLIDAY")

! cmd is allowed, no action here
WHEN (SKIPTO "LIMIT=" 1 FOUND = 'Yes') ! limit keyword present?

! at NIGHT, proc is allowed with LIMIT keyword specified
OTHERWISE ! SHIFT assumed to be NIGHT, no LIMIT

WTO('TLH722E Do not start' 1 WORD 2 NW
'without LIMIT keyword, except holidays.')

REVISE('Y' DELETE)
END

* START T540EESS.SS,SUB=MSTR,MSGIFAC='SSIEXT',DSIG='%',PPIOPT='PPI'

Usage Reports for Command Revision Tables
You can use the REVISE CMD REPORT command to gather statistics and usage
information about the active revision table. If successful, a CNM014I message is
issued. When the REPORT keyword is specified with the MEMBER operand, the
information displayed is about the table being replaced and the time it was
replaced.

See the NetView online help or the IBM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N) for more information about using the REVISE CMD command.

146 Automation Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

Command Revision Table Testing
You can use these steps to test your command revision table:
1. Issue a command using the MVS command. For example:

MVS SET MPF=NO

2. Use the NetView command revision table to issue a WTO instead of running
the command. A section of the command revision table to do this is:
UPON (CMDVERB='T' | CMDVERB='SET')

SELECT
WHEN (W2 next W3 = 'MPF NO') ! SET MPF=NO ?

WTO("This command has been blocked by the NetView program.")
OTHERWISE
END

Chapter 14. The Command Revision Table 147

|
|

|

|

|

|
|

|
|
|
|
|
|

148 Automation Guide

Chapter 15. The Automation Table

This chapter describes:
v The NetView automation table
v The statements you can use in an automation table
v How to code an automation table
v The syntax of automation-table statements
v Design guidelines for automation tables
v Usage reports for automation tables

For information on using the automation table to automate messages and MSUs,
see Chapter 22, “Automating Messages and Management Services Units (MSUs),”
on page 319.

For information on testing the logic of the automation table, see Chapter 34,
“Automation Table Testing,” on page 473.

What Is the Automation Table?
The automation table enables you to respond automatically to messages and
management services units (MSUs). This table contains statements that define
actions that the NetView program takes when it receives specific messages and
MSUs. For example, you can issue a response in the form of a command,
command list, or command processor.

You can also set attributes and processing options. For example, you can suppress,
log, or route messages and block, record, or highlight MSUs.

The automation table also processes commands that are echoed to the screen,
treating them as messages. To stop the automation table from processing
commands, add a statement at the top of the table that ends processing if the
message type is an asterisk (HDRMTYPE = '*') or another command-related
message type.

Elements of Automation-Table Statements
These elements comprise an automation table:
v An IF-THEN statement enables you to specify messages and MSUs that you want

the NetView program to automate. An IF-THEN statement contains a set of
conditions followed by a set of actions that the NetView program is to perform
when a message or MSU meets those conditions.

v A BEGIN-END section enables you to group statements together for processing.
A BEGIN-END section starts with a BEGIN option on an IF-THEN statement
and ends with an END statement.

v An ALWAYS statement enables you to specify actions to take place for all
messages and MSUs that reach that statement in the table.

v A %INCLUDE statement enables you to include separately coded and maintained
sections of the automation table to divide your automation-table maintenance
among several groups or individuals. You can view your INCLUDE structure
using the automation-table management function (AUTOMAN).

v A SYN statement enables you to define synonyms for use later in the table. Each
SYN statement includes a name and an associated value.

© Copyright IBM Corp. 1997, 2009 149

|

You store automation-table statements in member DSIPARM. You can store the
statements that make up an automation table in a single member or in a set of
members that you include in a main automation-table member with the
%INCLUDE statement.

Automation-Table Processing
You can use either the AUTOMAN or AUTOTBL command to activate, deactivate,
test, list, or check the status of an automation table or set of tables. You can also
enable or disable individual statements or groups of statements in an automation
table that has been defined to provide this functionality.

For more information on AUTOMAN, see “Managing Multiple Automation Tables”
on page 250.

For the syntax of the AUTOTBL command and detailed information, refer to the
NetView online help. “Example of an Automation-Table Listing” on page 238
shows the results of using the AUTOTBL command to list an automation table.

When you activate an automation table, NetView first resolves all %INCLUDE and
SYN statements by incorporating all included members and substituting synonym
values for synonym names. Only IF-THEN statements, BEGIN-END sections, and
ALWAYS statements directly affect the processing of messages and MSUs.

Automation-Table Searches
When the NetView program receives a message or MSU and an automation table
is active, the NetView program searches the active automation table sequentially,
looking for:
v Conditions that match the received message or MSU
v An ALWAYS statement, which matches unconditionally

When a match is found, the NetView program performs the actions that the
matching statement specifies. If the matching statement specifies CONTINUE(Y),
the NetView program continues searching for an additional match. If the matching
statement does not specify CONTINUE(Y), the NetView program ends its search of
the automation table for the message or MSU.

Types of Automation-Table Statements
Not all of your automation-table statements apply to all incoming data. When a
message is processed, the NetView program checks only the automation statements
that apply to messages. When an MSU is processed, the NetView program checks
only the automation statements that apply to MSUs.

An IF-THEN or ALWAYS statement must be one of three types: message, MSU, or
both.
v A message-type statement applies only to messages.
v An MSU-type statement applies only to MSUs.
v A both-type statement applies to either messages or MSUs

The type of an IF-THEN statement depends on the types of condition items and
actions the statement contains. The type of an ALWAYS statement depends on the
types of actions the statement contains.

A condition item or an action can be of three types: message, MSU, or both. To
determine the types of condition items or actions, see the descriptions of the

150 Automation Guide

specific items or actions in this chapter. “Condition Items” on page 158 describes
condition items, and “Actions” on page 211 describes actions.

Determining the Type of Statement
The rules for determining the type of an IF-THEN or ALWAYS statement are:
v If all condition items and actions are of type message, the statement type is

message.
v If all condition items and actions are of type MSU, the statement type is MSU.
v If all condition items and actions are of type both, the statement type is both.
v If some condition items and actions are of type both and some are message, the

statement type is message.
v If some condition items and actions are of type both and some are MSU, the

statement type is MSU.
v If some condition items and actions are of type message and some are of type

MSU, the statement is not valid.
v A statement with no condition items or actions, such as ALWAYS, is of type both.
v If any parts of a statement are not valid, the statement is not valid.

Statement Types and Processing
The statement type also affects the processing of BEGIN-END sections. A
BEGIN-END section is the same type as the statement that contains the BEGIN
keyword and begins the section.
v A BEGIN-END section that starts with a message statement type is type message

and can contain statements or other BEGIN-END sections whose types are
message or both.

v A BEGIN-END section that starts with an MSU statement type is type MSU and
can contain statements or other BEGIN-END sections whose types are MSU or
both.

v A BEGIN-END section that starts with a both statement type is type both and
can contain statements or other BEGIN-END sections whose types are message,
MSU, or both.

v A message-type BEGIN-END section containing MSU-type statements or an
MSU-type BEGIN-END section containing message-type statements is not valid.

You cannot activate an automation table that contains statements or BEGIN-END
sections that are not valid.

When the automation table receives a message, the NetView program processes
only statements and BEGIN-END sections of type message or both. When the
automation table receives an MSU, the NetView program processes only statements
and BEGIN-END sections of type MSU or both.

Coding an Automation Table
These directions and restrictions apply to coding the automation table.
v You must store the automation table in a member that has a fixed 80-character

format. You can code statements in columns 1–72.
v Columns 73–80 are for sequence numbers.

Sequence numbers are optional, but if they are used they:
– Must begin in column 73

Chapter 15. The Automation Table 151

– Must consist of alphanumeric characters, but can also include the characters
@, $, and #

v You must code a semicolon (;) at the end of each statement except the
%INCLUDE statement.

v The automation table can be coded in mixed case. The case is preserved for:
– Comments
– Character literals (quoted strings)
– Synonym names
– Synonym values
– The member name on a %INCLUDE statement
Other statement components are internally changed to uppercase during
processing of the table. This might result in error messages displayed as
uppercase statements.

v You can use blanks to indent lines and to separate keywords, logical operators,
and parentheses.
However, blanks used within a comparison string are considered characters in
that string.

v You can continue a statement on as many lines as needed, using columns 1–72.
You can stop a line after any logical operator, a parenthesis, a completed
condition, or an operand, and resume the statement anywhere in the first 72
columns of the next line.

v You must use single quotation marks as the delimiters for comparison text and
for synonym values.
– If a synonym value or comparison text contains a single quotation mark ('),

you must represent it as two consecutive single quotation marks ('').
– Do not substitute a double quotation mark for two single quotation marks.

v Place comments on separate lines for automation-table members.
– Do not put comment lines between the beginning and end of a continued

automation-table statement.
– Each comment line must contain an asterisk (*) in the first column.

v System symbolic substitution is performed on automation-table statements read
from an automation-table member in the DSIPARM data set.
The &DOMAIN symbolic that is supplied with the NetView program is also
included in the substitution process. The substitution is performed after
comment removal but before record processing. Comments are also removed
after substitution. Substitution is always performed on the &DOMAIN symbolic
(unless substitution was disabled when NetView was started).
For MVS and user-defined system symbolics, substitution is not performed if
you are running on an MVS system prior to MVS Version 5 Release 2.

v Japanese double-byte characters are not supported in the automation table.

BEGIN-END Section
BEGIN-END sections contain a series of automation-table statements. An END
statement ends a series of statements started with the BEGIN option on an
IF-THEN or ALWAYS statement. You can use BEGIN-END sections to logically
segment an automation table or to help improve the performance of
automation-table processing.

The syntax for a BEGIN-END section is:

152 Automation Guide

|

BEGIN-END Section

�� IF conditions THEN
ALWAYS

BEGIN;
statements;

END ; ��

Where:

IF Starts an IF-THEN statement, as described in “IF-THEN Statement” on
page 154.

conditions
Are the conditions that determine whether the actions indicated by THEN
are to be processed, as previously described.

THEN Starts the THEN part of an IF-THEN statement, as described previously.

ALWAYS
Starts an ALWAYS statement, as described in “ALWAYS Statement” on
page 229. Starting a BEGIN-END section with the ALWAYS statement is
equivalent to simply coding statements without a BEGIN-END section.

BEGIN
Indicates the beginning of a series of statements. A BEGIN statement
cannot be on the same line as an END statement.

statements
Indicates any series of statements, which can include SYN, %INCLUDE,
IF-THEN, and ALWAYS statements and other BEGIN-END sections.

END Indicates the end of a series of statements. An END statement cannot be on
the same line as a BEGIN statement.

Usage notes:

1. You cannot combine BEGIN with actions on a single IF-THEN statement.
2. You must provide a matching END statement for each BEGIN statement.
3. If the conditions are true, automation-table processing continues with the first

statement within the section (the statement after BEGIN).
If the conditions are not true, automation-table processing continues at the next
statement after the END statement that ends the section.

4. You can nest BEGIN-END sections. That is, a BEGIN-END section can contain
other BEGIN-END sections.

5. The types of statements used within a BEGIN-END section must be consistent
with each other and, for an IF-THEN statement, with the conditions specified
in the IF part of the statement.
You cannot mix MSU-type and message-type statements, although you can mix
both-type statements with either MSU-type or message-type statements.
See “Types of Automation-Table Statements” on page 150 for more information.

6. A variable set (in the conditions part of an IF-THEN statement that starts a
BEGIN-END section) is accessible for use in EXEC actions throughout the
BEGIN-END section.
The conditions portion (of a lower-level IF-THEN statement within the section)
can assign a value to the same variable name, temporarily overriding the value.
At the end of the lower-level IF-THEN statement (or its BEGIN-END section),
the variable reverts to the value defined in the higher-level IF-THEN statement.

Chapter 15. The Automation Table 153

IF-THEN Statement
The IF-THEN statement enables you to specify messages and MSUs you want
NetView automation to intercept and process. You can use the statement to code
the conditions that a message or MSU must meet to be selected for automation,
and the actions you want the NetView program to take if a message or MSU meets
those conditions.

NetView evaluates the expressions stated before and after the operator in an IF
statement. If the condition is true, NetView processes the THEN part of the
statement. You can combine more than one condition with a logical-AND (&)
operator, logical-OR (|) operator, and parentheses.

The syntax of the IF-THEN statement is:

IF-THEN Statement

�� IF condition_item
(LABEL:labelname)
(ENDLABEL:labelname)
(GROUP:groupname)

operator �

� compare_item THEN actions
BEGIN

; ��

Where:

IF The keyword you code at the beginning of each IF-THEN statement.

LABEL:labelname
The LABEL keyword identifies an automation-table statement or a
BEGIN-END section to be specified with the DISABLE or ENABLE
function of the AUTOTBL command.

The labelname must be specified with alphanumeric characters, and can
contain @, #, and $.

ENDLABEL:labelname
The ENDLABEL keyword identifies an automation-table statement or a
BEGIN-END section to be specified with the DISABLE or ENABLE
function of the AUTOTBL command.

Note:

v The labelname value must match the value on a previous LABEL
keyword that is in the same member.

v If ENDLABEL is within a BEGIN-END section, the associated
LABEL must be located within the same BEGIN-END section.

v The name used on the LABEL-ENDLABEL pair must be unique
within the automation table.

v ENDLABEL must be specified with alphanumeric characters, and
can contain @, #, and $.

The labelname value must match the value on a previous LABEL
keyword which is in the same member.

154 Automation Guide

GROUP:groupname
The GROUP keyword identifies an automation-table statement or a
BEGIN-END section to be specified with the DISABLE or ENABLE
function of the AUTOTBL command.

Note:

v One or more automation-table statements can be part of a named
group of statements to be specified with the DISABLE or
ENABLE function of the AUTOTBL command.

v The statements identified by a GROUP name can be in multiple
members if desired.

v The labelname must be specified with alphanumeric characters,
and can contain @, #, and $.

condition_item
The item being compared can be a bit string, character string, or a parse
template.

See “Condition Items” on page 158 for more information about condition
items.

operator
Indicates how the condition item is to be compared to the compare item.

= Indicates that if the condition item equals the compare item, the
condition is true.

¬= Indicates that if the condition item does not equal the compare
item, the condition is true.

< Indicates that if the condition item is less than the compare item,
the condition is true.

Note:

v Variables and placeholders are not supported.
v Comparison values can differ in length.
v A null string is considered less than any other string.

<= Indicates that if the condition item is less than, or equal to, the
compare item, the condition is true.

Note:

v You can specify => for the operator.
v Variables and placeholders are not supported.
v Comparison values can differ in length.
v A null string is considered less than any other string.

> Indicates that if the condition item is greater than the compare
item, the condition is true.

Note:

v Variables and placeholders are not supported.
v Comparison values can differ in length.
v A null string is considered less than any other string.

>= Indicates that if the condition item is greater than, or equal to, the
compare item, the condition is true.

Chapter 15. The Automation Table 155

Note:

v You can specify =< for the operator.
v Variables and placeholders are not supported.
v Comparison values can differ in length.
v A null string is considered less than any other string.

compare_item
The item to which NetView compares the condition item can be a bit
string, character string, or a parse template.

See “Bit Strings as Compare Items” on page 206 for more information.

THEN The keyword coded on the second part of an IF-THEN statement.

actions Specifies actions for NetView to take when the IF conditions of the
IF-THEN statement are true.

See “Actions” on page 211 for more information.

BEGIN
Specifies the start of a BEGIN-END section.

See “BEGIN-END Section” on page 152 for information.

Notes for IF-THEN Syntax:

1. You can include more than one condition in a statement. Link conditions with
either a logical-AND (&) or a logical-OR (|) operator.
v Ensure that there is a blank space proceeding and following the logical-AND

(&).
If the logical-AND (&) concatenates with other data, SYSCLONE support
might change the logic of your IF-THEN statement.

v When you link conditions with the logical-AND operator, all of the linked
conditions must be true for the specified actions to be taken.

v When you link expressions with the logical-OR operator, at least one of the
linked conditions must be true for the specified actions to be taken.

The IF-THEN statement in Figure 25 shows two conditions linked with the
logical-AND operator. For the conditions to be true, the message must originate
in domain CNM01, and its text must be PURGE DATE IS LATER THAN TODAY'S
DATE.

Figure 26 shows another example of two conditions linked with the
logical-AND operator. In this example, the domain ID must be CNM02 and the
MSU major vector key must be X'0000' (indicating an alert).

The IF-THEN statement in Figure 27 on page 157 shows two conditions linked
with the logical-OR operator. If the message ID is IST051A, the NetView

IF DOMAINID='CNM01' &
TEXT='PURGE DATE IS LATER THAN TODAY''S DATE' THEN

EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 25. Example of Using the Logical-AND Operator

IF DOMAINID='CNM02' & MSUSEG(0000) ¬= '' THEN
COLOR(YEL)
CONTINUE(Y);

Figure 26. Additional Example of Using the Logical-AND Operator

156 Automation Guide

program takes the specified action.

2. The NetView program groups expressions linked with a logical-AND operator
before those linked with a logical-OR operator.
For example, the IF-THEN statement in Figure 28 has three conditions linked
with logical-OR and logical-AND operators.

The NetView program evaluates the TEXT and SYSID conditions together
(because a logical-AND operator links these two conditions). The TEXT and
SYSID conditions must both be true or the DOMAINID condition must be true.
The program then combines the result with the DOMAINID condition.

3. You can control the order in which the NetView program groups conditions by
using parentheses around comparisons that you want the NetView program to
evaluate together.
This example presents the grouping of logical operators. If you want the
NetView program to evaluate the DOMAINID and TEXT conditions together,
place code parentheses around them, as shown in Figure 29.

When processing the IF-THEN statement in the previous example, the NetView
program evaluates the DOMAINID and TEXT conditions together (because
they are grouped within parentheses). The NetView program then combines the
result with the SYSID condition. Either the DOMAINID or the TEXT condition
must be true; and the SYSID condition must also be true.
The NetView program ignores blank lines if they appear at the beginning of a
MLWTO (multiline write-to-operator) message. The blank lines are retained for
display purposes and can affect the location of lines when using GETMLINE in
a command procedure.
An MLWTO message presented to MVS can have a control line (IEE932I), a
sequential message identifier, or both appended to the message. The NetView
program removes IEE932I to make the message more useful, but does not
remove the sequential message identifier.

4. The series of IF-THEN statements in the next example shows automation-table
statements that make up a block named VTAM.
You can enable or disable the various statements by using the AUTOTBL
ENABLE or DISABLE command with:
v LABEL=VTAM to specify only the first statement in Figure 30 on page 158
v ENDLABEL=VTAM to specify only the last statement in Figure 30 on page

158

MSGID='IST051A'
THEN EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 27. Example of Using the Logical-OR Operator

IF DOMAINID='CNM01' |
TEXT='PURGE DATE IS LATER THAN TODAY''S DATE' &
SYSID='MVS1' THEN

EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 28. Example of Using the Logical-OR and Logical-AND Operator

IF (DOMAINID='CNM01' |
TEXT='PURGE DATE IS LATER THAN TODAY''S DATE') &
SYSID='MVS1' THEN

EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

Figure 29. Example of Grouping Logical Operators

Chapter 15. The Automation Table 157

v BLOCK=VTAM to specify the entire block (all three statements) in Figure 30
This series of IF-THEN statements is an example of using LABEL and
ENDLABEL keywords.

Figure 31, which presents the use of the GROUP keyword, includes several
automation-table statements, some of which are part of a group of statements
named VTAMX. You can use the AUTOTBL command to enable or disable all
statements in the automation table that are part of this group by specifying a
keyword of GROUP=VTAMX. In this example, the first and third statements
are affected.

5. An MVS message issued by an unauthorized program has a plus sign added.
The NetView program removes the plus sign and sets a field in the automation
internal function request (AIFR) to indicate that the message was issued by an
unauthorized program.

6. You can use the THEN keyword without either actions or a BEGIN-END
section to indicate that the automation table is to take no further action for the
message or MSU. Figure 32 presents the use of the THEN keyword without
actions or a BEGIN-END section.

Condition Items
This section describes the condition items that you can use in an IF-THEN
statement. Three tables show the condition items by type:
v Table 6 on page 159 for messages
v Table 7 on page 160 for MSUs
v Table 8 on page 161 for messages and MSUs

With these exceptions, the text in these tables describes each condition item in
alphabetical order:
v Display actions for messages are ignored unless the message is sent to the

command facility for display.
v Display actions for MSUs are ignored unless the MSU contains an alert that is

sent to the hardware monitor for display.

IF (LABEL:VTAM) MSGID = 'IST051A'
THEN EXEC (CMD('CLISTA') ROUTE (ONE * OPER1));

IF MSGID = 'IST052A'
THEN EXEC (CMD('CLISTB') ROUTE (ONE * OPER1));

IF (ENDLABEL:VTAM) MSGID = 'IST053A'
THEN EXEC (CMD('CLISTC') ROUTE (ONE * OPER1));

Figure 30. Example of Using LABEL and ENDLABEL Keywords

IF (GROUP:VTAMX) MSGID = 'IST054A'
THEN EXEC (CMD('CLISTX') ROUTE (ONE * OPER1));

IF MSGID = 'IST055A'
THEN EXEC (CMD('CLISTY') ROUTE (ONE * OPER1));

IF (GROUP:VTAMX) MSGID = 'IST056A'
THEN EXEC (CMD('CLISTZ') ROUTE (ONE * OPER1));

Figure 31. Example of Using the GROUP Keyword

IF HDRMTYPE = '*' THEN ;

Figure 32. Example of Using THEN Keyword Without Actions

158 Automation Guide

|

|
|
|

There are five types of MSUs:
v Control point management services units (CP-MSUs)
v Multiple domain support message units (MDS-MUs)
v Network management vector transports (NMVTs)
v Record maintenance statistics (RECMSs)
v Record formatted maintenance statistics (RECFMSs)

Table 6. IF Condition Items for Messages

Condition Item Compare Item Maximum Length Description

ACTIONDL Parse template 7 char Tells why message was deleted

ACTIONMG Bit String 1 bit Indicates action message

AREAID Parse template 1 char MVS message area ID

AUTOTOKE¹ Parse template 8 chars MVS message processing facility automation token

CART¹ Parse template 8 bytes Command and response token

CORRELATED Bit String 1 bit Indicates the message is correlated

CORRFAIL Bit String 1 bit Indicates the correlation failed

DESC Bit string 16 bits MVS message descriptor codes

IFRAUWF1 Bit string 32 bits MVS WTO information

JOBNAME Parse template 8 chars MVS originating job

JOBNUM Parse template 8 chars MVS assigned job number

KEY¹ Parse template 8 chars Key associated with a message

MCSFLAG Bit string 16 bits MVS multiple console support flags

MSGAUTH Bit string 2 bits Authorized program indicator

MSGCATTR¹ Bit string 16 bits MVS message-attribute flags

MSGCMISC¹ Bit string 8 bits MVS miscellaneous routing flags

MSGCMLVL¹ Bit string 16 bits MVS message-level flags

MSGCMSGT¹ Bit string 16 bits MVS message-type flags

MSGCOJBN¹ Parse template 8 chars Originating job name

MSGCPROD¹ Parse template 16 chars MVS product level

MSGCSPLX Parse template 8 chars Name of sysplex sending message

MSGDOMFL¹ Bit string 8 bits MVS delete operator message (DOM) flags

MSGGBGPA¹ Parse template 4 bytes Background presentation attributes

MSGGDATE¹ Parse template 7 chars Date associated with a message

MSGGFGPA¹ Parse template 4 bytes Foreground presentation attributes

MSGGMFLG¹ Bit string 16 bits MVS general message flags

MSGGMID¹ Parse template 4 chars MVS message ID

MSGGTIME¹ Parse template 11 chars Time that the message was issued

MSGID Parse template 255 chars Message ID

MSGSRCNM¹ Parse template 17 chars Source name from source object

MVSRTAIN Bit string 3 bits MVS automation message retention facility (AMRF)
AMRF retain flags

NVDELID Parse template 24 char NetView deletion ID

ROUTCDE Bit string 128 bits MVS routing codes

Chapter 15. The Automation Table 159

Table 6. IF Condition Items for Messages (continued)

Condition Item Compare Item Maximum Length Description

SESSID Parse template 8 chars Terminal access facility session ID

SYSCONID Parse template 8 chars System console name

SYSID Parse template 8 chars ID of originating MVS system

TEXT Parse template 255 chars Message text

TOKEN Parse template 255 chars In a message text, a string delimited by blanks

Note: ¹ This condition item does not have a value unless the message being processed was originally a message
data block (MDB).

Table 7. IF Condition Items for MSUs

Condition Item Compare Item Maximum Length Description

CORRELATED Bit String 1 bit Indicates the MSU is correlated

CORRFAIL Bit String 1 bit Indicates the correlation failed

HIER Parse template See “HIER” on
page 170.

Resource hierarchy associated with an MSU

HMASPRID² Parse template 9 chars Returns the alert sender product ID

HMBLKACT² Parse template 5 chars Returns the block ID and action code of an MSU

HMCPLINK² Bit string 1 bit Returns an indicator that specifies whether a complex
link exists

HMEPNAU² Parse template 16 chars Returns the network addressable unit (NAU) name of
the entry point node where the MSU originated for
MSUs forwarded using the SNA-MDS/LU 6.2 alert
forwarding protocol or the NV-UNIQ/LUC alert
forwarding protocol.

HMEPNET² Parse template 16 chars Returns the netid name of the entry point node where
the MSU originated for MSUs forwarded using the
SNA-MDS/LU 6.2 alert forwarding protocol.

HMEPNETV² Bit String 1 bit Returns an indicator that specifies whether the entry
point node where the MSU originated was a remote
node NetView program. This function applies only to
MSUs forwarded using the SNA-MDS/LU 6.2 alert
forwarding protocol.

HMEVTYPE² Parse template 4 chars Returns the event type of an MSU

HMFWDED² Bit string 1 bit Returns an indicator that specifies whether an MSU
was forwarded from another node over the
NV-UNIQ/LUC alert forwarding protocol

HMFWDSNA² Bit string 1 bit Returns an indicator that specifies whether an MSU
was forwarded from a remote entry point node using
the SNA-MDS/LU 6.2 alert forwarding protocol

HMGENCAU² Parse template 1 char Returns the general cause code of an MSU, in
hexadecimal

HMONMSU² Bit string 1 bit Returns an indicator that specifies whether an MSU
was submitted to automation by the hardware monitor

HMORIGIN² Parse template 8 chars Returns the name of the resource sending the MSU

HMSECREC² Bit string 1 bit Returns an indicator specifying whether the hardware
monitor performs secondary recording

160 Automation Guide

Table 7. IF Condition Items for MSUs (continued)

Condition Item Compare Item Maximum Length Description

HMSPECAU² Parse template 2 chars Returns the specific component code of an MSU, in
hexadecimal

HMUSRDAT² Parse template 5 chars Returns the user data from subvector 33 of an MSU

MSUSEG Parse template or
bit string

See “MSUSEG” on
page 197.

MSU data

Note: ² This condition item returns a null value if the MSU was not submitted for automation by the hardware
monitor.

Table 8. IF Condition Items for Messages and MSUs

Condition Item Compare Item Maximum Length Description

ACQUIRE Parse template See “ACQUIRE”
on page 162.

Value determined by the edit specification

ATF Parse template or
bit string

See “ATF” on
page 163.

Value determined by a specified ATF program

ATF(DSICGLOB) Parse template See “DSICGLOB”
on page 165.

Value of a common global variable

ATF(DSITGLOB) Parse template See “DSITGLOB”
on page 165.

Value of a task global variable

ATTENDED Bit string 1 bit Attended task indicator

AUTOMATED Bit string 1 bit Significant action indicator

AUTOTASK Bit string 1 bit Autotask indicator

CURRDATE Parse template 8 chars Current date

CURRTIME Parse template 8 chars Current time of day

CURSYS Parse template 8 chars Current MVS operating system name

DISTAUTO Bit string 1 bit Distributed autotask indicator

DOMAIN Parse template 5 chars Current NetView domain name

DOMAINID Parse template 8 chars Originating NetView domain

HDRMTYPE Parse template 1 char Message type

IFRAUIND Bit string 16 bits AIFR indicator flags

IFRAUIN3 Bit string 8 bits Indicator-bit field

IFRAUI3X Bit string 32 bits Indicator bits

IFRAUSB2 Parse template 2 chars AIFR user field

IFRAUSC2 Bit string 128 bits AIFR user field

IFRAUSDR Parse template 8 chars Name of originating NetView task

IFRAUSRB Bit string 16 bits AIFR user field

IFRAUSRC Parse template 16 chars AIFR user field

IFRAUTA1 Bit string 48 bits AIFR control flags

INTERVAL Bit string 1 bit Occurrence interval detection

LINEPRES Parse template 4 bytes Presentation attributes of first text buffer

LINETFLG Bit string 16 bits Presentation override flag (bit 16) and other flags

MVSLEVEL Parse template 8 chars Current MVS product level

NETID Parse template 8 chars VTAM network identifier

Chapter 15. The Automation Table 161

Table 8. IF Condition Items for Messages and MSUs (continued)

Condition Item Compare Item Maximum Length Description

NETVIEW Parse template 4 chars NetView version and release

NUMERIC Parse template 255 chars Numeric value of a variable

NVCLOSE Bit String 1 bit NetView CLOSE processing flag

OPID Parse template 8 chars Operator or task ID

OPSYSTEM Parse template 7 chars Operating system

SYSPLEX Parse template 8 chars Local MVS sysplex name

TASK Parse template 3 chars Type of task

THRESHOLD Bit string 1 bit Occurrence threshold detection

VALUE Parse template 255 chars Value of a variable

VTAM Parse template 4 chars VTAM level

VTCOMPID Parse template 14 chars VTAM component identifier

WEEKDAYN Parse template 1 char Day of the week

This is an alphabetical list of the condition items.

ACQUIRE ('edit_specification')

A condition item that enables you to extract AIFR data using the syntax
and function provided by the PIPE EDIT stage.

Only the first line of the returned message buffer is used for comparison.
The AIFR path) continues unaltered through the automation process.

While edit_specification must be enclosed in single quotation marks (in the
form ’edit_specification’), you cannot use single quotation marks (’ ’) within
the edit_specification itself.

For specific information about the edit_specification, refer to the IBM Tivoli
NetView for z/OS Programming: Pipes.

ACTIONDL [(pos [len])]
The reason for deleting the NetView action message. The reason is
expressed in an EBCDIC string that is from 1 to 8 characters in length.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

If the value of ACTIONDL is not null (''), the automation table is
processing a DOM (Delete Operator Message), as contrasted to a message
or an alert.

Valid values are as follows:

'' Null; the message is not a DOM.

ASID The message was deleted because the address space ended that
issued the message.

INVALID
The DOM contained an unrecognizable combination of bit settings.

162 Automation Guide

LOCAL
The message was deleted by an operator overstrike or by the
CONSOLE DELETE stage.

NETVIEW
The message was deleted by the NetView DOM command using
the NVDELID option, or internally by NetView.

SMSGID
The message was deleted by an MVS DOM-by-SMSGID. A single
message was deleted by its specific identifier.

TCB The message was deleted because the task ended that issued the
message.

TOKEN
The message was deleted by an MVS DOM-by-token.

Maximum length: 7 characters

Type: Message

Notes for ACTIONDL:

v MVS might convert TCB and ASID conditions to DOM-by-SMSGID.
v SMSGID is the most frequent type of MVS DOM.
v Related condition items are ACTIONMG and NVDELID. Also see

“DOMACTION” on page 214.

ACTIONMG
Indicates whether the message is treated by NetView as an MVS action
message. Values for ACTIONMG are:
1 The message is an action message.
0 The message is not an action message.

Maximum length: 1 bit

Type: Message

Notes for ACTIONMG:

v Action messages are WTORs or those marked with a Descriptor code
that matches one of those specified on the MVSPARM.ActionDescCodes
CNMSTYLE statement.

v Related condition items are ACTIONDL and NVDELID. Also see
“DOMACTION” on page 214.

AREAID [(pos [len])]
The one-letter identifier (A–Z), on the multiple console support console
that displays the message.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of AREAID evaluates to null ('') if the value is B'0' or blank. You
can test for these cases by comparing to the null ('') keyword.

Maximum length: 1 character

Type: Message

Chapter 15. The Automation Table 163

|
|
|
||
||

|

|

|

|
|
|

|
|

ATF ([BIT] 'cmdstring')
Identifier for a program that is called to perform an automation-table
function (ATF).

For a description of how to write your own ATF programs, refer to the
IBM Tivoli NetView for z/OS Programming: Assembler.

The condition item is a value that the program returns.

The compare item is either a bit string or a parse template.

BIT Indicates that the compare item is a bit string. If you do not specify
BIT, the compare item is a parse template.

cmdstring
The command string that calls the program.

The text of the string up to the first blank (or the whole string, if
there are no blanks) is the program name. Any text after the first
blank is passed as parameters to the called program.

The program name must be specified with a literal quoted string.
However, variable values can be passed as ATF program
parameters using the VALUE (varname) syntax.

After the program name is specified, the parameters can be
specified by any combination of literals and VALUE specifications.

Variables that are passed must meet these criteria:
v Variables that were passed as ATF must be previously defined in

the statement or BEGIN hierarchy.
v Variables that have not been set are treated as a null literal.
v A variable cannot be subscripted with position or length.

Maximum length: 256 bytes

Type: Both

Notes for ATF:

1. These criteria apply to ATF and cmdstring:
v The length of cmdstring with its parameters is limited to 256 bytes

(less the length of BUFHDR).
v The ATF program name in cmdstring has a maximum length of 8

characters.
v The length of the value returned by the ATF is limited to 256 bytes

(minus the length of BUFHDR).
2. The interface is based on a parameter list whose address is in register 1.

The register contains pointers to the control work block (CWB) and to
the AIFR being automated.

3. The ATF return codes in register 15 are:

Code Meaning

0 Normal

1–8 Indicates an error that causes the comparison to be evaluated as
false

9 or greater
Indicates an error that results in error message CNM588E and a
comparison evaluation of false

164 Automation Guide

4. When you successfully activate an automation table with the AUTOTBL
command, the NetView program loads all of the ATF programs your
table uses.
The NetView program does not reload the ATF program into main
storage every time a message or MSU goes through the automation
table.

5. The NetView samples provide OPERID (CNMS4295) as an example of
an ATF program.

6. ATF does not support a length specification.
You can assign ATF to a variable and then use that variable (including
pos and len) in a VALUE conditional statement.

ATF ([BIT] 'DSICGLOB varname')
DSICGLOB is an ATF program that is supplied with the NetView program.
If a command list or command processor has previously established a
value for the common global variable, DSICGLOB returns that value. If the
value is longer than 256 characters minus the length of BUFHDR, the value
is truncated. If no value has been established for the variable, DSICGLOB
does not return a variable value.

The compare item is either a bit string or a parse template. Use a parse
template because the value of a global variable is a string of EBCDIC
characters.

For information on how to specify varname, see the description of cmdstring
for generic ATFs.

Any error encountered by the ATF program forces the condition item to
evaluate as false and elicits a CNM588E message containing a return code:

Code Meaning
100 A variable name is not valid.
104 The variable name used is too long.
108 No variable name is specified.
112 A NetView storage failure.
116 A NetView internal error.

BIT Indicates that the compare item is a bit string. If you do not specify
BIT, the compare item is a parse template.

varname
The name of the common global variable. The length of the name
is from 1 to 31 characters, and the name must be a valid global
variable name. Refer to the IBM Tivoli NetView for
z/OS Programming: REXX and the NetView Command List Language
for restrictions on variable names.

Maximum length: 256 characters

Type: Both

Note: If the automation table calls DSICGLOB for a NetView message sent
to the immediate message area of the operator’s screen (TVBINXIT
bit is on), DSICGLOB does not return a variable value, and the
condition evaluates as false.

ATF ([BIT] 'DSITGLOB varname')
DSITGLOB is an ATF program that is supplied with the NetView program.
If a command list or a command processor has previously established a
value for the task global variable, DSITGLOB returns that value. If the

Chapter 15. The Automation Table 165

|

|

value is longer than 256 characters minus the length of BUFHDR, the value
is truncated. If no value has been established for the variable, DSITGLOB
does not return a variable value.

The compare item is either a bit string or a parse template. Use a parse
template because the value of a global variable is a string of EBCDIC
characters.

For information on how to specify the varname, see the description of
cmdstring for generic ATFs.

Any error encountered by the ATF program forces the condition item to
evaluate as false and elicits a CNM588E message containing a return code:

Code Meaning
100 A variable name is not valid.
104 The variable name used is too long.
108 No variable name is specified.
112 A NetView storage failure.
116 A NetView internal error.

BIT Indicates that the compare item is a bit string. If you do not specify
BIT, the compare item is a parse template.

varname
The name of the task global variable. The length of the name is
between 1 and 31 characters, and the name must be a valid global
variable name. Refer to the IBM Tivoli NetView for
z/OS Programming: REXX and the NetView Command List Language
for restrictions on variable names.

Maximum length: 256 characters

Type: Both

Notes for ATF:

1. The task global variable returned by DSITGLOB is the one for the task
that invoked the automation table. If you cannot predict which task
invokes the automation table and causes the evaluation of the ATF, use
a common global variable and the DSICGLOB ATF instead.

2. If the automation table calls DSITGLOB for a NetView message sent to
the immediate message area of the operator’s screen (TVBINXIT bit is
on), DSITGLOB does not return a variable value, and the condition
evaluates as false.

ATTENDED [(pos [len])]
Describes the NetView task that is automating a message or MSU. It is a
bit string with a value of 1 or 0. The values for ATTENDED are:
1 Indicates that the task is one of the following situations:

v An OST with a display
v An NNT with a corresponding OST
v An autotask with an associated MVS console assigned using the

AUTOTASK command
v A distributed autotask

0 Indicates that the task is one of the following situations:
v An autotask without an associated MVS console assigned using

the AUTOTASK command
v Another type of task, such as a DST or an OPT task

166 Automation Guide

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: Both

Notes for ATTENDED:

1. If the associated operator is an autotask, the presentation data is not
eligible for display unless the autotask is associated with an active MVS
console.

2. You can use ATTENDED in conjunction with DISTAUTO or
AUTOTASK condition items to further define the characteristics of the
task that is automating the message or MSU. For example, if
ATTENDED is 1, DISTAUTO is 0, and AUTOTASK is 1, the task is an
autotask with an associated MVS console.

AUTOMATED [(pos [len])]
Describes the automation indicator of the AIFR containing the message or
MSU.

It is a one-bit indicator that specifies whether the AIFR has been
automated by a previous significant action. Values for AUTOMATED are as
follows:
1 The AIFR has been automated.
0 The AIFR has not yet been automated.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Automation treats an AIFR as AUTOMATED if a match occurs other than
the ALWAYS or CONTINUE(YES) statements, unless the AUTOMATED
action is used to override these defaults.

Maximum length: 1 bit

Type: Both

AUTOTASK [(pos [len])]
Condition item which describes the NetView task that is automating the
message or MSU. This is a one-bit indicator that specifies whether a task is
an autotask. Values for AUTOTASK are:
1 The task is an autotask.
0 The task is not an autotask.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: Both

Chapter 15. The Automation Table 167

AUTOTOKE [(pos [len])]
Indicates the 1 to 8 character name of the MVS message processing facility
(MPF) automation token.

If you specify AUTO(YES) or AUTO(NO) in the MPF table, the values YES
and NO are not automation tokens.

AUTOTOKE has a value only if the message was originally a message data
block (MDB).

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Message

CART [(pos [len])]
Specifies the 8-byte MVS command and response token (CART). The CART
might contain characters that cannot be displayed.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of CART evaluates to null ('') if the field contains only binary
zeros. You can test for this case by comparing the null ('') keyword.

Maximum length: 8 bytes

Type: Message

CORRELATED
Condition item that checks if a message or MSU is correlated. This is a
one-bit indicator. Values for CORRELATED are:
1 The message or MSU is correlated.
0 The message or MSU is not correlated.

Maximum length: 1 bit

Type: Both

CORRFAIL
Condition item that checks if correlation failed. This is a one-bit indicator.
Values for CORRFAIL are:
1 An internal error prevented correlation.
0 A problem was not encountered with correlation.

Maximum length: 1 bit

Type: Both

CURRDATE [(pos [len])]
Indicates the 1-8 character current date (yyyy/mm/dd).

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

168 Automation Guide

Maximum length: 8 characters

Type: Both

CURRTIME [(pos [len])]
Indicates the 1-8 character current time of day (hh:mm:ss).

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Both

CURSYS [(pos [len])]
Indicates the 1-8 character current MVS operating system name.

The system name returned by CURSYS can be different than the system
name returned by SYSID:
v CURSYS is the name of the system where the automation table is

processing.
v SYSID is the name of the system where the message originated.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Both

DESC [(pos [len])]
Identifies from 1–16 MVS descriptor codes assigned to the message. Refer
to the MVS library for information about code values.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 bits

Type: Message

DISTAUTO [(pos [len])]
Indicates whether a task is a distributed autotask started with the
RMTCMD command. The DISTAUTO condition item describes the task
that is automating the message or MSU. The values for DISTAUTO are as
follows:
1 The task is a distributed autotask.
0 The task is not a distributed autotask.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Chapter 15. The Automation Table 169

Maximum length: 1 bit

Type: Both

DOMAIN [(pos [len])]
Specifies the 1-5 character name of the current NetView domain.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 5 characters

Type: Both

DOMAINID [(pos [len])]
Specifies the 1-8 character domain name of NetView that originated the
message or MSU.

For messages, DOMAINID gives the name of NetView that first processed
the message. Note that for messages BNJ030I and BNJ146I, which are
generated based on alerts, the DOMAINID indicates the name of NetView
that generated these messages.

For forwarded alerts from a hardware monitor to another NetView
program, DOMAINID gives the name of the distributed NetView program
that originally processed and forwarded the alert. For other MSUs,
DOMAINID gives the name of the local NetView program that is doing
the automation-table search.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Both

HDRMTYPE [(pos [len])]
Specifies the 1-character buffer type of the received message or MSU.
Buffer types are described in Appendix G, “NetView Message Type
(HDRMTYPE) Descriptions,” on page 559.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 character

Type: Both

HIER [(indexnum)]
Specifies the NetView hardware monitor hierarchy data associated with an
MSU. The compare item is a parse template.

indexnum
The index number (1-5) of a specific resource name-type pair.

170 Automation Guide

HIER is set only if the MSU is received from the hardware monitor. If you
specify an indexnum, the value of HIER is the single, specified name-type
pair in the form aaaaaaaa1111, where aaaaaaaa is the 8-character name and
1111 is the 4-character type. The names and types are padded on the right
with blanks, if necessary. If an alert has fewer than indexnum resources, the
value is null. If you do not specify an indexnum, the value of HIER is equal
to a concatenation of all existing name-type pairs. For example, if there are
three name-type pairs, the value is in this format:
aaaaaaaa1111bbbbbbbb2222cccccccc3333

There can be up to five name-type pairs. If an MSU does not have
hierarchy information, the value of HIER is null. See “Using the Resource
Hierarchy” on page 333 for HIER examples.

HIER does not support a length specification. You can assign HIER to a
variable, and then use that variable (including pos and len) in a VALUE
conditional statement.

Maximum length: 60 characters

Type: MSU

HMASPRID [(pos [len])]
Returns the 9-character alert-sender product ID. This is the same
alert-sender product ID returned with the prodid parameter on the
SRFILTER command. The ID can be either of these items:
v A hardware product ID that has from 1 to 4 characters
v A software product ID has from 1 to 9 characters

Trailing blanks are not truncated.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

HMASPRID returns a null if an MSU is either:
v Not a generic record

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
– Alerts that contain subvector 92
– Resolutions, which contain subvector 92

v Not submitted to automation by the hardware monitor

Maximum length: 9 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Searching for a Device
IF HMASPRID = '3745' THEN

EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

This example specifies that if a hardware monitor MSU is generic and from
a 3745 device, the automation table calls the CLISTA command list and
routes it to operator AUTO1.

Example 2: Specifying a Generic MSU
IF HMASPRID ¬= '' THEN

EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Chapter 15. The Automation Table 171

This example specifies that if a hardware monitor MSU is generic, the
automation table calls the CLISTA command list and routes it to operator
AUTO1.

HMBLKACT[(pos [len])]
Returns a 5-character value, including a 3-character block ID and a
2-character action code. This value is identical to the code value of the
SRFILTER command. Values are returned only for nongeneric alerts
(X'0000') and RECMSs and RECFMSs that are not statistics-only.

Refer to the NetView online help for information about the SRFILTER
command.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

HMBLKACT returns a null if an MSU is:
v A generic alert (X'0000')

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
– Alerts that contain subvector 92
– Resolutions, which always contain subvector 92

v A resolution (X'0002')
v A PD statistic (X'0025')
v Link configuration data (X'1332')
v A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

v A statistics-only RECFMS

Note: Statistics-only RECFMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

v Not submitted to the automation table by the hardware monitor

Maximum length: 5 characters

Type: MSU

Applies to: All MSUs except those that cause a null value to be returned

Example 1: Checking for a Block ID and Action Code That is Not Null
IF HMBLKACT ¬= '' THEN COLOR(RED);

This example checks for MSUs with a block ID and action code that is not
null, and colors them red.

Example 2: Checking for a Specific Block ID and Action Code
IF HMBLKACT = HEX'FFD03' THEN COLOR(RED);

This example checks for MSUs with a block ID of X'FFD' and an action
code of X'03', and colors them red.

172 Automation Guide

Example 3: Checking for a Specific Block ID
IF HMBLKACT = HEX('FFD') . &

HMBLKACT = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example checks for MSUs with a block ID of X'FFD'. It does not check
for a specific action code. The automation table calls the CLISTA command
list for MSUs with a block ID of X'FFD'. The block ID and action are
passed to the CLISTA command list in variable MYVAR, and the command
list is routed to operator AUTO1.

HMCPLINK[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether a complex
link exists.

Indicator Description

1 Indicates that a complex link exists. If a complex link
exists, there might be resource levels that do not appear in
the resource hierarchy returned by the HIER condition
item. Use a system schematic to determine the complete
hierarchy configuration when a complex link is present.
For more information about the HIER condition item, see
“HIER” on page 170.

Hardware monitor panels, such as the Most Recent Events
panel, indicate a complex link exists by placing an asterisk
(*) in the pictorial resource hierarchy at the top of the
panel, and displaying message BNJ1538I on the message
line near the bottom of the panel.

0 Indicates that a complex link does not exist or that the
hardware monitor did not submit the MSU to automation.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Checking for a Complex Link
IF HMCPLINK = '1' THEN COLOR(RED);

This example specifies that hardware monitor MSUs with a complex link
are colored red.

Example 2: Checking for an MSU with No Complex Link
IF HMONMSU = '1' &

HMCPLINK = '0' THEN COLOR(RED);

This example checks for an MSU that was forwarded by the hardware
monitor and that has no complex link, and colors it red.

HMEPNAU[(pos [len])]
Returns the network addressable unit (NAU) name of the entry point node
where the MSU originated. For local MSUs, HMEPNAU returns the local
NAU (domain) name. For MSUs that were forwarded from a remote node

Chapter 15. The Automation Table 173

entry point, the NAU name of the remote entry point is returned. This is
true for both alert forwarding mechanisms: LU 6.2 and LUC.

For LU 6.2 forwarded alerts, the NAU name returned is the NAU name of
the entry point node in which the MS application resides which first sent
(forwarded) the alert to the ALERT-NETOP application. If NetView cannot
determine with complete certainty that the NAU name returned is the
entry point NAU name (for example, it might be an intermediate node
name) then the NAU name returned is preceded by an * (asterisk), for
example, *nauname.

See Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example: Searching for MSUs Forwarded from a Remote Entry Point
Checking for an MSU Forwarded from NETA.CNM01 Using LU 6.2
IF HMFWDSNA = '1' &

HMEPNET = 'NETA' &
HMEPNAU = 'CNM01' THEN COLOR(RED);

This example specifies that hardware monitor MSUs that have been
forwarded from remote entry point node NETA.CNM01 using the
SNA-MDS/LU 6.2 alert forwarding protocol are to be colored red.

HMEPNET[(pos [len])]
Returns the netid name of the entry point node where the MSU originated.
For local MSUs, HMEPNET returns the local netid name. For MSUs that
were forwarded using LUC alert forwarding, HMEPNET returns an
asterisk (*), because NetView cannot determine the netid name.

For MSUs that were forwarded using LU 6.2 alert forwarding, the netid
name returned is the name of the entry point node where the MS
application resides. If NetView cannot determine a netid name, HMEPNET
returns an asterisk (*). If NetView can determine the netid name, but
cannot with complete certainty determine that the netid name is the entry
point netid name (for example it might be an intermediate node netid
name) then HMEPNET returns the netid name preceded by an asterisk (*),
for example *netidnam.

See Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos
The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 characters

Type: MSU

174 Automation Guide

Applies to: All MSUs submitted to automation by the hardware monitor

Example: Checking for an MSU Forwarded from NETA.CNM01 Using
LU 6.2
IF HMFWDSNA = '1' &

HMEPNET = 'NETA' &
HMEPNAU = 'CNM01' THEN COLOR(RED);

HMEPNETV[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether the entry
point node where the MSU originated was a remote node NetView
program. This function applies only to MSUs forwarded using the
SNA-MDS/LU 6.2 alert forwarding protocol.

Indicator Description

1 Indicates that the entry point was a NetView program.

0 Indicates that the entry point was not a NetView program
or that the MSU was not forwarded using the
SNA-MDS/LU 6.2 alert forwarding protocol.

See Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example: Searching for MSUs Forwarded from a Remote Node Entry
Point Using LU 6.2
IF HMEPNETV = '1' THEN COLOR(RED);

This example specifies that hardware monitor MSUs, which have been
forwarded from a remote entry point NetView program using the
SNA-MDS/LU 6.2 alert forwarding protocol, are to be colored red.

HMEVTYPE[(pos [len])]
Returns a 4-character event type of the MSU. Trailing blanks are not
truncated from the returned value.

The event types are:

AVAL BYPS CUST DLRC
HMV HELD IMPD IMR
INST INTV NTFY PAFF
PERF PERM PROC REDL
RSLV RSNT SCUR SNA
TEMP UNKN USER

Refer to the NetView online help (HELP NPDA ’event_type’) for more
information.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Chapter 15. The Automation Table 175

HMEVTYPE returns a null if an MSU is:
v Not submitted to automation by the hardware monitor
v A PD statistic (X'0025')
v Link configuration data (X'1332')
v A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

v A statistics-only RECFMS

Note: Statistics-only RECFMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

Maximum length: 4 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Searching for Event Type PERM
IF HMEVTYPE = 'PERM' THEN COLOR(RED);

This example specifies that MSUs with an event type of PERM are colored
red.

Example 2: Searching for Event Type SNA
IF HMEVTYPE = 'SNA' . THEN COLOR(RED);

These examples specify that MSUs with an event type of SNA are colored
red. You do not have to check for the trailing blank.

Example 3: Extracting an Event Type
IF HMEVTYPE ¬= '' &

HMEVTYPE = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example extracts the event type from the hardware monitor MSU,
passes it to the CLISTA command list in variable MYVAR, and routes the
command list to operator AUTO1.

HMFWDED[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether an MSU
was forwarded from another node.

Indicator Description

1 Indicates an MSU was forwarded from another node
through one of these alerts:
v NV-UNIQ/LUC alert forwarding protocol
v SNA-MDS/LU 6.2 alert forwarding protocol

0 Indicates that the MSU was not forwarded through another
node, was forwarded over LU 6.2, or that the hardware
monitor did not submit the MSU to automation.

An indicator of 0 is returned in these instances:
v Local MSUs are received through the CNM interface.

176 Automation Guide

v Local MSUs are received from the operating system.
v MSUs are received through the program-to-program

interface.
v MSUs are received through the SNA-MDS/LU 6.2 alert

forwarding protocol.

Note: RECMSs and RECFMSs that are forwarded from
entry points over LUC or LU 6.2 are not submitted
to automation at the receiving focal point. RECMSs
and RECFMSs are submitted to automation at the
entry point, but not at the receiving focal point.

See Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Searching for MSUs Forwarded from an Entry Point
IF HMFWDED = '1' THEN COLOR(RED);

This example specifies that hardware monitor MSUs that have been
forwarded from an entry point NetView program are to be colored red.

Example 2: Searching for MSUs Not Forwarded from an Entry Point
IF HMONMSU = '1' &

HMFWDED = '0' THEN COLOR(RED);

This example checks for an MSU, which was forwarded by the hardware
monitor but not from an entry point NetView program, and colors it red.

HMFWDSNA[(pos [len])]
Returns a one-bit indicator, either 1 or 0, that specifies whether an MSU
was forwarded from a remote entry point node using the SNA-MDS/LU
6.2 alert forwarding protocol.

Indicator Description

1 Indicates that an MSU was forwarded from a remote entry
point node using the SNA-MDS/LU 6.2 alert forwarding
protocol.

0 Indicates that an MSU was not forwarded from a remote
entry point node using the SNA-MDS/LU 6.2 alert
forwarding protocol or that the hardware monitor did not
submit the MSU to automation.

Refer to Chapter 26, “Centralized Operations,” on page 375 for more
information about forwarding mechanisms.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Chapter 15. The Automation Table 177

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example: Checking for an MSU Forwarded from NETA.CNM01 Using
LU 6.2
IF HMFWDSNA = '1' &

HMEPNET = 'NETA' &
HMEPNAU = 'CNM01' THEN COLOR(RED);

HMGENCAU[(pos [len])]
Returns the 1-character hexadecimal general cause code of an MSU.

The general cause code indicates:
v The general classification
v The exception condition that caused the MSU to be created

For more information about general cause codes, refer to the information
about basic alert (X'91') MS subvectors in the Systems Network
Architecture library.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

HMGENCAU returns a value only for nongeneric alerts (X'0000') and
RECMSs and RECFMSs that are not statistics-only. HMGENCAU returns a
null if an MSU is:
v A generic alert (X'0000')

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
– Alerts that contain subvector 92
– Resolutions, which always contain subvector 92

v A link event (X'0001')
v A resolution (X'0002')
v A PD statistic (X'0025')
v Link configuration data (X'1332')
v A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

v A statistics-only RECFMS

Note: Statistics-only RECFMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

v Not submitted to automation by the hardware monitor

Maximum length: 1 hexadecimal character

Type: MSU

Applies to: All MSUs except those that cause a null value to be returned

Example 1: Checking for a General Cause Code That is Not Null

178 Automation Guide

IF HMGENCAU ¬= '' &
HMGENCAU = MYVAR THEN

EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example checks for a general cause code that is not a null, passes it to
the CLISTA command list variable MYVAR, and routes the command list
to operator AUTO1.

Example 2: Checking for a Specific General Cause Code
IF HMGENCAU = HEX('01') THEN COLOR(RED);

This example specifies that a hardware monitor MSU with a general cause
code of X'01' is to be colored red.

HMONMSU[(pos [len])]
Returns 0 or 1 to indicate whether an MSU was forwarded to automation
from the hardware monitor.

Indicator Description

1 Indicates an MSU was forwarded from the hardware
monitor.

0 Indicates that an MSU was not forwarded from the
hardware monitor. It might have been submitted to
automation by the generic receiver (NVAUTO), or by a
user application that issued DSIAUTO or CNMAUTO.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: MSU

Applies to: All MSUs

Example 1: Checking for MSUs Submitted by the Hardware Monitor
IF HMONMSU = '1' THEN COLOR(RED);
IF HMONMSU ¬= '' THEN COLOR(RED);

These examples specify that MSUs submitted by the hardware monitor are
to be colored red.

Example 2: Checking for MSUs Not Submitted by the Hardware Monitor
IF HMONMSU = '' THEN ;
IF HMONMSU = '0' THEN ;

These examples specify that MSUs not submitted by the hardware monitor
are not sent to automation.

HMORIGIN[(pos [len])]
Returns the name of the resource sending the MSU.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Trailing blanks are not truncated from the value returned. The resource
name returned by HMORIGIN is the same name displayed on the
hardware monitor Alerts-Dynamic, Alerts-Static, and Alerts-History panels
when ALT_ALERT=ORIGIN is specified in BNJMBDST.

Chapter 15. The Automation Table 179

Refer to the IBM Tivoli NetView for z/OS Administration Reference for more
information about the ALT_ALERT statement.

If a complex link does not exist in a resource hierarchy, the resource name
returned with HMORIGIN is the same as the resource name returned with
the HIER condition item. If a complex link does exist, the resource names
might not be the same. Use the HMCPLINK condition item to determine
whether a complex link exists. For more information, see “HMCPLINK” on
page 173 and “HIER” on page 170.

HMORIGIN returns a null if the hardware monitor does not submit the
MSU to automation.

Maximum length: 8 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Checking for MSUs from GENALERT
IF HMORIGIN = 'GENALERT' THEN COLOR(RED);

This example specifies that MSUs sent from a resource named GENALERT
are to be colored red.

Example 2: Extracting a Resource Name
IF HMORIGIN ¬= '' &

HMORIGIN = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example extracts the resource name from the hardware monitor MSU,
passes it to the CLISTA command list in variable MYVAR, and routes the
command list to operator AUTO1.

HMSECREC[(pos [len])]
Returns a 0 or 1 to indicate whether the hardware monitor performs
secondary recording for an MSU.

Indicator Description

1 Indicates that secondary recording is performed for an
MSU at the resource level returned by the HIER condition
item. For more information, see “HIER” on page 170. See
the NetView online help for information about secondary
recording.

0 Indicates either:
v Secondary recording is not performed for an MSU.

HMSECREC always returns a 0 for PD statistics (X'0025')
and frame relays (X'1332') because the hardware monitor
never performs secondary recording for these MSUs.

v The hardware monitor did not submit the MSU to
automation.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 1 bit

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

180 Automation Guide

Example: Checking for Secondary Recording
IF HMSECREC = '1' &

HIER = MYHIER THEN
EXEC(CMD('CLISTA 'MYHIER) ROUTE(ONE AUTO1));

This example checks for secondary recording on an MSU, passes the HIER
resource hierarchy level data in variable MYHIER to the CLISTA command
list, and routes the command list to operator AUTO1.

HMSPECAU[(pos [len])]
Returns 4 characters representing the 2-character hexadecimal specific
component code of an MSU. A general cause code is returned.

The pos parameter is the position where the comparison begins. The
default value is 1.

The len parameter is the length of the string to be compared. The default
value is the remaining portion of the string beginning with pos.

The specific component code indicates the type of component,
subcomponent, or logical resource that is most closely related to the
exception condition that caused the MSU to be created. For more
information about specific component codes, refer to the information on
basic alert (X'91') MS subvectors in the Systems Network Architecture
library.

Values are returned only for nongeneric alerts (X'0000') and for RECMSs
and RECFMSs that are not statistics-only. HMSPECAU returns a null if an
MSU is:
v A generic alert (X'0000')

Note: The term generic refers to all MSUs that contain subvector 92.
Generic MSUs include:
– Alerts that contain subvector 92
– Resolutions, which always contain subvector 92

v A link event (X'0001')
v A resolution (X'0002')
v A PD statistic (X'0025')
v Link configuration data (X'1332')
v A statistics-only RECMS

Note: Statistics-only RECMS refers to record maintenance statistics that
contain only statistical data. These records have a recording mode
of X'81', X'86', and X'87' in byte 8, offset 1 of the RECFMS. For
X'87', only RECMSs that represent temporary errors (not
permanent) are considered statistics-only.

v A statistics-only RECFMS

Note: Statistics-only RECFMS refers to record formatted maintenance
statistics that contain only statistical data. These records have a
type of 1, 4, and 5 in byte 8, offset 1 of the RECFMS.

v Not submitted to the automation table by the hardware monitor

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 2 hexadecimal characters

Chapter 15. The Automation Table 181

Type: MSU

Applies to: All MSUs except those that cause a null value to be returned

Example 1: Checking for a Component Code That is Not Null
IF HMSPECAU ¬= '' &

HMSPECAU = MYVAR THEN
EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1);

This example checks for a specific component code that is not null, passes
the code to the CLISTA command list in variable MYVAR, and routes the
command list to operator AUTO1.

Example 2: Checking for a Specific Component Code
IF HMSPECAU = HEX('0001') THEN COLOR(RED);

This example specifies that an MSU with a component code of X'0001' is
colored red.

HMUSRDAT[(pos [len])]
Returns the 5-character user-specified data in subvector 33 of an MSU.

Trailing blanks are truncated from the value returned. This data can be
used with hardware monitor filtering. The hardware monitor translates any
unprintable data in subvector 33 to underscores (_), and translates
lowercase characters to uppercase characters. The characters returned with
HMUSRDAT reflect any translation done by the hardware monitor, and
might not be the same characters in subvector 33. Use HMUSRDAT to
determine whether the hardware monitor has translated any data in
subvector 33 to underscores or uppercase.

You can also use MSUSEG to retrieve user-specified data from subvector 33
in an MSU. However, MSUSEG does not translate any characters.

For more information about subvector 33 data, the UDAT option of the
GENALERT command, and the U option of the SRFILTER command, refer
to the NetView online help

HMUSRDAT returns a null if an MSU:
v Does not contain subvector 33. Subvector 33 is never present in RECMS

or RECFMS records. Only generic major vectors can contain subvector
33. The hardware monitor accepts and processes subvector 33
information in any of the generic major vectors submitted to automation.

v Is a frame relay (key X'1332').
v Is not submitted to automation by the hardware monitor.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 5 characters

Type: MSU

Applies to: All MSUs submitted to automation by the hardware monitor

Example 1: Checking for Specific User-Specified Data
IF HMUSRDAT = 'MYDAT' THEN COLOR(RED);

This example checks for hardware monitor MSUs with user-specified data
of MYDAT in subvector 33, and colors them red.

Example 2: Checking for User-Specified Data

182 Automation Guide

IF HMUSRDAT ¬= '' &
HMUSRDAT = MYVAR THEN

EXEC(CMD('CLISTA 'MYVAR) ROUTE(ONE AUTO1));

This example checks for hardware monitor MSUs with user-specified data
in subvector 33, passes the data to the CLISTA command list in variable
MYVAR, and routes the command list to operator AUTO1.

IFRAUIND [(pos [len])]
Indicates the AIFR indicator fields IFRAUIND and IFRAUIN2, which
contain 16 bits.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Bit 16 indicates whether the message was solicited or unsolicited:
1 Unsolicited
0 Solicited

See Chapter 9, “NetView Information Routing for Automation,” on page 85
for a discussion of solicited and unsolicited messages. Refer to the IBM
Tivoli NetView for z/OS Programming: Assembler for a description of all other
bits.

The value of IFRAUIND evaluates to null ('') if all bits are B'0'. You can test
for this condition by comparing to the null ('') keyword.

Maximum length: 16 bits

Type: Both

IFRAUIN3 [(pos [len])]
The 8–bit AIFR field IFRAUIN3 mapped by DSIIFR.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The values for bits 1 and 2, which indicate the cross-domain priority, are:
B'00' A default priority
B'01' A low priority
B'10' A high priority
B'11' The receiver is to be tested for the priority

Maximum length: 8 bits

Type: Both

IFRAUI3X [(pos [len])]
The 32 bits of binary flags that are mapped by DSIIFR for a message.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The values for byte 3 (IFRAUI33) are:
X'80' Automate removal of message.
X'40' DOM is not expected.
X'20' DOM-by-token issued by MVS.
X'10' DOM issued for local copy only.

Chapter 15. The Automation Table 183

X'08' AIFR sent to AUTO(YES) console owner.

Maximum length: 32 bits

Type: Both

Notes for IFRAUI3X:

v The first 8 bits of the 32-bit IFRAUI3X flags are IFRAUIN3 (see
IFRAUIN3 for description).

v For a detailed description of all the IFRAUI3X fields, browse the
assembler macro DSIIFR that was shipped with your NetView.

IFRAUSB2 [(pos [len])]
The 2-character AIFR user field IFRAUSRB mapped by DSIIFR.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of IFRAUSB2 evaluates to null ('') if the field contains all blanks
or binary zeros in any combination. You can test for this case by
comparing to the null ('') keyword.

Maximum length: 2 characters

Type: Both

Note: To compare using bits, use the IFRAUSRB condition item.

IFRAUSC2 [(pos [len])]
The 128-bit AIFR user field IFRAUSRC mapped by DSIIFR.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of IFRAUSC2 evaluates to null ('') if all bits are B'0'. You can test
for this case by comparing to the null ('') keyword.

Maximum length: 128 bits

Type: Both

Note: To compare using characters, use the IFRAUSRC condition item.

IFRAUSDR [(pos [len])]
The name of the NetView task that originated the message or MSU.
IFRAUSDR is a 1-8 character name.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Both

IFRAUSRB [(pos [len])]
The 16-bit AIFR user field IFRAUSRB mapped in DSIIFR.

pos The position where the comparison begins. The default is 1.

184 Automation Guide

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of IFRAUSRB evaluates to null ('') if all the bits are B'0'. You can
test for this case by comparing to the null ('') keyword.

Maximum length: 16 bits

Type: Both

Note: To compare using characters, use the IFRAUSB2 condition item.

IFRAUSRC [(pos [len])]
The 16-character AIFR user field IFRAUSRC mapped in DSIIFR.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of IFRAUSRC evaluates to null ('') if all bytes are character
blanks or binary zeros, in any combination. You can test for this case by
comparing to the null ('') keyword.

Maximum length: 16 characters

Type: Both

Note: To compare using bits, use the IFRAUSC2 condition item.

IFRAUTA1 [(pos [len])]
Indicates the AIFR fields IFRAUTA1, IFRAUTA2, IFRAUTA3, IFRAUTA4,
IFRAUTA5, and IFRAUTA6. See fields IFRAUTA1 through IFRAUTA6 in
DSIIFR for more information.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Description
1, 2, 25 The HOLD action
5, 6, 26 The SYSLOG action
7, 8, 27 The NETLOG action
9, 10, 28 The HCYLOG action
11, 12, 29 The DISPLAY action
13, 14, 30 The BEEP action
20 Whether the message is from MVS
24 Whether the message is an action message, such as a

WTOR
47 Whether automation vector extensions exist
48 Whether presentation vectors exist in data buffers

Refer to the IBM Tivoli NetView for z/OS Programming: Assembler for a
description of all bits.

The value of IFRAUTA1 evaluates to null ('') if all bits are B'0'. You can test
for this condition by comparing to the null ('') keyword.

Maximum length: 48 bits

Chapter 15. The Automation Table 185

Type: Both

IFRAUWF1 [(pos [len])]
Indicates the AIFR fields IFRAUWF1, IFRAUWF2, IFRAUWF3, and
IFRAUWF4, mapped in DSIIFR, which contain 32 bits of MVS WTO
information.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Meaning
6 Whether the message is a WTOR
7 Whether the message was suppressed
8 Whether the message was broadcast to all
9 Whether the job name is to be displayed
10 Whether the status is to be displayed
14 Whether the session is to be displayed

The value of IFRAUWF1 evaluates to null ('') if all bits are B'0'. You can
test for this condition by comparing to the null ('') keyword.

Maximum length: 32 bits

Type: Message

INTERVAL(occurrence_number)
Returns an indication of whether this condition item has been evaluated
against a multiple of occurrence_number times. Use this condition item for
specifying actions to take place when a condition occurs periodically. The
occurrence_number parameter specifies the interval to be checked. The value
can be from 1–1000000000.

The values returned by INTERVAL are:

1 Indicates that the condition item being evaluated is a multiple of
occurrence_number

0 Returned for all other occurrences

For example, INTERVAL(5) returns a value of 1 when the condition item is
evaluated for the 5th occurrence, the 10th occurrence, the 15th occurrence,
and so on, and returns a value of 0 for every other occurrence.

The count of evaluations is incremented only if the INTERVAL condition
item is reached during the sequential search for matches through the
automation table. The count of evaluations is not incremented if one of
these is true:
v The statement with the INTERVAL condition item is not reached because

of a prior statement match in the table.
v The BEGIN-END conditional logic that resulted in the statement not

being evaluated.
v A prior condition in the automation-table statement that is linked with

the logical-AND (&) operator evaluates as false.

Maximum length: 1 bit

Type: Both

Example: Statement evaluated by the INTERVAL keyword

186 Automation Guide

IF MSGID = 'XYZ123I' &
INTERVAL(5) = '1' THEN

<actions>;

In this example, the evaluation count is incremented only if the sequential
search through the active automation table reaches the statement and the
message ID is XYZ123I. The automation actions are done only for the 5th,
10th, 15th (and so on) XYZ123I messages that reach this statement.

Notes for INTERVAL:

v Choosing a useful interval value - The NetView program increments
the evaluation count before determining whether the count has reached
an interval multiple. Do not specify an interval value of 1 because the
condition item always evaluates the same. For example, the statement
INTERVAL(1) = '1' is always true.

v Reset of the evaluation count - The evaluation count is reset to 0 if any
of these events occur:
– The active automation table is replaced using the AUTOTBL

command.
– The NetView automation-table function is turned off.
– The NetView program is brought down.

JOBNAME [(pos [len])]
The name of the MVS job where the received message originated.
JOBNAME is a 1-8 character name.

Because the JOBNAME is the name of the job that originated the message,
it might not always be the same as the name of the job to which the
message refers. The names can differ when MVS issues a message about
the NetView job. If the message is issued during job start-up or shutdown,
JOBNAME can contain the name of an initiator (instead of the actual job
name), and you must extract the job name from the message text rather
than from the JOBNAME keyword.

The same information is available with the MSGCOJBN condition item.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of JOBNAME evaluates equal to null ('') if the message was not
received from MVS, or has no associated job name. You can test for these
cases by comparing to the null ('') keyword.

Maximum length: 8 characters

Type: Message

JOBNUM [(pos [len])]
The number assigned by MVS to the job where the received message
originated. JOBNUM is an 8-character number that can include an
alphabetic prefix and imbedded blanks.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Chapter 15. The Automation Table 187

The value of JOBNUM evaluates to equal to null ('') if the message was not
received from MVS, or has no associated job number. You can test these
cases by comparing to the null ('') keyword.

Maximum length: 8 characters

Type: Message

KEY [(pos [len])]
The key associated with a message. KEY might contain nondisplayable
values.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

KEY has a value only if the message was originally a message data block
(MDB).

Maximum length: 8 characters

Type: Message

LINEPRES [(pos [len])]
Contains the values for four presentation attributes:
v Alarm control
v Color
v Highlighting
v Intensity

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

LINEPRES is a 4-byte value taken from the first buffer of a message or
MSU.

If the value for LINEPRES is not null, and bit 16 in LINETFLG is set on,
the LINEPRES values are used for message and MSU presentation. These
LINEPRES values are taken from one of two sources:
v The presentation overrides specified in the message data buffer (MDB)
v The presentation overrides as specified by a previous automation-table

action

When one or more presentation attributes are set by the automation table
(with the COLOR, HIGHINT, or XHILITE actions), all four of the
presentation attributes for the message or MSU are copied to the
LINEPRES fields and used to display that message or MSU. Attributes that
are not set by the automation table are taken from MDB override fields,
the fields in MSGGFGPA, or the values specified with the OVERRIDE or
DEFAULTS SCRNFMT commands.

If LINEPRES is null, the presentation attributes of the message or MSU are
taken from one of three other sources:
v The fields in MSGGFGPA
v The values specified with the OVERRIDE or DEFAULTS SCRNFMT

command
v For MSUs, the hardware monitor defaults

188 Automation Guide

Even if LINEPRES is null, other presentation attributes apply to this
message when it is displayed. When LINEPRES is null, you can check the
fields in MSGGFGPA for presentation attributes.

The four LINEPRES characters have these meanings and possible values:

Byte Description

1 Control field

Value Meaning
80 MVS alarm-on indicator
00 MVS alarm-off indicator

Byte 1 is an MVS indicator. The NetView program does not use it.
The NetView indicators that control this alarm are in IFRAUTA1
bits 13, 14, and 30. The IFRAUTA1 alarm indicators can be set by
the BEEP action in the automation table.

2 Color field

Value Meaning
00 The foreground color
F0 Presentation background. Black on display, white on

printer.
F1 Blue
F2 Red
F3 Pink (magenta)
F4 Green
F5 Turquoise (cyan)
F6 Yellow
F7 Presentation neutral. White on display, black on printer.

This field can be set by the COLOR action in the automation table.
If the value is 00, the specific foreground color is determined by
the fields in MSGGFGPA or the values specified by the OVERRIDE
or DEFAULTS SCRNFMT commands.

3 Highlighting field

Value Meaning
00 No highlighting
F1 Blinking
F2 Reverse video
F4 Underscore

This field can be set by the XHILITE action in the automation
table.

4 Intensity field

Value Meaning
E4 Normal intensity
E8 High (bright) intensity

This field can be set by the HIGHINT action in the automation
table.

Maximum length: 4 bytes

Type: Both

LINETFLG [(pos [len])]
Is a 16-bit value taken from the first text buffer of any message or MSU.

Chapter 15. The Automation Table 189

Bit 16 of LINETFLG indicates whether the presentation attributes described
in LINEPRES apply to this message or MSU. These are the values for bit
16:

Value Meaning

0 Attributes returned by LINEPRES do not apply to the message or
MSU.

1 Presentation attributes have been set to override the attributes in
MSGGFPA, and do apply to this message or MSU.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 16 bits

Type: Both

MCSFLAG [(pos [len])]
The 16-bit MVS multiple console support flag.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Meaning
2 The message is to be queued to the console if it is active
3 The message is a command response WTO
5 The message is a reply to a WTOR
6 The message is to be broadcast to all active consoles
7 The message is to be queued to hardcopy only
8 The message is to be queued unconditionally to the console
9 The message is not to be time-stamped
14 The message is not to be queued to hardcopy

The MCSFLAG values in REXX, high-level language (HLL), and NetView
command list language (CLIST) return only eight of the possible 16 bits for
MCSFLAG. The automation-table condition item MCSFLAG returns all 16
bits. Table 9 shows the difference between the automation-table condition
item and the REXX, command list, and HLL variables. Do not use the bits
that are not described for the automation table.

Table 9. The MCSFLAG Condition Item Compared to REXX, Command List, and HLL

Bit MCSFLAG Condition Item REXX, CLIST, and HLL

1 REG0

2 REG0 QREG0

3 RESP RESP

4 REPLY

5 REPLY BRDCST

6 BRDCST HRDCPY

7 HRDCPY NOTIME

8 QREG0 NOCPY

190 Automation Guide

Table 9. The MCSFLAG Condition Item Compared to REXX, Command List, and
HLL (continued)

Bit MCSFLAG Condition Item REXX, CLIST, and HLL

9 NOTIME

10

11

12

13

14 NOCPY

15

16

The value of MCSFLAG evaluates to null ('') if all bits are B'0'. You can test
for this case by comparing to the null ('') keyword.

Maximum length: 16 bits

Type: Message

MSGAUTH [(pos [len])]
Indicates whether a message was issued from an authorized program.
MSGAUTH is a two-bit indicator. The compare item is a bit string.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Values for MSGAUTH are:
B'00' The message is not from MVS
B'01' Not used
B'10' A WTO from an unauthorized program
B'11' A WTO from an authorized program

The value of the first bit of MSGAUTH evaluates to null ('') if the message
is not from MVS. The value of the second bit evaluates to null ('') if the
message is from an unauthorized MVS program. The value of both bits
evaluates to null if the message is not from MVS. You can test for these
cases by comparing to the null ('') keyword.

Maximum length: 2 bits

Type: Message

MSGCATTR [(pos [len])]
Indicates the MVS message-attribute flags. MSGCATTR is a 16-bit field.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Meaning

1 The message was suppressed

2 The message is a command response

Chapter 15. The Automation Table 191

3 The message was issued by an authorized program

4 The message is to be retained by the automation message retention
facility (AMRF)

MSGCATTR has a value only if the message was originally a message data
block (MDB).

Maximum length: 16 bits

Type: Message

MSGCMISC [(pos [len])]
Indicates the MVS miscellaneous routing flags. MSGCMISC is an 8-bit
field.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Meaning

1 Whether undeliverable messages are to be displayed

2 Whether only undeliverable messages are to be displayed

3 Whether messages are to be queued by ID only

4 Whether the message has been marked in the message processing
facility (MPF) table as eligible for NetView automation

MSGCMISC has a value only if the message was originally a message data
block (MDB).

Maximum length: 8 bits

Type: Message

MSGCMLVL [(pos [len])]
Indicates the MVS message-level flags. MSGCMLVL is a 16-bit field. The
compare item is a bit string.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Meaning
1 A WTOR
2 An immediate action message
3 A critical eventual action message
4 An eventual action message
5 An informational message
6 A broadcast message

MSGCMLVL only has a value if the message was originally a message data
block (MDB).

Maximum length: 16 bits

Type: Message

192 Automation Guide

MSGCMSGT [(pos [len])]
Indicates the MVS message-type flags. MSGCMSGT is a 16-bit field. These
bits apply to messages displayed on an MVS console; these bits are not
used by the NetView program.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check these bits:

Bit Meaning
1 Job names are to be displayed
2 Status is to be displayed

MSGCMSGT only has a value if the message was originally a message data
block (MDB).

Maximum length: 16 bits

Type: Message

MSGCOJBN [(pos [len])]
Indicates the originating job name. MSGCOJBN is a name that contains
between 1-8 characters. (The same information is available with the
JOBNAME condition item.)

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

MSGCOJBN only has a value if the message was originally a message data
block (MDB).

Maximum length: 8 characters

Type: Message

MSGCPROD [(pos [len])]
Indicates the MVS product level. MSGCPROD is a 16-character string
consisting of a 4-character MVS control program object version level, a
4-character control program name (“MVS”), and an 8-character identifier
for the originating system.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

MSGCPROD has a value only if the message was originally a message data
block (MDB).

Maximum length: 16 characters

Type: Message

MSGCSPLX [(pos [len])]
The name of the MVS SYSPLEX where the received message originated.

MSGCOJBN is a name that contains between 1–8 characters. The pos
parameter is the position where the comparison begins and has a default
value of 1. The compare item is a parse template.

Chapter 15. The Automation Table 193

The value of MSGCSPLX evaluates to equal to null ('') if the message was
not received from an MVS SYSPLEX, has no associated SYSPLEX name, or
the message was not originally a message data block (MDB). You can test
these cases by comparing them to the null ('') keyword.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Message

MSGDOMFL [(pos [len])]
Indicates the MVS DOM flags. MSGDOMFL is an 8-bit field.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Check the following bits:

Bit Meaning
1 A DOM by message ID (MSGID)
2 A DOM by system ID (SYSID)
3 A DOM by the NetView address-space ID (ASID)
4 A DOM by a job step TCB
5 A DOM by a token

MSGDOMFL has a value only if the message was originally a message
data block (MDB).

multiple console support consoles are set up by default as
DOM(NORMAL) receivers. As a result, the DOMs that are received from
MVS by these consoles have a flag in bit 1. The SYSID, ASID, TCB, and
TOKEN bit flags are not usually set on when the DOM is received from
MVS.

Maximum length: 8 bits

Type: Message

MSGGBGPA [(pos [len])]
Indicates the background presentation attributes. MSGGBGPA is a 4-byte
hexadecimal value. The compare item is a parse template.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

These are the byte descriptions:

Byte Meaning
1 Background control
2 Background color
3 Background highlighting
4 Background intensity

For a description of the values for each byte, see “LINEPRES” on page 188.

194 Automation Guide

MSGGBGPA has a value only if the message was originally a message data
block (MDB).

Maximum length: 4 bytes

Type: Message

MSGGDATE [(pos [len])]
The date that the message originator placed in the MDB. MSGGDATE is a
7-character date in the form yyyyddd where yyyy is the year and ddd is the
day of the year.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

MSGGDATE only has a value if the message was originally a message data
block (MDB).

Maximum length: 7 characters

Type: Message

MSGGFGPA [(pos [len])]
Indicates the foreground presentation attributes. MSGGFGPA is a 4-byte
hexadecimal value. The compare item is a parse template.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The byte descriptions are:

Byte Meaning
1 Foreground control
2 Foreground color
3 Foreground highlighting
4 Foreground intensity

For a description of the values for each byte, see “LINEPRES” on page 188.

MSGGFGPA has a value only if the message was originally a message data
block (MDB).

Maximum length: 4 bytes

Type: Message

MSGGMFLG [(pos [len])]
Indicates the MVS general message flags. MSGGMFLG is a 16-bit field. Bit
1 indicates a DOM. Do not test other bits.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

MSGGMFLG has a value only if the message was originally a message
data block (MDB).

Maximum length: 16 bits

Type: Message

Chapter 15. The Automation Table 195

MSGGMID [(pos [len])]
The 4-character MVS message identifier. MSGGMID might contain
nondisplayable characters.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

MSGGMID has a value only if the message was originally a message data
block (MDB).

Maximum length: 4 characters

Type: Message

MSGGTIME [(pos [len])]
The time MVS associates with the message. MSGGTIME is an 11-character
(including periods) time in the form hh.mm.ss.th, where hh is the hours, mm
is the minutes, ss is the seconds, and th is hundredths of seconds.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

MSGGTIME has a value only if the message was originally a message data
block (MDB).

Maximum length: 11 characters

Type: Message

MSGID [(pos [len])]
The message identifier of the received message. MSGID is a 1–255
character ID. The message identifier is usually the first token of the
message. If a REPLYID is sent with the message, the REPLYID is not used
as the first token.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 255 characters

Type: Message

MSGSRCNM [(pos [len])]
Indicates the 1-17 character source name.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

This source name is an identifier from the source object which was
provided by either the DSIMMDB or CNMPMDB application
programming interface (API) invocation.

For more information about DSIMMDB, refer to IBM Tivoli NetView for
z/OS Programming: Assembler. For more information about CNMPMDB,
refer to IBM Tivoli NetView for z/OS Programming: PL/I and C.

The source name is selected from the source object by these rules:

196 Automation Guide

1. The first alias, if any
2. The first network identifier concatenated to a network addressable unit

(NAU) name, with a period (.) between them, if both exist in sequence
3. The first existing NAU name
4. The string N/A, if none of the other names in this list are specified in

the source object
5. Null, if there is no source object

For more information about how the source object is defined and the
DSIAIFRO mapping, refer to IBM Tivoli NetView for z/OS Programming:
Assembler.

Note: This function has a value only if the message was originally an
MDB with an associated source object.

Maximum length: 17 characters

Type: Message

MSUSEG (location [byte [bit]])
Indicates the contents of one segment of an MSU. The compare item can be
a bit string or a parse template.

location
The location of the data to be compared. The syntax for the
parameter is:

Location Parameter

��
H

key
(occurnum)

�

.key
(occurnum)

��

H For an MDS-MU, indicates that the first key is to be
obtained at the MDS-MU level, rather than the
major-vector level. If you use this parameter and the MSU
being processed is not an MDS-MU, MSUSEG returns a
value of null.

key The 2-character or 4-character representation of the 1-byte
or 2-byte hexadecimal ID of the generalized data stream
(GDS) variable or key of the major vector, subvector,
subfield, or sub-subfield.

You can use more than one key, separating them with
periods. Each additional key specifies a lower-level
structure within the structure identified by the preceding
key.

occurnum
The occurrence number, counting from 1, of the GDS
variable, major vector, subvector, subfield, or sub-subfield.
An asterisk (*) means you want any occurrence. For
example, used at the subvector level, an occurnum of 2
means you want the second instance of the key subvector.
An occurnum of * means you want the first subvector with

Chapter 15. The Automation Table 197

a key of key, if any, that results in equality with the
compare item you have specified. The maximum occurnum
is 32767, and the default is 1.

byte The byte position within the lowest key specified in location. A
position of 1, not a 0, designates the first byte. The maximum is
32767, and the default is 1.

bit The bit position within the byte specified by byte. The bit position
can be any number from 1 to 8. Note that a position of 1, not a 0,
designates the first bit. If you specify a bit position, the compare
item is a bit string. Otherwise, the compare item is a parse
template.

MSUSEG does not support a length specification. You can assign MSUSEG
to a variable, and then use that variable (including pos and len) in a
VALUE conditional statement.

Maximum length: Varies

Type: MSU

Usage notes:

1. See “Writing Automation Table Statements to Automate MSUs” on page
324 for examples of how to use MSUSEG.

2. The MSUSEG automation-table statement is not interchangeable with
REXX’s MSUSEG function or the NetView command list language’s
&MSUSEG control variable. The formats for specifying an MSU
location are similar, but other syntax details vary.

MVSLEVEL [(pos [len])]
The 8-character string that identifies the level of MVS that is currently
running.

You can use the LISTVAR command to determine the MVS level on your
system.

In contrast to the MVSLEVEL condition item, the MSGCPROD condition
item identifies the system level of MVS that the message came from.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of MVSLEVEL is null if the currently running system is not
MVS.

Maximum length: 8 characters

Type: Both

NETID [(pos [len])]
Indicates the VTAM network identifier. This field has a maximum length of
8 characters.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

If VTAM has never been active when NetView is active, the value of
NETID is null.

198 Automation Guide

Maximum length: 8 characters

Type: Both

NETVIEW [(pos [len])]
Indicates the version and release of the currently running NetView
program. The value of NETVIEW is a 4-character field in the form NVvr
where v is the version number and r is the release number.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 4 characters

Type: Both

NUMERIC (variable[pos [len]])

Indicates a variable to convert from a text value to a numeric value and to
compare to the numeric value of the literal specified in the parse template.

pos The position where the text to convert to a numeric begins within
the variable value. The default value is 1.

len The length of the text value to convert to a numeric. This value can
be positive or negative; decimal points are not supported. The
default value is the remaining portion of the variable beginning
with pos.

Maximum length: 255 characters

Type: Both

NVCLOSE [(pos [len])]
Indicates whether NetView is currently performing CLOSE processing. It is
a one-bit indicator. Values for NVCLOSE are as follows:

1 NetView is performing CLOSE processing

0 NetView is not performing CLOSE processing

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Note: Use the NVCLOSE check with caution. If NVCLOSE is used as the
only condition item on an automation statement, a looping condition
can occur. The intent is to use the NVCLOSE condition item in
conjunction with other condition items as shown in this example.

Maximum length: 1 bit

Type: Both

Example:

If you use MYCMD to restart the task referred to in the DSI008I message,
this automation statement can prevent attempts to restart tasks during
CLOSE processing.
IF MSGID = 'DSI008I' & NVCLOSE ¬= '1' THEN

EXEC(CMD('MYCMD')ROUTE(ONE AUTO1));

Notes for NVCLOSE:

Chapter 15. The Automation Table 199

v The value of NVCLOSE evaluates to null ('') when CLOSE processing is
not currently running. You can test for this case by comparing to the
null ('') keyword.

v If you have automation running on the PPT task, which determines
whether tasks are active, and if the NetView program is using CLOSE
STOP processing, a loop can occur. This loop can prevent the NetView
program from completing CLOSE STOP processing. For example, if PPT
is issuing EXCMD for various tasks, NetView does not end until the PPT
has completed the task.

NVDELID [(pos [len])]
Indicates a 24-character EBCDIC value for a message that can be used as
input by the DOM command to delete an action message.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 24 characters

Type: Message

OPID [(pos [len])]
Indicates the operator or task ID under which the automation table is
processing. OPID is a 1-8 character ID.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Both

OPSYSTEM [(pos [len])]
Indicates the operating system for which the NetView program was
compiled. This field has a maximum length of 7 characters.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 7 characters

Type: Both

ROUTCDE [(pos [len])]
Identifies one or more MVS routing-code bits assigned to the message. A
message can have up to 128 routing-code bits.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Refer to the MVS library for information about code values.

Maximum length: 128 bits

Type: Message

200 Automation Guide

SESSID [(pos [len])]
Indicates the 1-8 character identifier of the NetView terminal access facility
(TAF) session that sent the received message.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of SESSID is a string of hexadecimal zeroes (X'00') if the message
did not come over a TAF session. You can test for this case by comparing
to the null ('') keyword.

Maximum length: 8 characters

Type: Message

SYSCONID [(pos [len])]
Specifies the MVS system console name associated with the message.
System console names are from 1 to 8 characters in length.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 8 characters

Type: Message

SYSID [(pos [len])]
Indicates the 1-8 character identifier of the MVS system that sent the
message.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

One use for SYSID is in a sysplex. You can add SYSID to your existing
automation-table statements to block messages from certain systems, or to
invoke certain automation-table actions based on the system ID.

This example shows how you can use SYSID to process messages local to
your system, whether the message originated from MVS or not. In the
example, the local system name is SYSA:
IF (SYSID = 'SYSA' | SYSID = '') THEN

BEGIN;
.
.
.

END;

Messages originating from MVS on system SYSA satisfies the check for
SYSID because they have a SYSID value equal to ’SYSA’. Messages that
did not originate from MVS but are local to system SYSA also match
because they have a SYSID equal to null.

Maximum length: 8 characters

Type: Message

SYSPLEX [(pos [len])]
Identifies the name of the MVS SYSPLEX where the received message is
being automated. SYSPLEX is a 1-8 character name.

Chapter 15. The Automation Table 201

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of SYSPLEX evaluates to equal to null ('') if the message is not
being automated on an MVS SYSPLEX or has no associated SYSPLEX
name. You can test these cases by comparing to the null ('') keyword.

Maximum length: 8 characters

Type: Both

TASK [(pos [len])]
Specifies the type of task under which the automation table is processing.
TASK is a 3-character string.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The values for TASK are:

HCT A hardcopy task.

DST A data services task. DST is an optional task that has
MOD=DSIZDST specified in the CNMSTYLE member.

OPT An optional task. The CNMCSSIR task always evaluates to a value
of OPT.

OST An operator station task. Automation tasks evaluate to a value of
OST. You can use the AUTOTASK and DISTAUTO condition items
to distinguish autotasks from other OSTs.

NNT A NetView-NetView task.

MNT The NetView main task.

PPT The primary POI task.

Maximum length: 3 characters

Type: Both

TEXT [(pos [len])]
Specifies the text of the received message. TEXT is a 1-25 character string
that contains the entire message text, including the MSGID.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The compare item is a parse template.

Maximum length: 255 characters

Type: Message

THRESHOLD(occurrence_number [time_period])
Returns an indication of whether the threshold condition item has been
evaluated against at least occurrence_number of times during the prior
time_period. The THRESHOLD condition item is useful for specifying
particular actions to take place when a condition has happened at least a

202 Automation Guide

|

specified number of times within a specified time period. See Figure 63 on
page 235 for an example of these occurrence-detection condition items:

occurrence_number
Specifies the number of occurrences within the specified time period
that cause the threshold condition to be reached. The value can be
from 1–1000.

time_period
Specifies the time interval of the threshold. The default is 24 hours. The
time period is specified as ddd hh:mm:ss, where:

ddd
The number of days in the range of 0–365. If you specify ddd, you
must also specify hh:mm:ss.

hh:mm:ss
The hours (ranging from 00–23), minutes (ranging from 00–59), and
seconds (ranging from 00–59).

You cannot specify a time period of zero. If you specify only one
numeric value for time_period, without any colon delimiters (:), the
NetView program assumes it to be a value for minutes.

Table 10 shows examples of valid THRESHOLD specifications.

Table 10. Examples of Valid THRESHOLD Specifications
SPECIFICATION OCC.# DAYS HOURS MIN. SEC.
THRESHOLD(3) = '1' 3 1
THRESHOLD(4 1 00:00:00) = '1' 4 1
THRESHOLD(5 1:00) = '1' 5 1
THRESHOLD(6 0 1:00:00) = '1' 6 1
THRESHOLD(7 10) = '1' 7 10
THRESHOLD(8 :30) = '1' 8 30
THRESHOLD(9 10 10) = '1' 9 10 10
THRESHOLD(10 10 00:10:00) = '1' 10 10 10

Unless you are accepting the default time period of 24 hours (one day),
specify all the elements of time_period (days, hours, minutes, and seconds),
even though they are not required, to avoid any misunderstanding of what
the time period is.

The values returned by THRESHOLD are:

1 Indicates the number of occurrences within the specified time
period is equal to or greater than the value of occurrence_number

0 Returned for all other occurrences

The count of evaluations is incremented only if the THRESHOLD condition
item is reached during the sequential search (for matches) of the
automation table. The count of evaluations is not incremented if one of
these situations is true:
v The statement with the THRESHOLD condition item is not reached

because of a prior statement match in the table.
v The BEGIN-END conditional logic that resulted in the statement was not

evaluated.
v A prior condition in the automation-table statement that is linked with

the logical-AND (&) operator evaluates to false.

Chapter 15. The Automation Table 203

In Figure 33, the evaluation count is incremented only if the sequential
search through the active automation table reaches this statement and if the
message ID is XYZ123I.

The automation actions are done only for the fifth (or more) XYZ123I
message that reaches this statement during the automation table search for
any 3-hour time period.

Maximum length: 1 bit

Type: Both

Notes for THRESHOLD:

v Elapsed time and the time period - For every evaluation of the
THRESHOLD condition, the number of occurrences during the prior
time period (specified by time_period) is examined to see if the threshold
has been reached. As time passes, prior occurrences might no longer be
within time_period.

v Choosing a useful occurrence value - The NetView program increments
the evaluation count before determining whether the threshold has been
reached. Do not specify an occurrence value of 1 because the condition
item always evaluates the same. For example, the condition item
THRESHOLD(1 x x:xx:xx) = '1' is always true.

v Reset of the evaluation count - The evaluation count is reset to 0 if any
of these events occur:
– The active automation table is replaced using the AUTOTBL

command.
– The NetView automation-table function is turned off.
– The NetView program is brought down.

v Defining limits on actions - You can define an ending occurrence
number (a point at which you no longer want to take a certain action)
by combining two THRESHOLD condition items on one statement. If,
for example, you want certain actions to occur only on the 3rd through
6th occurrence of message XYZ123I within any one-hour time period,
you can use this automation-table statement:
IF MSGID = 'XYZ123I' &

THRESHOLD(3 0 01:00:00) = '1' &
THRESHOLD(5 0 01:00:00) = '0' THEN

<actions>;

The second THRESHOLD condition item in the statement is evaluated
only after the first threshold is met (starting with the third occurrence of
the XYZ123I message within a one-hour period). The fifth evaluation of
the second THRESHOLD condition item is the seventh occurrence of the
XYZ123I message.

v Processing of immediate messages - If the automation table evaluates
THRESHOLD for a NetView message sent to the immediate message
area of the operator’s screen (that is, if TVBINXIT is on), the
THRESHOLD occurrence count is not incremented, and the condition
evaluates as false.

TOKEN [(token-number [pos [len]])]
Indicates a particular word or phrase within the message. The NetView

IF MSGID = 'XYZ123I' &
THRESHOLD(5 0 3:00:00) = '1' THEN

<actions>;

Figure 33. Statement Evaluated by the THRESHOLD Keyword

204 Automation Guide

program uses the blank spaces between words and phrases to divide a
message into tokens. A token consists of all the characters between two
nonadjacent blank spaces. The compare item is a parse template.

token-number The number of the token you want to compare. It must
have a numeric value; the default value is 1.

pos Indicates the position, within the specified token where
comparison begins. The default value is 1.

len The length of the string to be compared. The default value
is the remaining portion of the string beginning with pos.

Maximum length: 255 characters

Type: Message

VALUE (variable [pos [len]])

Indicates the name of the variable whose value is to be used in a
comparison.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

Maximum length: 255 characters

Type: Both

VTAM [(pos [len])]
Indicates the version and release of VTAM. VTAM is a 4-character string in
the form VTvr or Vvrm, where v is the version number, r is the release
number, and m is the modification number.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of VTAM evaluates to null ('') when VTAM is inactive. You can
test for this case by comparing to the null ('') keyword.

Maximum length: 4 characters

Type: Both

VTCOMPID [(pos [len])]
Indicates the VTAM component identifier. VTCOMPID is a 14-character
string.

You can use the LISTVAR command to determine the VTAM component
identifier.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The value of VTCOMPID evaluates to null ('') when VTAM is inactive. You
can test for this case by comparing to the null ('') keyword.

Maximum length: 14 characters

Type: Both

Chapter 15. The Automation Table 205

WEEKDAYN [(pos [len])]
Is a numeric value from 1–7 representing the day of the week.

pos The position where the comparison begins. The default is 1.

len The length of the string to be compared. The default value is the
remaining portion of the string beginning with pos.

The possible character values for WEEKDAYN are:
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 Sunday

Maximum length: 1 character

Type: Both

Bit Strings as Compare Items
Compare items that you can use in an IF-THEN statement include bit strings and
parse templates.

A bit string is either a sequence of one or more bits to be compared, or a null.
Enclose a bit string in single quotation marks. The string can have any
combination of the values 1, 0, and X:
0 Tells the NetView program to check for a value of B'0'
1 Tells the NetView program to check for a value of B'1'
X Tells the NetView program not to check the value of the bit

For example, if you check for a bit string of 0X1, the bit strings 011 and 001 both
match.

The example in Figure 34 tells the NetView program that when the message
routing code has the bits 10011 starting in position 3 or when the message
descriptor code has the bits 110 starting in position 6, the message is to be routed
to operators whose identifiers are OPER1, OPER4, and OPER6, and an audible
alarm is to be sounded when the message is displayed.

The NetView program compares a compare-item bit string to a bit-string of equal
length taken from the condition item, starting with the position you indicate (the
default is to start with position 1). If there are not enough bits available in the
condition item, an error results. For example, the statement in Figure 35 directs the
NetView program to compare 10X10 to bits 14 through 18 of the descriptor codes.
Because descriptor codes can only contain 16 bits, an error results.

IF ROUTCDE(3) = '10011' | DESC(6) = '110' THEN
EXEC (ROUTE(ALL OPER1 OPER4 OPER6)) BEEP(Y);

Figure 34. Example of Comparing Bits

IF DESC(14) = '10X10' THEN ...

Figure 35. Example of Comparing Bits of Unequal Length

206 Automation Guide

A bit string of null ('') works differently, and its function depends on the condition
item. DESC and ROUTCDE equal null if all of the bits (beginning with the position
you specify, if any) are zero. In Figure 36, the comparison is true if all of the DESC
bits are zeros.

For MSUSEG and ATF, null bit strings work like null parse templates. MSUSEG is
null if the location you specify does not exist in the MSU being processed. ATF is
null if the ATF you call sends back a compare item with a length or zero. The
precise meaning of a zero-length compare item depends on the ATF. DSICGLOB
and DSITGLOB, which are the ATFs that are supplied with the NetView program,
give a value of null if you request a global variable to which you have not yet
assigned a value, or to which you have assigned a value of null.

If NetView is not using multiple console support consoles, the condition items that
have values only if the message was originally a message data block evaluate to
null for MVS system messages. See “Condition Items” on page 158 for a list of
these condition items. These condition items can have a value if the MDB was
received from the CNMPMDB or DSIMMDB application programming interface.

Parse Templates as Compare Items
For a parse template, you can use any combination of literals, variable names,
variable values, and placeholders. Alternatively, you can use a null.

Literals
A literal indicates that you want to compare to a specified string. A literal is either
a character or a hexadecimal string. The maximum length for a literal is 255
characters. The maximum length for a hexadecimal literal is 255 hexadecimal
digits.

Try to keep literals on one line. If you use more than one line for a single literal,
do not indent the continuation lines. End each line in column 72, and begin each
continuation line in column 1.

You can continue a literal compare item by breaking it into smaller literal compare
items on several lines. Consecutive literal compare items are concatenated without
extra blanks, so you do not have to end the lines in column 72 and begin them in
column 1. For example, you can continue a literal compare item on several lines, as
shown in Figure 37.

A character literal is a string of alphanumeric characters enclosed in single
quotation marks.

For the DSI146I message, the example in Figure 38 on page 208 compares the sixth
token starting at the 5th character to the character literal AUTO.

IF DESC = '' THEN ...

Figure 36. Example of Comparing Null Bit Strings

IF TEXT='PURGE DATE IS LATER '
'THAN TODAY''S DATE'

Figure 37. Example of a Multiline Literal Compare Item

Chapter 15. The Automation Table 207

|
|

When a single quotation mark is part of a character literal, you must code a second
single quotation mark after the first, as shown in Figure 39.

You can use system symbolics as a character literal, as shown in Figure 40.

A hexadecimal literal is a string of hexadecimal digits enclosed in single quotation
marks within a HEX() keyword, such as HEX('A1'). The single quotation marks
distinguish a hexadecimal literal from a hexadecimal variable.

If you specify an odd number of hexadecimal digits, the NetView program adds a
leading zero. For example, the NetView program interprets HEX('1AB') the same as
HEX('01AB').

Variable Names
Variable names designate parts of a message or MSU that you want the NetView
program to ignore (when doing the comparison), but to store those parts for use
during action processing. You can use the stored variables as command string
parameters on an EXEC action with CMD.

During comparison processing, the NetView program ignores any parts designated
by variable names and stores each part ignored in the variable name you specify.
After setting variables in the IF part of an IF-THEN statement, you can use them in
the THEN part of the statement or within a BEGIN-END section for that IF-THEN
statement.

A variable name can have up to 16 alphanumeric characters. However, the first
character cannot be numeric. You can code up to 25 variable names in an IF-THEN
statement, using any names that are not automation-table functions, actions, or
keywords. Do not use the same variable name more than once in any one IF
condition.

After you define a variable in the IF part of an IF-THEN-BEGIN structure, the
variable maintains its value throughout the BEGIN-END section. However, an
individual IF-THEN statement within the section can temporarily redefine the
value of the variable for its own use by making a comparison to the same variable
name.

A variable name can be either character or hexadecimal. A character variable name
is one whose value is a set of characters.

The IF-THEN statement in Figure 41 on page 209 contains the character variable
name DATEVAR.

IF MSGID = 'DSI146I' & TOKEN (6 5) = 'AUTO' THEN
EXEC(ROUTE(ALL * OPER1));

Figure 38. Example of Comparing Character Literals

'PURGE DATE IS LATER THAN TODAY''S DATE'

Figure 39. Example of Using Single quotation marks in a Character Literal

IF DOMAINID = '&DOMAIN' & MSGID = 'DSI146I' THEN
EXEC(ROUTE(ALL * AUTO1));

Figure 40. Example of Using System Symbolics as a Character Literal

208 Automation Guide

If NetView receives the message DATABASE HASN'T BEEN PURGED SINCE 12/3/97, the
NetView program puts the value of the text following the word SINCE, which is
12/3/97, into the variable DATEVAR. Then the NetView program runs CLISTA
under both OPERA and OPERB using the value of DATEVAR as a parameter.

The IF-THEN statement in Figure 42 contains the variable name DOMID.

If NetView receives the message PURGE DATE IS LATER THAN TODAY''S DATE from
domain CNM01, the statement says to put the value of DOMAINID, which is
CNM01, into the variable DOMID and run CLISTA under both operators OPERA
and OPERB using the variable DOMID as a parameter.

A hexadecimal variable name is one whose value is the hexadecimal representation
of the data you assign to it. Specify a hexadecimal variable name with the HEX()
keyword.

The example is Figure 43 extracts the generic alert data from an MSU in the
variable GENERICDATA. The examples passes the data to a POWEROUT
command list in hexadecimal format. Unlike the hexadecimal literal HEX('14'), the
hexadecimal variable HEX(GENERICDATA) does not have single quotation marks.

The NetView program expands the data assigned to GENERICDATA into a string
of EBCDIC characters representing hexadecimal digits (0–9 and A–F) before
passing the data to the POWEROUT command list.

Variable Values
You can use the value of a variable in a parse template using the VALUE()
function. In this case, the value is used rather than being set. A variable that has
no value is treated as a NULL literal. The variable must be specified in either the
BEGIN block or the IF-THEN statement. A variable cannot be set and subsequently
referenced in the same parse template. The variable cannot be subscripted with
position or length. The IF-THEN statement in Figure 44 contains a parse template
to use the domain name from variable DOM1.

IF DOMAINID='CNM01' &
TEXT='DATABASE HASN''T BEEN PURGED SINCE' DATEVAR THEN

EXEC (CMD('CLISTA ' DATEVAR) ROUTE (ALL OPERA OPERB));

Figure 41. Example of Using a Character Variable Name

IF TEXT='PURGE DATE IS LATER THAN TODAY''S DATE' &
DOMAINID=DOMID THEN

EXEC (CMD('CLISTA ' DOMID) ROUTE (ALL OPERA OPERB));

Figure 42. Example of Using Character Variable Name DOMID

IF MSUSEG(0000.92 6) = HEX('14') .
& MSUSEG(0000.92) = HEX(GENERICDATA) THEN

EXEC (CMD('POWEROUT 'GENERICDATA) ROUTE (ONE AUTO1 *));

Figure 43. Example of Using a Hexadecimal Variable Name

IF DOMAINID=DOM1 &
TEXT = 'WORD1 ' VALUE(DOM1) ' WORD3' THEN
EXEC (CMD('CLISTA DOM1') ROUTE (ALL OPERA));

Figure 44. Example of Using the Value of Variable DOM1

Chapter 15. The Automation Table 209

Placeholders
Placeholders cause NetView to skip over parts of a message or MSU that you do
not want to use in the comparison. Placeholders are similar to variable names, but
the NetView program does not store the text skipped by a placeholder for use in
an action. Designate a placeholder with a period (.).

If you code a period within single quotation marks, the NetView program treats
the period as part of a string, not as a placeholder.

The IF-THEN statement in Figure 45 a placeholder to cause the NetView program
to skip over parts of the message text.

If the NetView program receives the message RESOURCE LU1 SENSE CODE=08 NOT
ACTIVATED, the statement in Figure 45 directs the NetView program to skip over all
of the text preceding SENSE CODE=, store the value 08 in the variable name SENSE,
and skip over all of the text following the variable name SENSE. Without the
leading placeholder, the example message does not fulfill the conditions of the
statement. Without the trailing placeholder, the variable SENSE takes on the value
08 NOT ACTIVATED.

The IF-THEN statement in Figure 46 uses a placeholder to cause the NetView
program to select a single character from the message text.

If the NetView program receives the message IST105I A01A425 NODE NOW
INACTIVE, the message identifier and the 4th character of the resource name (the
second token) are compared. If the values specified in the automation-table
statement match, the message does not appear in the network log.

Nulls
You can use a parse template of null ('') to check if information is absent in a
message or MSU. You cannot use the null in conjunction with literals, variable
names, or placeholders in a single comparison. You can use the logical-AND (&)
and logical-OR (|) operators to join null comparisons with other comparisons.

A parse-template compare item has a value of null if the message or MSU being
processed does not have any value for that item. The precise meaning of the null
varies from compare item to compare item. A bit string compare item has a value
of null if all bits in that bit field have a value of B'0'.

Some condition items have values only if the message was originally a message
data block (MDB) (see “Condition Items” on page 158). These condition items
evaluate to null for MVS system messages if the NetView program is not using
multiple console support consoles. These condition items can have a value if the
MDB was received from the CNMPMDB or the DSIMMDB API.

IF TEXT = . 'SENSE CODE=' SENSE . THEN
EXEC (CMD('CLIST1 'SENSE) ROUTE (ONE OPERA OPERB));

Figure 45. Example of Using a Placeholder

IF MSGID = 'IST105I' &
TOKEN(2 4) = 'A' . THEN

NETLOG(N);

Figure 46. Example of Using a Placeholder to Select a Single Character

210 Automation Guide

Textual compare items give a value of null if the position you specify is beyond
the length of the compare item. For example, TOKEN(8) yields null for a message
that has only six tokens. Some compare items in the textual compare category are:
v DOMAINID
v MSGID
v TEXT
v TOKEN

An ATF call gives a value of null if the ATF sends back a compare item with a
length of zero. The specific meaning of a zero-length compare item depends on the
ATF. DSICGLOB and DSITGLOB, which are the ATFs that are supplied with the
NetView program, give a value of null if you request a global variable to which
you have not yet assigned a value, or to which you have assigned a value of null.

MSUSEG gives a value of null if the field you specify does not exist in the MSU
being processed. HIER gives a value of null if the MSU does not have any
resource- hierarchy information or if you specify a name-type pair that the MSU
does not have.

Some functions are set only if a message is received from MVS, or from the
CNMPMDB or DSIMMDB APIs. Otherwise, these functions give null values. For
example:
v JOBNAME
v SYSID
v ROUTCDE
v AREAID

SESSID gives a value of null if the message being processed was not received over
a TAF session.

HDRMTYPE does not return null values.

Comparing to null is not always the same as comparing to a string of hexadecimal
zeros.

The example in Figure 47 shows how you might use the null ('') keyword to check
for the presence of a resolution major vector (key X'0002') within an MSU.

Actions
This section describes the actions that you can use in IF-THEN and ALWAYS
statements. Table 11 summarizes these actions. The actions are organized according
to type (message, MSU, or both) in the table and alphabetically in the description
section.

Table 11. IF-THEN and ALWAYS Actions

Action Description

Messages

IF MSUSEG(0002) ¬= '' THEN
BEGIN;...
END;

Figure 47. Example of Using Nulls as a Variable

Chapter 15. The Automation Table 211

|
|

DISPLAY Displays the message

DOMACTION Specifies action for operator message deletion

HCYLOG Logs the message in hardcopy log

HOLD Holds the message on the screen

NETLOG Logs the message in the network log

SYSLOG Logs the message in the system log

MSUs

SRF Sets recording-filter attributes for the MSU

XLO Specifies external logging only

Messages and MSUs

AUTOMATED Sets the significant action indicator for the AIFR

BEEP Sounds an audible alarm

CNM493I Specifies whether CNM493I messages are written to the network log for
this statement

COLOR Sets foreground color

CONTINUE Continues table processing for the message or MSU

EDIT Specifies an edit specification that alters an AIFR that is being
automated

EXEC Issues a command or, for messages, controls routing

HIGHINT Sets high-intensity 3270 mode

TRACE Sets tracing on

XHILITE Sets foreground highlighting

AUTOMATED (Yes|No|Ignore)
Sets the specified value of the significant action indicator for any message
or MSU that matches the statement. Possible values are as follows:

YES|Y
Forces the AUTOMATED status ON for an AIFR matching this
statement, regardless of the actions for this statement, to indicate
this AIFR has been automated. This is the default.

NO|N
Forces the AUTOMATED status OFF for an AIFR matching this
statement, regardless of the actions, to indicate this AIFR has not
been automated.

IGNORE|I
Leaves the indicator in the state prior to this statement.

This indicator can be queried by the AUTOMATED condition item.

Type: Both

BEEP (Y|N)
Determines whether an audible alarm sounds when the message or MSU is
displayed. For MSUs, BEEP applies only to alert major vectors displayed
by the hardware monitor. If you do not specify a BEEP value in the
automation table or elsewhere, the default is BEEP (N) for messages.

212 Automation Guide

See Note 5 on page 228 for information about MSU defaults.

Type: Both

CBE ('edit_specification')

The CBE action enables you to use information from a message or MSU to
create an XML version of a Common Base Event and sent it to the
Common Event Infrastructure server. The XML is constructed using the
syntax and functions provided by the CBETEMP global order in the PIPE
EDIT stage. With the CBE action, data from messages and MSUs can be
used to fill in values from predefined XML templates; the resulting XML
sent to the Common Event Infrastructure server. The original AIFR
continues through automation. For information about what you can
include in the edit_specification, refer to IBM Tivoli NetView for
z/OS Programming: Pipes. The edit specification does not support variables.

While edit_specification must be enclosed in single quotation marks (in the
form ’edit_specification’), you cannot use single quotation marks (’ ’) within
the edit_specification itself.

CNM493I (Y|N)
Indicates whether CNM493I messages are written to the network log for
this automation-table statement. A CNM493I message is generated and
written to the log to serve as an audit trail for a command or command list
that is run from the automation table. If you do not specify a CNM493I
value in the automation table, the DEFAULTS command, or the
OVERRIDE command, the default is for NetView to generate CNM493I
messages.

Usage notes:

1. Be careful if you specify CNM493I(N) for statements that are not stable
and might need the debugging capability provided by CNM493I
messages (to indicate when a command or command list has been run
from the automation table). In some cases, the function provided by the
detailed automation usage report is sufficient to provide information
about the number of times a particular command or command list was
run from the automation table. In these cases, consider preventing
CNM493I messages from being generated. You can do this by:
v Using CNM493I(N) for particular automation statements
v Using OVERRIDE CNM493I=NO for a particular NetView task
v Using DEFAULTS CNM493I=NO for all of NetView

2. If you specify the CNM493I action and you do not specify EXEC
actions with CMD keywords for a message or MSU, the CNM493I
action is ignored and processing continues.

Type: Both

COLOR (BLU|GRE|PIN|RED|TUR|WHI|YEL)
Specifies the foreground color for display on color terminals. Color is set
for all lines of a MLWTO, but only the first line of the message is available
to the automation table. The hardware monitor uses the specified color if it
displays the MSU. The command facility uses the specified color if it
displays the message.

See Note 8 on page 229 for information about hardware monitor defaults
for MSUs.
BLU Specifies blue
GRE Specifies green

Chapter 15. The Automation Table 213

PIN Specifies pink
RED Specifies red
TUR Specifies turquoise
WHI Specifies white
YEL Specifies yellow

Type: Both

CONTINUE (Yes|No|Stop)
Specifies whether messages and MSUs that match the statement must
continue through automation-table processing, possibly matching another
statement farther down in the current table or another table. Possible
values are:

YES|Y
If a match occurs, processing continues to the next statement in the
current automation table and subsequent tables, if present.

NO|N
If a match occurs, processing continues with the first statement in
the next automation table, if present. This is the default.

STOP|S
If a match occurs, processing ends and no further statements in the
current table or subsequent tables, if present, are evaluated.

Type: Both

DISPLAY (Y|N)
Determines whether NetView displays the message if the message reaches
a task capable of display. If you do not specify a DISPLAY value in the
automation table or elsewhere, the default is DISPLAY (Y).

NetView messages sent to the immediate message area of the operator’s
screen are always displayed, regardless of the setting for the DISPLAY
action.

Type: Message

DOMACTION (A|D|N)
Specifies the type of delete operator message (DOM) processing that
NetView does with regard to this message. The default value for action
messages is DELMSG; the default for other messages is NODELMSG.
Action messages are WTORs or those having a Descriptor code matching
the setting of MVSPARM.ActionDescCodes in CNMSTYLE. The
DOMACTION specification enables you to tailor DOM processing as
follows:
A|AUTOMATE

Specifies that a DOM is expected for this message and requests
that when a DOM is received for this message, a modified copy of
the original message is sent through automation with modified
values that identify it as a DOM. In order for this automation to
occur, the original message must be held at an operator station or
at an autotask. Wherever the message is held, the automation of
the DOM will occur. When the DOM is received, automation for
the message is redriven. The IFRAUDOM bit is set on and other
DOM-related bits are copied from the DOM request. The action
message is removed from internal storage and deleted from
operator consoles.

214 Automation Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: Note: You can differentiate the original message from the
DOM copy by checking IFRAUDOM (if you are using an
ATF) or by checking the automation value ACTIONDL. A
command driven by the automation of the DOM can use
SMSGID to correlate the instance of the message with the
instance of the DOM.

D|DELMSG
Specifies that a DOM is expected for this message, and that when a
DOM is received for this message, the NetView program deletes
the action message from internal storage and from operator
consoles, but does not send a copy of the message through
automation. DELMSG is the default value for action messages.

N|NODELMSG
Specifies that a DOM for this message is not expected. The
NetView program will not keep any internal record of it for future
deletion by a DOM request. If the message is an unsolicited system
message, the NetView program will not process the DOM if one is
sent. This setting is appropriate for situations when messages are
issued by applications with Descriptor codes listed on the
MVSPARM.ActionDescCodes CNMSTYLE statement, but the
application does not issue a DOM. Alternatively, an operator or
autotask can use the NetView DOM command to delete the
message. NODELMSG is the default value for non-action
messages.

Type: Message

Usage notes:

1. If the value of DOMACTION after automation is AUTOMATE or
DELMSG, the NetView program allocates resources in expectation of a
DOM. If many such messages are processed and the DOMs are not
forthcoming, then both storage and processing time will be negatively
affected. To address this concern, you can use the DOM command to
remove records associated with the message.

2. Action messages are held by default. When a message that is not an
action message is automated, a DOMACTION(AUTOMATE) or
DOMACTION(DELMSG) action will by default set the message as
held″ Consider adding a HOLD action in order to differentiate between
HOLD(YES) and HOLD(LOCAL). A DOM can be automated only if the
original message is still on the hold queue of some NetView task.
Check the OVERRIDE setting for the task to which the primary copy of
the message will be sent, to ensure that the setting for HOLD at that
task allows the message to be held

EDIT ('edit_specification')

The EDIT action enables you to make changes to an AIFR while it is in the
automation table. The changes are made using the syntax and functions
provided by the PIPE EDIT stage. With EDIT, messages and MSUs can be
reformatted. The altered AIFR continues through automation. The original
AIFR is no longer available.

While edit_specification must be enclosed in single quotation marks (in the
form ’edit_specification’), you cannot use single quotation marks (’ ’) within
the edit_specification itself.

Chapter 15. The Automation Table 215

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Edit specifications define the action to be taken on the AIFR data. For
information about what you can include in the edit_specification, refer to
IBM Tivoli NetView for z/OS Programming: Pipes. The edit specification does
not support variables.

EXEC ([CMD(cmdstring)] [ROUTE(routeparms)])
Indicates an action to be processed. You can specify CMD, ROUTE, or both
with each EXEC action. You can code more than one EXEC action on a
single statement to process more than one command or route extra copies
of a message.

CMD Indicates a command, command list, or command processor you
want the NetView program to run.

cmdstring
Is a command string of up to 2000 characters. The string can be
literals, a variable, or a combination of literals and variables.
Enclose literals in single quotes, but do not enclose variables in
quotes.

This string contains the complete command syntax of the
command or command list, including the command name and any
parameters. If you have defined automation table variables, you
can use them for parameters. See “Parse Templates as Compare
Items” on page 207.

Japanese double-byte characters are not supported in NetView
command strings.

Special rules apply to command strings that are longer than 255
characters. See Note 8 on page 220 for a description of these rules.

If you are using the automation table to convert NetView alerts to
Tivoli Enterprise Console events or traps and forward the events or
traps to the Tivoli Enterprise Console product or an SNMP
manager, add the TECROUTE keyword to the beginning of cmdstring
as a prefix. Only one command prefixed by TECROUTE can be run
for a specified alert; code all needed command actions in the same
command.

See “Event/Automation Service” on page 406 for more
information.

ROUTE
Instructs NetView to route cmdstring or the message to the
operators whose identifiers are specified in routeparms. ROUTE
enables you to route cmdstring or the message to different tasks.

Another way to route messages is to use the MSGROUTE
command in a command list that you issue from the automation
table. Use MSGROUTE if, for example, you need to check part of a
multiline message other than the first line before deciding where to
route the message.

For information about the MSGROUTE command, refer to IBM
Tivoli NetView for z/OS Programming: REXX and the NetView
Command List Language.

routeparms
Specifies the operators or groups of operators to whom the
message or cmdstring is routed for processing. The syntax for the
parameter is:

216 Automation Guide

Routeparms

�� �(ONE *)
ALL PPT

oper
+grp
?auto

��

Where:

ONE Routes the message or cmdstring to the first logged-on
operator in the list or to the first operator who is assigned
to a group appearing in the list and who is logged on.

ALL Routes the message or cmdstring to all the operators and
groups of operators in the list who are logged on to
NetView.

* Indicates that NetView routes the message or cmdstring to
the current operator task (the task that sent the message to
the automation table). In some cases where the current task
cannot process the message or cmdstring, routing can vary.

See Note 5 on page 218 for more information about which
task an asterisk designates.

PPT Indicates that NetView routes the message or cmdstring to
the PPT for processing.

oper The identifier of an operator to whom NetView routes the
message or cmdstring. The operator identifier must be
defined to NetView. The maximum length of an operator
identifier is 8 characters. You can code as many operator
identifiers as needed.

+grp The identifier of each group of operators to whom
NetView routes the message or cmdstring. The maximum
length of a group identifier is 8 characters, and it must
begin with a plus (+) sign. You can code as many group
identifiers as needed. Define group identifiers with the
ASSIGN command.

Refer to the IBM Tivoli NetView for z/OS Command Reference
Volume 1 (A-N) for information about the ASSIGN
command.

?auto The function_name of an autotask defined with a
function.autotask.function_name to which NetView routes the
message or cmdstring. The autotask must be defined to
NetView. You can code as many as necessary in this
manner. This value is resolved to the appropriate autotask
name when the automation table is compiled.

Refer to the IBM Tivoli NetView for z/OS Administration
Reference for information about the function.autotask
command.

Type: Both, except that EXEC with only the ROUTE option is type
Message.

Chapter 15. The Automation Table 217

Usage notes:

1. The target task for a ROUTE action can only be those that are shown in
the syntax diagram; you cannot route to an optional task.

2. NetView processes each EXEC action on each matching statement
individually, except for ROUTE-only actions with the ALL option. To
eliminate duplicate task IDs, NetView combines all ROUTE-only actions
with the ALL option.

3. When you specify CMD on an EXEC action, enclose the command and
any literal parameters in single quotes. Delimiters, such as spaces, that
are required in a command string must also be enclosed in single
quotes.
To use variables as parameters, do not enclose the variable names in
single quotes. You can define the variables in the conditions portion of
the IF-THEN statement.
Alternatively, if your statement is enclosed in a BEGIN-END section,
you can define the variables in the IF-THEN statement that begins the
section. If your definition gives a variable a value of null, you can pass
the null value to the command list. However, passing a variable that
you have not defined at all results in a syntax error.
In Figure 48, the space within the single quotes after CLISTB separates
the command name from the parameter value in VARPARM1. The
space enclosed in single quotes between VARPARM1 and VARPARM2
delimits those two variable names. Also, a space within the single
quotes before LITPARM sets the literal parameter off from VARPARM2.

If VARPARM1 is OPER4 and VARPARM2 is OPER5, the resulting
command is CLISTB OPER4 OPER5 LITPARM.

4. If you specify CMD on an EXEC action, also specify ROUTE.
When you specify both CMD and ROUTE, NetView processes the CMD
actions under the tasks specified in routeparms. Autotasks, in many
cases, are ideal command destinations. You cannot route commands to
SYSOP or the network log. Any BEEP, DISPLAY, HCYLOG, and HOLD
actions you specify do not apply to the CMD action but to the
incoming message.
In Figure 49, NetView sends the RUNNING command list to the first
task in group +GRP01 that is logged on. If none of the +GRP01
operators are logged on, the command list goes to AUTOMGR instead.
In any case, NetView does not display the message that triggers the
entry.

5. When you specify CMD in an EXEC statement, always code a ROUTE
action for that EXEC and, unless you are certain that the automation
will occur at an autotask or an operator’s OST, do not code an asterisk
(*) for the ROUTE action. In the event that a ROUTE action of asterisk

EXEC (CMD('CLISTB ' VARPARM1 ' ' VARPARM2 ' LITPARM'))

Figure 48. Example of Specifying a CMD in an EXEC

IF MSGID='DSI530I' & TEXT(10) = TASKNAME ''' :' . THEN
EXEC (CMD('RUNNING ' TASKNAME) ROUTE(ONE +GRP01 AUTOMGR))
DISPLAY(N);

Figure 49. Example of Using the CMD and ROUTE Keywords

218 Automation Guide

|
|
|
|

(*) is encountered or no ROUTE action is coded, the following rules
apply to the routing of the command:
v If the automation occurs at an autotask or an operator’s OST, the

command is routed to that task.
v If automation encounters any of the following message types, they

are automated at the task designated by the ASSIGN PRI command
(if any):
– Unsolicited VTAM messages received through the Program

Operator Interface (POI)
– Messages designated as ″authorized receiver″ by the message

sender
– Command output from a command running under the PPT
– Messages originating at the PPT
– Messages queued to the PPT

If the message does not match an ASSIGN PRI condition, the
message is routed to an authorized receiver, if one is logged on. If an
authorized receiver is not found, automation occurs at the PPT task.
Therefore, commands without an explicit ROUTE will be queued to
the primary autotask. This the task specified on the
FUNCTION.AUTOTASK CNMSTYLE statement.

v If the following message types do not match any ASSIGN PRI
specification, then they are automated at an optional task:
– MSUs from the hardware monitor that are automated at the

BNJDSERV task
– Unsolicited messages from the MVS program, automated at the

task with the CNMCSSIR load module
– Unsolicted messages resulting from an XCF transmission,

automated at the DSIXCFMT task
– Other optional tasks, if the tasks issue a message using DSIPSS

TYPE=OUTPUT

For all these tasks, commands without an explicit ROUTE will be
queued to the primary autotask (defined by the
FUNCTION.AUTOTASK.PRIMARY statement in the CNMSTYLE
member).

6. If the automation table cannot find an active task to run a command,
NetView sends a DWO032E message through the automation table and
to the network log to indicate the problem.
You might want to have a statement in the automation table that
automates message DWO032E, because it indicates that an automation
statement is failing to function as expected. DWO032E is always sent to
the network log; the automation-table NETLOG action does not affect
it. This message can occur if none of the tasks to which you route a
command are active.
Message DWO032E is not displayed to an operator by default, but it
can be routed to an operator from an automation-table statement to
indicate to an operator that there is a problem with automation. If you
do route the DWO032E message from an automation-table statement,
ensure that at least one operator, such as the PPT, in the list of
operators specified is logged on (to avoid the possibility of a looping
condition).

Chapter 15. The Automation Table 219

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

To avoid the problem of commands that cannot be run, consider
including a stable autotask somewhere in your ROUTE list when
issuing a command from the automation table.

7. Using EXEC with both CMD and ROUTE only routes the command
you specify with the CMD keyword.
It does not affect the routing of the message that is undergoing
automation-table processing. To change the routing of the message
itself, use an EXEC action with ROUTE, but not CMD.
When you specify ROUTE but not CMD on an EXEC action, NetView
routes the message to the operators specified in routeparms using the
BEEP, DISPLAY, HCYLOG, and HOLD actions specified in the
IF-THEN statement. Otherwise, the NetView program processes the
BEEP, DISPLAY, HCYLOG, and HOLD actions under the current
operator task (the task that sent the message to the automation table).
For example, the statement in Figure 50 displays a message to operator
OPER1.

8. Commands issued from the automation table can be up to 2000
characters. However, command parse tokens in NetView have a
maximum length of 255 characters.
A command parse token is made up of all characters between parse
delimiters in a command. Parse delimiters are commas, equal signs,
parentheses, and blanks. In Figure 51, the parse tokens are:
v MYCMD
v KEYWORD1
v VALUE1
v KEYWORD2
v VALUE1
v VALUE2

Each parse token can be up to 255 characters.

In an automation-table statement, use two single quotes to represent
one single quote within a literal string. If a parse token has a pair of
single quotes in it, any parse delimiters between the single quotes are
ignored. For example, if the command shown in Figure 52 is issued
from the automation table, 'LITERAL, STRING' is one parse token. The
comma is not used as a parse delimiter.

If there is an unbalanced set of single quotes, everything from the extra
single quote to the end of the command is considered one parse token.

IF MSGID='DSI530I' & TEXT(10)= . ':' . THEN
EXEC (ROUTE(ONE OPER1))
DISPLAY(Y);

Figure 50. Example of Using EXEC Action with the ROUTE Keyword

MYCMD KEYWORD1=VALUE1,KEYWORD2=(VALUE1,VALUE2)

Figure 51. Example of Using A Parse Token

IF MSGID='DSIxxxI'
THEN EXEC(CMD('MYCMD KEYWORD1='LITERAL, STRING',

KEYWORD2=(VALUE1,VALUE2)')
ROUTE(ALL OPER1));

Figure 52. Example of Ignoring Parse Delimiters

220 Automation Guide

For example, if the command shown in Figure 53 is issued from the
automation table, 'LITERAL, STRING, KEYWORD2=(VALUE1,VALUE2)' is
one parse token.

9. Using the REFRESH command, you can dynamically delete operators,
and dynamically add operators without predefining the operators to
NetView.
The automation table is activated successfully even if operators targeted
by the ROUTE keyword in automation statements are not presently
defined to the NetView program.
If you issue the AUTOTBL command to activate or test an automation
table, and the ROUTE keyword on an EXEC action specifies an
operator that is not defined to NetView, you receive a message
informing you that the operator ID specified on the ROUTE keyword is
unknown. The automation table is then activated successfully.
Regardless of whether an operator is defined to NetView, messages
routed to operators that are not logged on are delivered to the next
assigned operator, or to the original destination.
If an operator definition is deleted using the REFRESH command, the
operator session continues until the operator logs off. Messages routed
to operators that are logged on but no longer defined to the NetView
program are still delivered to that operator.

HCYLOG(Y|N)
Determines whether the message is placed in the hardcopy log, if the
hardcopy log task is active. If you do not specify a HCYLOG value in the
automation table or elsewhere, the default is HCYLOG(Y).

Type: Message

HIGHINT(Y|N)
Specifies a high-intensity 3270 setting for terminals that support high
intensity. The hardware monitor uses the setting if it displays the MSU.
The command facility uses the setting if it displays the message.

See Note 8 on page 229 for information about hardware monitor defaults
for MSUs.

Type: Both

HOLD(YES|NO|LOCAL|)
Determines whether NetView holds the message on the operator’s screen
after display. The HOLD parameter also determines whether queued action
messages are rerouted to the authorized receiver when the operator logs
off.

HOLD(YES)
The message is held on the NetView screen and is kept on a queue
for both operators and autotasks.

If it is an action message, it is rerouted upon logoff.

IF MSGID='DSIxxxI'
THEN EXEC(CMD('MYCMD KEYWORD1='LITERAL, STRING,

KEYWORD2=(VALUE1,VALUE2)')
ROUTE(ALL OPER1));

Figure 53. Example of Unbalanced Parse Tokens

Chapter 15. The Automation Table 221

|
|
|
|
|

|
|
|

|

HOLD(LOCAL)
The message is held as with HOLD(YES). Queued action messages
are not be rerouted upon logoff.

HOLD(NO)
Prevents a message from being held on the screen.

Action messages marked HOLD(NO) are not queued for later
processing unless the message is sent to an autotask. If the
message is an Action message that is sent to an autotask, it is
queued and rerouted to the authorized receiver after the operator
logs off.

Note: Action messages, such as WTORs, that are marked
HOLD(NO) are not processed by a subsequent DOM, such
as a reply. Therefore, the highlighting does not change, but
the messages do scroll off the screen.

Note: Any of the HOLD values can be abbreviated to one letter. For
example, HOLD(LOCAL) and HOLD(L) are synonymous.

Type: Message

NETLOG(Y|N [indicator-number] [*] [oper[,...]] [+grp[,...]])
Determines whether NetView places the message in its network log and
whether the message activates a status monitor important message
indicator for specified operators or groups of operators. If you do not
specify a NETLOG value in the automation table or elsewhere, the default
is NETLOG(Y).

indicator-number
Identifies the status monitor important message indicator.

* Indicates that NetView routes the message or cmdstring to the
current task (the task that sent the message to the automation
table). If the current task is CNMCSSIR, message routing can differ.

oper [,...]
Specifies the operator identifier of the operators for whom the
message is logged as important. The operator identifier must be
defined to NetView. The maximum length of an operator identifier
is 8 characters. You can code as many operator identifiers as
needed.

+grp [,...]
Specifies the group identifier of the groups of operators for whom
the message is logged as important. The maximum length of a
group identifier is 8 characters, and it must begin with a plus (+)
sign. The ASSIGN command is used to define the group identifiers.
Refer to the IBM Tivoli NetView for z/OS Command Reference Volume
1 (A-N) for more information about the ASSIGN command.

Type: Message

Usage notes:

1. You can also use the F (FILTER) statement to define important message
indicators. Refer to the IBM Tivoli NetView for z/OS Administration
Reference for information about the F (FILTER) statement.

2. For NETLOG, if only an indicator number is specified, the message is
logged as important for the authorized receiver. If an indicator number

222 Automation Guide

|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|

|

and a list of operators or groups of operators are specified, the message
is logged as important for the operators and groups of operators.
Figure 54 shows an IF-THEN statement that is coded with only an
indicator-number for NETLOG.

Message IST105I is defined as an important message with a status
monitor important message indicator number of 2. Because no
operators or groups of operators were specified, when NetView
encounters message IST105I, the message is logged as important for the
authorized receiver.
Figure 55 shows how message IST105I is logged when an indicator
number and a list of operators and groups of operators are specified for
NETLOG. Message IST105I is defined as an important message with a
status monitor important message indicator number of 2.

NetView logs message IST105I as important with defined highlighting
for OPER1, OPER6, all operators assigned to group +GRP5, and the
current operator. Duplicate highlighting and logging do not occur if
specified operators are also assigned to a specified group. If operators
OPER1 and OPER6 are assigned to group +GRP5, each operator
receives only one copy of message CNM039I, which is displayed if an
operator is not in the status monitor or log browse.

3. You can assign a status monitor important-message indicator in the
automation table to an operator that is not presently defined to
NetView. The automation table activates successfully when you use the
AUTOTBL command. When you dynamically add the operator, the
operator can see any indicators for messages that are processed by
NetView automation after the operator logs on, but is not able to see
indicators for messages processed before the operator logs on. The
message indicator is set when the operator logs on.
If you dynamically delete an operator definition, but the operator
remains logged on, you can still assign a status monitor
important-message indicator to that operator.

SRF (filterlevel [setting] [filterscope])
Indicates that recording filters are to be set for the MSU to control the
recording of data in the hardware monitor database.

If you do not specify a filter setting for an MSU in the automation table or
elsewhere, the default for ESREC is PASS. The default for AREC depends
on the MSU. Refer to the SRFILTER command in the IBM Tivoli NetView for
z/OS Command Reference Volume 1 (A-N) for more information. For MSUs
that pass AREC, the default for ROUTE is PASS, the default for
TECROUTE is BLOCK, the default for TRAPROUT is BLOCK, the default
for OPER is BLOCK.

IF MSGID='IST105I' THEN
NETLOG(Y 2);

Figure 54. Example of Using NETLOG Keyword

IF MSGID='IST105I' THEN
NETLOG(Y 2 * OPER1 +GRP5 OPER6);

Figure 55. Example of Using NETLOG with a List of Operators

Chapter 15. The Automation Table 223

filterlevel
Indicates the recording filter you want to set for the MSU.

ESREC
Determines whether the hardware monitor records an MSU
as an event.

AREC Determines whether the hardware monitor records an
event as an alert.

OPER Determines whether the hardware monitor generates
BNJ146I and BNJ030I messages from an alert and sends
them to the authorized receiver.

ROUTE
Determines whether the hardware monitor routes an alert
to the system acting as the NetView focal point for alerts.

TECROUTE
Determines whether the hardware monitor converts an
alert to a Tivoli Enterprise Console event and routes the
event to the Tivoli Enterprise Console product.

TRAPROUT
Determines whether the hardware monitor converts an
alert to a trap and routes the trap to the SNMP manager.

setting Specifies whether an MSU matching the conditions is to be blocked
from (or passed through to) one of the following events:
v The hardware monitor database
v A NetView operator (as a message to the authorized receiver)
v The hardware monitor focal point
BLOCK

The data is blocked. This is the default.
PASS The data is passed.

filterscope
Specifies whether filter settings apply to the primary or secondary
event, if the hardware monitor records a secondary event.

PRI Indicates that the filter settings apply to the primary event.

SEC Indicates that the filter settings apply to the secondary
event, if one exists.

BOTH Indicates that the filter settings apply both to the primary
event and to any secondary event. This is the default.

Type: MSU

Usage notes:

1. Hardware monitor filters set to BLOCK with the hardware monitor
SRFILTER (SRF) command do not prevent MSUs from coming to the
automation table. SRF actions in the automation table can override the
filter settings that the SRFILTER command establishes.
The SRF action cannot set color and highlighting options as the
SRFILTER command can. Instead, use the BEEP, COLOR, HIGHINT,
and XHILITE actions to set color and highlighting options from the
automation table.

224 Automation Guide

See “Filtering Alerts” on page 301 for more information about
SRFILTER and SRF.

2. The default filterscope of BOTH is sufficient for most MSUs. Secondary
event recording is a rare case in which the hardware monitor
determines that the affected resource differs from the resource causing
the failure; therefore, NetView creates two events from a single problem
record. The two events are similar, but they specify different resource
names, and the primary event has a shorter resource hierarchy than the
secondary event.
The hardware monitor SRFILTER command can affect each of the
events separately. NetView uses only the primary event to search for a
match in the automation table, but the filtering options you specify in
the table can apply to either event or to both.
By default, the filtering options apply to both events. You must specify
a filterscope if you want the automation table to filter the primary and
secondary events separately.

3. ESREC or AREC filter settings (BLOCK or PASS) are valid for alerts
forwarded from a NetView or non-NetView remote node entry point
over the SNA-MDS/LU 6.2 alert forwarding protocol.
For example, if the SRF action is used to set the ESREC filter level to
BLOCK and the AREC filter level to PASS for non-LU 6.2 forwarded
alerts, hardware monitor considers ESREC/BLOCK and AREC/PASS
an improper setting and resets AREC to BLOCK. Therefore, ESREC and
AREC are both set to BLOCK and no data is recorded to the database.
However, for LU 6.2 forwarded alerts, if the SRF action is used to set
both ESREC to BLOCK and AREC to PASS, hardware monitor accepts
this setting, and only an alert record is recorded to the database. This is
alert-only recording, which is illustrated in this example:
===
* Was the MSU forwarded over LU 6.2, and if so *
* then record it in the hardware monitor database as alert-only by *
* BLOCKing ESREC and PASSing AREC. *
===
IF HMFWDSNA = '1' THEN

SRF(ESREC BLOCK)
SRF(AREC PASS);

As explained in Chapter 26, “Centralized Operations,” on page 375,
default alerts received over LU 6.2 from NetView entry points are
recorded to the database as alert-only, but alerts received over LU 6.2
from non-NetView entry points go through the normal ESREC and
AREC filters.
Data is recorded to the database in accordance with how these filters
are passed. The SRF action enables you to override these defaults. For
example, you can set the AREC filters level to PASS and the ESREC
filter level to BLOCK to record non-NetView alerts as alert-only, or you
can set the ESREC filter level to PASS to record events or statistical data
for alerts forwarded from entry point NetViews.

SYSLOG (Y|N)
Determines whether NetView sends the message to the MVS system log. If
you do not specify a SYSLOG value in the automation table or elsewhere,
the default is SYSLOG(N). SYSLOG has no effect on messages received
from the subsystem interface. Messages received from the subsystem
interface are unconditionally placed in the MVS system log before being
sent to the NetView program.

Chapter 15. The Automation Table 225

Type: Message

TRACE (’tracetag’)
Sets the tracing indicator and tag for the message or MSU so that
automation-table processing can be traced. The tracetag tag must be
enclosed in quotes, as in ’tracetag’, must be no more than 16 characters
long, and must not include any blanks. A CONTINUE(Y) action is implied
with the TRACE action. See “Using NetView Automation Table Tracing” on
page 486 for more information on tracing AIFRs through the automation
table.

Type: Both

XHILITE (BLI|REV|UND|NONE)
Specifies foreground extended highlighting. See Note 8 on page 229 for
information about defaults for MSUs.
BLI Specifies blinking
REV Specifies reverse-video highlighting
UND Specifies underscoring
NONE

Specifies no extended highlighting

Type: Both

XLO (Y|N)
Specifies external logging only. When you set XLO to N, the recording
filters set by the hardware monitor and the automation table take effect.
When you set XLO to Y, only external logging occurs, and NetView ignores
the recording-filter settings. If you do not specify an XLO value in the
automation table, the XITCI installation exit for BNJDSERV, or installation
exit DSIEX16B, the default value is N (to allow the recording filters to take
effect).

Type: MSU

Usage notes:

1. You cannot combine actions with BEGIN on a single automation statement.
The rules for specifying an action more than once for a single message or
MSU depend upon the action.
You can use the EXEC action as many times as you want for a single message
or MSU. Each of the EXEC actions is performed. For example, the statement in
Figure 56 routes incoming DSI530I messages to the tasks in group +GRP01
and also runs the RUNNING command list under autotask AUTOMGR.

NetView processes each EXEC action of each matching statement individually.
The exception is EXEC actions that use the ROUTE keyword with the ALL
option (but without the CMD keyword). If you specify more than one
EXEC(ROUTE(ALL parm1 parm2 parmx)) action for a single message, NetView
merges the task lists and does not route the message to any task more than
once.

IF MSGID='DSI530I' & TEXT(10)= TASKNAME ''' :' . THEN
EXEC (ROUTE(ALL +GRP01))
EXEC (CMD('RUNNING ' TASKNAME) ROUTE(ONE AUTOMGR))
DISPLAY(Y);

Figure 56. Example of Performing Multiple EXECs for a Message or MSU

226 Automation Guide

You can also use the SRF action more than once for a single MSU. If you give
conflicting settings for a filter, whether in a single statement or in separate
statements that are processed because of a CONTINUE action, NetView uses
the last setting given.
If you specify an action (other than EXEC or SRF) more than once in a single
automation statement, the first occurrence of the action takes precedence. For
example, in the statement in Figure 57, the first occurrence of the HOLD
action is Y and the first occurrence of the COLOR action is RED. Therefore,
operators OPER1, OPER2, OPER3, and OPER4 receive message IEE136I held
in red.

You can use the CONTINUE(Y) action any number of times on separate
statements to continue automation-table processing after matches are found. A
message or MSU continues processing until it matches a statement that does
not have a CONTINUE(Y).
For actions other than EXEC, SRF, and CONTINUE, if use of the CONTINUE
action results in the application of conflicting actions to a single message or
MSU, NetView uses the value given last. For example, a BEEP(Y) action can
override a BEEP(N) action given earlier in the automation table. However, if a
NETLOG(Y) action without an important-message indicator follows a
NETLOG(Y) action with an important-message indicator, with no intervening
NETLOG(N), the indicator from the first NETLOG(Y) is retained as shown in
Figure 58:

If message IEE136I is issued, a match occurs on the first statement. Because
CONTINUE(Y) is coded, the automation table is searched for additional
matches. When the second statement is found, the actions set in the first
statement can optionally be altered because of the CONTINUE(Y) that was
coded. The HOLD action is established in the first statement and unchanged
in the second. The COLOR action is set in the first statement, but then altered
in the second. Finally, the NETLOG action is ultimately determined by the
second statement. The result is that OPER1 through OPER8 each displays
message IEE136I that is held and has a color of blue. The message is not sent
to the NETLOG.

2. For actions coded yes or no (Y|N), you can code YES or Y for yes, and NO or
N for no.

IF MSGID = 'IEE136I' THEN
EXEC (ROUTE(ALL OPER1 OPER2)) HOLD(Y)
EXEC (ROUTE(ALL OPER3 OPER4)) HOLD(N) COLOR(RED);

Figure 57. Example of Specifying an Action More than Once

*** First statement for IEE136I ***
IF MSGID = 'IEE136I' THEN

EXEC (ROUTE(ALL OPER1 OPER2)) HOLD(Y) NETLOG(Y)
EXEC (ROUTE(ALL OPER3 OPER4)) COLOR(RED)
CONTINUE(Y)

*** Second statement for IEE136I ***
IF MSGID = 'IEE136I' THEN

EXEC (ROUTE(ALL OPER5 OPER6))
EXEC (ROUTE(ALL OPER7 OPER8)) COLOR(BLU) NETLOG(N);

Figure 58. Example of Conflicting Action for a Message Using CONTINUE

Chapter 15. The Automation Table 227

3. For a message action, the default value indicated is the NetView system
default. Use this list to determine override defaults. Each item in the list can
override the items preceding it in the list.
a. System default.
b. DEFAULTS command.
c. Installation exit DSIEX02A, if used to replace DEFAULTS settings.
d. Action on a matching statement in the automation table.
e. Installation exit DSIEX16, if used to replace DEFAULTS settings.
f. OVERRIDE command. SCRNFMT specifications for message color and

highlighting do not override automation-table specifications.
g. Installation exit DSIEX02A or DSIEX16, if used to replace OVERRIDE

settings.
4. A YES or NO setting for CNM493I, DISPLAY, HCYLOG, NETLOG, or

SYSLOG on the OVERRIDE command overrides the setting specified for the
action in the automation table, if any. A DISABLE setting for BEEP or HOLD
on the OVERRIDE or DEFAULTS command means NetView does not use the
setting specified in the automation table. The BEEP keyword on the
DEFAULTS and OVERRIDE commands affects only message processing.
Refer to the NetView online help for more information about the DEFAULTS
and OVERRIDE commands.

5. For MSUs, the filtering and highlighting actions apply only to alert major
vectors coming through the hardware monitor. Filtering and highlighting
actions include SRF, XLO, COLOR, HIGHINT, and XHILITE.

6. Use this list to determine override filtering and highlighting options. Each
item in the list can override the items preceding it in the list.
a. Except for XLO, hardware monitor filter settings specified with the

SRFILTER (SRF) command
b. For XLO, the return code from BNJDSERV’s installation exit XITCI
c. Action on a matching statement in the automation table
d. Installation exit DSIEX16B
If the final XLO value after DSIEX16B is YES, the MSU goes to external
logging only. Otherwise, if the final ESREC value is BLOCK, NetView ignores
the AREC, ROUTE, and OPER filters. The hardware monitor does not record
the MSU as an event or an alert. If the ESREC value is PASS but the AREC
value is BLOCK, NetView ignores the ROUTE and OPER filters.
Setting filters to BLOCK in the hardware monitor or setting XLO to YES in
XITCI does not prevent an MSU from going to the automation table. The
automation table still processes the MSU and has an opportunity to override
the previous XLO setting and other filter settings for the MSU.

7. For MSUs, use this list to determine CNM493I message generation override
options. Each item in the list can override the items preceding it in the list.
v System default (which is to generate the CNM493I messages).
v DEFAULTS command.
v Action on a matching statement in the automation table.
v OVERRIDE command for those MSUs sent to automation by an OST, such

as with DSIAUTO. You cannot use the OVERRIDE command on DSTs such
as BNJDSERV, which is the NetView task that delivers MSUs to the
automation table for processing from the hardware monitor.

228 Automation Guide

8. If an alert major vector passes through all of the steps listed in note 5 on page
228 without obtaining any color or highlighting option, the hardware monitor
uses color maps and your SRFILTER COLOR DEFAULTS settings to control
display of the alert.
With the initial settings, the alert displays in white or high intensity when first
appearing on the Alerts-Dynamic panel, but otherwise appears in turquoise or
low intensity. BEEP is set to YES and XHILITE to NONE. (Refer to the IBM
Tivoli NetView for z/OS Customization Guide for information about color maps
and IBM Tivoli NetView for z/OS Command Reference Volume 1 (A-N) for
information about the SRFILTER COLOR DEFAULTS settings.)
If, however, the alert major vector obtains a value for any one of the color and
highlighting options, SRFILTER COLOR DEFAULTS does not apply. Instead,
the alert receives default settings for any unspecified options:
BEEP YES
COLOR TUR (turquoise)
HIGHINT NO
XHILITE NONE
If you do not specify a value in the automation table or elsewhere (see Note 5
on page 228), the default filter settings are:
v The default for XLO is NO.
v The default SRFILTER settings for the hardware monitor control the other

filter settings.
v The default for ESREC is PASS.
v The default for AREC depends on the alert type (refer to IBM Tivoli NetView

for z/OS Command Reference Volume 1 (A-N)).
v The default for ROUTE is PASS if an alert passes AREC.
v The default for OPER is BLOCK.

9. NetView processes HOLD and BEEP actions for a message only if you code
DISPLAY(Y) in the automation table. HOLD and BEEP do not work for
messages routed to an MVS console. HOLD, DISPLAY, and BEEP are the only
automation actions that are preserved when messages are forwarded across
domains over OST-NNT sessions.

10. Do not automate messages that were assigned to SYSOP in another NetView
program on your system. Doing so might cause both NetView programs to
loop.
See Chapter 32, “Running Multiple NetView Programs Per System,” on page
457 for valid methods of communicating between two NetView programs in a
system.

ALWAYS Statement
The ALWAYS statement enables you to specify actions or a series of statements that
NetView processes for all messages and MSUs that reach that point in the table.

You can use the ALWAYS statement with CONTINUE at the beginning of an
automation table or a BEGIN-END section to set defaults for the table or section.

You can also use the ALWAYS statement at the end of an automation table or a
BEGIN-END section to handle messages and MSUs that do not match any other
statement in the table or section.

The syntax for the ALWAYS statement is:

Chapter 15. The Automation Table 229

ALWAYS Statement

�� ALWAYS actions
BEGIN

; ��

Where:

ALWAYS
The keyword coded at the beginning of each ALWAYS statement.

actions Specifies actions for NetView to take. For information about actions, see
“Actions” on page 211.

BEGIN
Specifies the beginning of a BEGIN-END section. For more information, see
“BEGIN-END Section” on page 152.

Usage notes:

1. Like other statements, an ALWAYS statement can be message-type, MSU-type,
or both-type.
Any message-type action makes the ALWAYS statement a message-type
statement and prevents the statement from affecting MSUs. Any MSU-type
action makes the ALWAYS statement an MSU-type statement and prevents the
statement from affecting messages.
See “Types of Automation-Table Statements” on page 150 for more information
about statement types.

2. The statements indicated by ALWAYS statement are processed only when the
ALWAYS statement is reached through logical and sequential automation-table
processing. If automation-table processing stops because of a match, any
ALWAYS statements after the match are not processed.

3. Exercise caution when using an ALWAYS statement that issues a command or
command list.
Usually, such statements occur only in BEGIN-END sections. Inappropriate use
of such a statement can affect a large number of messages and MSUs.

%INCLUDE Statement
The %INCLUDE statement enables you to keep portions of your automation table
in separate files or members.

The syntax for the %INCLUDE statement is:

%INCLUDE Statement

�� %INCLUDE membername
&varname

��

Where:

%INCLUDE
The keyword coded at the beginning of each %INCLUDE statement.

membername
The name of the member to be included. The member must be in the
DSIPARM data set.

230 Automation Guide

&varname
The name of an existing local or global variable, preceded by the
ampersand (&) character.

Usage notes:

1. Each %INCLUDE statement can be no longer than one line.
2. Unlike other automation-table statements, the %INCLUDE statement does not

end with a semicolon (;).
3. A member that has been included can contain %INCLUDE statements as well

as other automation-table statements.
4. A member that has been included cannot include itself either directly or

indirectly.
5. If you specify a variable name, NetView includes the designated member or file

when you issue the AUTOTBL command. NetView searches for the variables in
this order:
v If the AUTOTBL command is issued from a command procedure, the

NetView program searches first for a local variable of the name varname.
v If the AUTOTBL command is not issued from a command procedure or there

is no local variable of the name varname, NetView searches next for a task
global variable, and finally for a common global variable.

If you change the value of the variable after activating the automation table, the
member that is included does not change, unless you reissue the AUTOTBL
command.
For example, you might use &varname to include table segments that are tuned
to the message and MSU traffic you expect during certain shifts. Based on the
time of day, a command procedure might update the variable before loading
the automation table.

The %INCLUDE statement is not exclusive to the automation table; you can use it
in other DSIPARM members also. For a full description of the %INCLUDE
statement, refer to the IBM Tivoli NetView for z/OS Administration Reference.

SYN Statement
The SYN statement enables you to define synonyms for use later in the automation
table. A synonym has a name and a value. After defining a synonym, you can use
the name of the synonym elsewhere in the table. When you activate the table,
NetView substitutes the synonym value for the name.

Synonyms enable you to provide a shorthand notation for long, repetitive strings.
Synonyms can also help you modify and maintain an automation table, because
you can change a value throughout a table by changing it in one place.

The syntax for the SYN statement is:

SYN Statement

�� SYN %synname% = 'synvalue'; ��

Where:

SYN The keyword coded at the beginning of each SYN statement.

Chapter 15. The Automation Table 231

synname
The name of the synonym, up to 256 characters.

synvalue
The value of the synonym.

Usage notes:

1. The definition of a synonym must precede the use of the synonym in the
automation table. You can define a synonym’s value only once in the table, but
thereafter you can use the synonym as often as you like. Consider defining all
synonyms at the beginning of the table.

2. You cannot nest a synonym inside another synonym.
3. You can use blanks, alphanumeric characters, and other characters in synonym

names and synonym values except as follows:
v Synonym names cannot contain a percent sign (%) or a semicolon (;).
v Synonym values cannot contain a semicolon (;).
v Because single quotation marks are used as the delimiter for the synonym

value, if a synonym value is to contain a single quotation mark ('), you must
represent it as two consecutive single quotation marks (''). Do not substitute
a double quote for two single quotes. For example, the synonym in Figure 59
contains single quotation marks.

4. Substitution is not performed on synonyms found within quotes. Synonyms
found within quotes are treated as literal strings. For example, consider the
SYN statement and automation table entry in Figure 60.

Although the statement in Figure 60 uses correct syntax, no substitution occurs
for the synonym %LDOMAIN% because it is coded within single quotes. If you
want single quotes to be included as part of the synonym, code the SYN
statement and automation table as shown in Figure 61.

5. Consider using a naming convention for synonyms.

Design Guidelines for Automation Tables
When you are designing or coding an automation table, consider the techniques
listed in this section.

SYN %LogFullCondition% = 'MSGID = 'IFB040I';...
IF %LogFullCondition% THEN

EXEC(CMD('MVS S CLRLOG') ROUTE(ONE AUTO1));

Figure 59. Example of Using a SYN Statement

SYN %LDOMAIN% = '''CNM01''';...
IF MSGID = 'DSI530I' & DOMAINID ='%LDOMAIN%' THEN

EXEC (CMD('CLIST1 ')ROUTE(ONE AUTO1));

Figure 60. Example of Incorrect Synonym Substitution

SYN %LDOMAIN% = '''CNM01''';...
IF MSGID = 'DSI530I' & DOMAINID = %LDOMAIN% THEN

EXEC (CMD('CLIST1 ')ROUTE(ONE AUTO1));

Figure 61. Example of Correctly Using Synonym Substitution

232 Automation Guide

Limit System Message Processing
Limit the number of system messages processed by NetView. Use operating system
facilities such as MPF to avoid sending messages to the NetView program when
you do not want NetView to automate or display the messages. This practice
enhances performance by reducing the number of times NetView must search the
automation table. See “Suppressing System Messages” on page 301 for more
information.

Streamline the Automation Table
Make the automation table readable and consistent, and therefore easier to
maintain, by performing these activities:
v Use comments at the beginning of each automation table member or file to

describe the statements in that member.
v Use comments to describe what messages or MSUs an automation statement

should match and what the statement actions are to accomplish.
v Use indentation.

For example, indent the actions for IF-THEN statements, BEGIN keywords and
their corresponding END statements, and statements in BEGIN-END sections.
Although comments must start in column 1, statements do not have to start
there. You can use as many blanks as you want within a statement; you must,
however, end the statement with a semicolon.

v Use blank lines and comments within an automation member to separate
statements and groups of statements.

v Use a naming convention for automation-table members.
v Separate automation-table logic into multiple members. You can then enable or

disable this logic as needed.
v Define automation-table statements or groups of statements using

LABEL-ENDLABEL or GROUP keywords to allow enabling or disabling
automation-table logic as needed.

Group Statements with BEGIN-END Sections
Use BEGIN-END sections to put easily identifiable types of messages and MSUs
into their own sections of the table. By doing so, you enhance the performance of
the automation table. You can also make your automation table easier to read,
understand, and maintain.

You can use an ALWAYS statement at the end of each section to specify the
handling of messages and MSUs that do not have a specific statement within the
section. Figure 62 on page 234 uses ALWAYS statements in this way to prevent
further processing for messages and MSUs that do not have specific statements.

Chapter 15. The Automation Table 233

Dividing the table into sections minimizes the number of statements that must be
processed to find a match for a message or MSU. In Figure 62, for a NetView
command-facility DSI message, NetView needs to check only two statements
before reaching the section for command-facility DSI messages:
v The MSGID = 'IST' statement
v The MSGID = '$HASP' statement

NetView does not check the MSUSEG(0000) ¬= ' statement for a message, because
MSUSEG is for MSUs only. Within each section, additional BEGIN-END sections
can also help reduce the number of automation-table comparisons that must be
made.

Arrange BEGIN-END sections so that the most frequently used sections come
earlier in the table. You can use the AUTOCNT command to generate
automation-table usage reports, which you can use to analyze message and MSU
frequency.

The sample NetView automation table DSITBL01 (CNMS1015) uses BEGIN-END
sections for groups of messages.

You can use the occurrence-detection condition items (THRESHOLD and
INTERVAL) within a BEGIN-END section to indicate different actions taken
depending on whether the occurrence-detection threshold has been reached, as
shown in Figure 63 on page 235.

* Statements for major-vector X'0000' MSUs
IF MSUSEG(0000) ¬= '' THEN

BEGIN;...
ALWAYS;

END;
* Statements for VTAM messages
IF MSGID = 'IST' . THEN

BEGIN;...
ALWAYS;

END;
* Statements for JES2 messages
IF MSGID = '$HASP' . THEN

BEGIN;...
ALWAYS;

END;
* Statements for command-facility DSI messages
IF MSGID = 'DSI' . THEN

BEGIN;...
ALWAYS;

END;
* Statements for hardware monitor messages
IF MSGID = 'BNJ' . THEN

BEGIN;...
ALWAYS;

END;

Figure 62. Example of Grouping Statements

234 Automation Guide

Using the example in Figure 63, NetView does one of these functions if VTAM
becomes inactive:
v If this has happened at least two other times within the past seven days,

NetView sends a message to the system operator informing the operator of the
problem.

v If this is the first or second time this has happened within the past seven days,
NetView performs these activities:
– Tries to restart the VTAM program.
– Notifies the system operator that the automation table had sent a request for

an autotask to restart the VTAM program.

Isolate Complex Compare Items
Some Compare items take longer to evaluate than others. Compare items with the
potential to be relatively slow include:
v MSUSEG compare items that specify complex locations
v The DSICGLOB ATF program that is supplied with the NetView program
v Lengthy ATF programs that you write for yourself

You can isolate these items by placing them in BEGIN-END sections started with
an IF-THEN statement, so that NetView evaluates the items only when the
comparison in the IF-THEN evaluates as true.

You can also isolate items by placing them after a logical-AND operator (&). In this
case, NetView evaluates the items only if the conditions before the AND operator
are met. For example, the statement in Figure 64 isolates the DSICGLOB ATF so
that NetView retrieves the value of common global variable REQUIREDSTATUSB
only when a message with an ID of XYZ123 comes in.

Include Other Automation Tables
To make automation tables easier to update, create an automation table with
several automation members by using the %INCLUDE statement. For example,
you can define a separate member for each class of messages and MSUs. You can
also put automation-table statements that are common to several automation tables
into a single member and include that member in each of the automation tables.

IF MSGID = 'IST102I' THEN
BEGIN;

IF THRESHOLD(3 7 00:00:00) = '1' THEN
EXEC(CMD('MSG SYSOP VTAM DOWN - ASSISTANCE REQUIRED')

ROUTE(ONE AUTOVTAM AUTO1 PPT *));
ALWAYS

EXEC(CMD('VTAMSTRT')
ROUTE(ONE AUTOVTAM AUTO1 PPT *))

EXEC(CMD('MSG SYSOP AUTOMATION RESTARTING VTAM')
ROUTE(ONE AUTO1 PPT *));

END;

Figure 63. Example of Occurrence-Detection Condition Items

IF MSGID = 'XYZ123' &
ATF('DSICGLOB REQUIREDSTATUSB') = 'ACTIVE' THEN

EXEC (CMD('RESTARTB'));

Figure 64. Example of Isolating a Complex Compare Item

Chapter 15. The Automation Table 235

|

Figure 65 shows the beginning of an automation table that includes other
automation members.

In Figure 65, automation-table members ATSYNS, AT0000, ATVTAM, ATJES2,
ATNVDSI, and ATNVBNJ contain the statements for synonym definitions, X'0000'
major vectors, VTAM messages, JES2 messages, NetView DSI messages, and
NetView BNJ messages, respectively.

Note: BEGIN-END sections can be used in the included members or files to
increase the efficiency of the automation table.

Tailor Automation Tables for Your Operation
Write different included sections for different phases of your operation. For
example, you can write a table for each shift. You can tune each table to the
message and MSU traffic you expect for that shift.

Another approach is to use a series of automation tables concurrently. Each table
can be loaded or dropped using the AUTOTBL or AUTOMAN command. When
loading an automation table, you can specify the order in which to process the
tables in relation to other active automation tables. This is useful for changing your
automation policy at specific times such as off-shift and prime shift.

Use Synonyms
Use synonyms to define complex or repetitive strings within an automation table
or to standardize using automation tables across several systems. You can define
all system-dependent specifications as synonym values and place the synonyms at
the beginning of the automation table or in an included member. Then copying an
automation table to another system might require changing only the synonym
values or the member containing the synonyms.

Note: Synonyms must be defined in the same table in which they are used. They
cannot span multiple tables.

Place Statements Carefully
Be careful about how you order the statements in an automation table or set of
automation tables. Incorrect placement or specification of a statement can result in:
v A message or MSU matching an unintended statement
v A message or MSU not matching an intended statement because of a misplaced

BEGIN-END section

* Main automation table
* Synonym definitions
%INCLUDE ATSYNS
* Statements for major-vector X'0000' MSUs
%INCLUDE AT0000
* Statements for VTAM messages
%INCLUDE ATVTAM
* Statements for JES2 messages
%INCLUDE ATJES2
* Statements for NetView command-facility DSI messages
%INCLUDE ATNVDSI
* Statements for NetView hardware monitor messages
%INCLUDE ATNVBNJ

Figure 65. Example of Including Other Automation Tables

236 Automation Guide

v A message or MSU matching several statements when only one was intended, if
a CONTINUE action is misplaced

Use Automation-Table Listings
Use the automation-table listing facility to determine where to place new
statements within existing automation tables. You can also use a listing for problem
determination to find syntax errors or incorrectly placed statements within a single
automation table. A listing shows all included members, synonym values for
synonym names, the levels of BEGIN-END sections, and date-and-time stamps. It
also lists any errors found in the table. See “Example of an Automation-Table
Listing” on page 238 for more information.

Use the ALWAYS Statement
Use the ALWAYS statement for an action or list of actions, such as:
v To stop automation processing at a certain point in the table

For example, use ALWAYS as the last statement in a BEGIN-END section to
prevent a possible incorrect statement match and to enhance performance. You
can code the ALWAYS statement without actions (ALWAYS;) to stop automation
processing for a message or MSU.

v To set defaults for a section of the table
For example, you can take certain actions for a group of messages. An example
of using ALWAYS, together with CONTINUE, for that purpose is shown in “Set
Automation-Table Defaults” on page 238

v To facilitate testing
For example, to analyze message frequency or to obtain an audit trail, you can
log all instances of a certain group of messages for a period of time.

Use the CONTINUE Action Carefully
Use the CONTINUE action with great caution. Inappropriate use of CONTINUE
can result in unintended actions, such as several commands or command lists
being processed when you intended for only one to be processed.

The CONTINUE action is useful if you want to perform several actions for a
message or MSU. Figure 66 logs all occurrences of command facility messages to a
sequential log file to facilitate a frequency analysis.

* Process NetView command facility DSI messages
IF MSGID = 'DSI' . THEN

BEGIN;
* Temporary statement to send the message ID to a
* sequential log file for frequency analysis.
*
* The statement extracts the message ID in the
* variable MSGIDVAR and calls the command processor
* LOGMSGID, which uses NetView's sequential log facility
* to write the ID to a sequential file.

IF MSGID = MSGIDVAR THEN
EXEC (CMD('LOGMSGID ' MSGIDVAR))
CONTINUE(Y);

* Permanent statements that automate various DSI messages....
END;

Figure 66. Example of Using the CONTINUE Keyword

Chapter 15. The Automation Table 237

Set Automation-Table Defaults
Use CONTINUE and ALWAYS to set defaults for an automation table or
automation-table section that can be overridden by a specific entry.

The statement in Figure 67 causes all messages to go to the system log but not to
the network log by default. If a message matches a later statement in the table, that
statement must explicitly specify SYSLOG(N) or NETLOG(Y) to override the
defaults set by the ALWAYS statement. Because SYSLOG and NETLOG are
message-only actions, the statement in Figure 67 does not affect MSUs.

Limit Automation of Command Responses
Limit the testing for command responses in your automation tables because
command response messages cannot be reliably tested for in an automation table.
Commands can be issued from a PIPE or a CLIST that processes the responses and
does not expose them to the automation table. These same commands can also be
issued from another source that does result in the messages being exposed.

Automation as the NetView Program Closes
After a CLOSE STOP or CLOSE IMMED command is issued, any existing global
keeps end and commands defined by ENDCMD statements are queued to the task
defined by the endcmd.AutoTask statement in the CNMSTYLE member. All
commands must complete within the time specified on the endcmd.close.leeway
statement in the CNMSTYLE member. Some functions are not supported during
this period. Avoid using any commands that involve long or indeterminate waits
(for example commands directed to NetView TSO servers, RMTCMD commands,
or WTOR commands). Message automation can continue for the period defined on
the endcmd.close.leeway statement; automation cannot schedule new commands
during this period.

Example of an Automation-Table Listing
This section shows an example of an automation table that is composed of two
members, shown in Figure 68 and Figure 69 on page 239.

Figure 70 on page 240 shows the automation-table listing that you can generate
from the members with the AUTOTBL LISTING function. Figure 70 on page 240
illustrates many of the ways a listing can give you information to help you code,
tune, or debug an automation table.

The first member, shown in Figure 68, contains automation-table synonym
statements to be included by the second member.

The second member, shown in Figure 69 on page 239, is the main automation-table
member, the one you specify on an AUTOTBL command.

ALWAYS SYSLOG(Y) NETLOG(N) CONTINUE(Y);

Figure 67. Example of Using the CONTINUE Keyword on an ALWAYS Statement

* Set table synonyms
SYN %MYDOMAIN% = '''CNM01''';
SYN %NETL3% = 'NETLOG(YES 3 +STATGRP)';

Figure 68. Example of Automation-Table Synonym Statements

238 Automation Guide

|

|
|
|
|
|
|
|
|
|
|

You can generate a listing of the table shown in Figure 69 by issuing an AUTOTBL
command with the LISTING keyword. Figure 70 on page 240 shows the resulting
listing. The listing gives you several types of information about the automation
table:
v Header lines indicate the AUTOTBL command that you issued, the task that ran

the command, and the time.
v Start and end lines indicate where each member in the table begins and ends.
v An asterisk (*) in column 1 marks each comment line.
v Any synonyms that you defined are resolved. In the example, %MYDOMAIN%

and %NETL3% are replaced with their values.
v The listing describes each statement in the table:

– Columns 1 through 4 indicate the statement number.
– Columns 6 through 8 indicate the BEGIN-END nesting level. For example, an

001 indicates a statement that is not within a BEGIN-END section, and an 002
indicates a statement in a first-level BEGIN-END section.

– Columns 10 through 72 show the statement text.
– Columns 73 through 80 show the sequence number, if any.
– An error message follows each statement that is not valid.

v At the end of the listing is a line stating the total number of errors.

* Include the member that contains the synonym definitions
%INCLUDE EXSYNS

* Set table defaults and continue processing
ALWAYS SYSLOG(Y) NETLOG(N) DISPLAY(Y)

CONTINUE(Y);

* All DSI messages go here
IF MSGID = 'DSI' . THEN

BEGIN;

* Invoke the PDFILTER command list automatically when the hardware
* monitor completes initialization. (Use a synonym to check domain.)

IF MSGID ='DSI530I' &
TEXT = . 'BNJDSERV' . &
DOMAINID = %MYDOMAIN% &
TEXT = MESSAGETEXT THEN

EXEC(CMD('PDFILTER ' MESSAGETEXT));

* Handle the DSI701I message. (Use a synonym to specify the action.)
IF MSGID = 'DSI701I' THEN

%NETL3%;
END;

* Any statements for CNM messages go here
IF MSGID = 'CNM' . THEN

BEGIN;

* Suppress the CNM094I message
IF MSGID='CNM094I' THEN

DISPLAY(N)
NETLOG(N);

END;

* This is not a valid statement for handling syntax errors.
IF BADFUNC = 'INFO' THEN

DISPLAY(N);

Figure 69. Example of a Main Automation-Table Member

Chapter 15. The Automation Table 239

Automation-Table Usage Reports
NetView automation-table processing maintains a set of counters that track how
many events are compared against a certain set of criteria, and how many cause
automation actions to be run. You can use this information to fine tune the
automation table for your environment. Frequently matched statements can be
moved toward the beginning of the table so that less checking takes place. You can
examine statements that are never matched to determine whether they are to be
deleted or changed because of logic errors.

You can also use the usage report to determine the level of automation taking
place in your system.

The AUTOCNT Command
The AUTOCNT command produces a report describing the use of automation-table
statements in either an active NetView automation table or the NetView
automation table that is being tested with the AUTOTEST command. You can also
use the AUTOCNT command to reset the automation-table statement usage
counters.

The AUTOCNT command can request information and statistics for message-type
automation statements, MSU-type automation statements, or both. You can request
summary information or detailed information. The detailed information describes
how many messages and MSUs were compared to each automation-table
statement, and how many matched.

“Example of Usage Reports Output” on page 241 contains an example of an
automation-table usage report and illustrates the differences between a summary

* Set table synonyms
0001 001 SYN %MYDOMAIN% = '''CNM01''';
0002 001 SYN %NETL3% = 'NETLOG(YES 3 +STATGRP)';
------------------------------ END OF 'EXSYNS ' ---------------------
* Set table defaults and continue processing
0003 001 ALWAYS SYSLOG(Y) NETLOG(N) DISPLAY(Y) CONTINUE(Y);
* All DSI messages go here
0004 001 IF MSGID = 'DSI' . THEN BEGIN;
* Invoke the PDFILTER command list automatically when the hardware
* monitor completes initialization. (Use a synonym to check domain.)
0005 002 IF MSGID ='DSI530I' & TEXT = . 'BNJDSERV' . & DOMAINID =

'CNM01' & TEXT = MESSAGETEXT THEN EXEC(CMD('PDFILTER '
MESSAGETEXT));

* Handle the DSI701I message. (Use a synonym to specify the action.)
0006 002 IF MSGID = 'DSI701I' THEN NETLOG(YES 3 +STATGRP);
0007 002 END;
* Any statements for CNM messages go here
0008 001 IF MSGID = 'CNM' . THEN BEGIN;
* Suppress the CNM094I message
0009 002 IF MSGID='CNM094I' THEN DISPLAY(N) NETLOG(N);
0010 002 END;
* This invalid statement demonstrates handling of syntax errors
0011 001 IF BADFUNC = 'INFO' THEN DISPLAY(N);
ERROR CNM505E INVALID FUNCTION NAME "BADFUNC" SPECIFIED IN

CONDITIONAL
------------------------------ END OF 'EXMAIN ' -----------------------------
1 STATEMENT(S) IN ERROR

Figure 70. Example of an Automation-Table Listing

240 Automation Guide

report and a detailed report. You can also view this information using the
automation-table management (AUTOMAN) function.

You can display the information and statistics as multiline messages. You can also
place the information in a file.

Use the online command help for the syntax and parameter descriptions of the
AUTOCNT command.

Example of Usage Reports Output
This section includes an example of an automation-table usage report. The source
automation-table member is shown, followed by detailed and summary usage
reports. You can use the source automation member to determine which statements
the detailed usage statistics refer to by matching the sequence number (SEQ
NUMBER) and member name (MEMBER NAME) fields of the usage report with
the source member. You can also determine what sections of an active automation
table have been disabled. You can use an automation-table listing for statement
correlation by matching the statement number (STMT NUMBER) field with the
listing statement numbers.

A separate multiline message can be generated for each of these types of reports:
v A detailed report for all message-type statements in the active automation table
v A detailed report for all MSU-type statements in the active automation table
v A summary report for all message-type statements in the active automation table
v A summary report for all MSU-type statements in the active automation table

The detailed reports show usage information for each statement in the table and
can be used for:
v Tuning the automation table
v Identifying statements with logic errors that cause them to never match or

always match
v Testing new statements
v Determining specific message and MSU traffic

The summary reports show total usage information for the entire active
automation table and can be used for:
v Capacity planning
v Determining the results of adding new automation
v Trend analysis
v Determining general message and MSU traffic

You can generate usage reports by using the AUTOCNT command for
message-type statements, MSU-type statements, or both. Specifying
STATS=SUMMARY on the AUTOCNT command provides summary-only reports.
Specifying STATS=DETAIL on the AUTOCNT command provides both detailed
and summary reports.

Figure 71 on page 242 is an example of an automation-table member (showing
sequence numbers) for an automation table that was activated one hour ago.
Figure 72 on page 243 is the automation-table listing (showing statement numbers).

Chapter 15. The Automation Table 241

* BEGINNING OF 'IST' MSGID'S *

* *
IF MSGID = 'IST' . THEN

BEGIN;
IF MSGID = 'IST097I' |

MSGID = 'IST314I' |
MSGID = 'IST526I' THEN

DISPLAY(N) NETLOG(N) SYSLOG(N);
IF MSGID = 'IST259I' THEN

EXEC(CMD('INOPRU') ROUTE(ONE AUTOVTAM AUTO1 * PPT));
IF (LABEL: REACTIVATEVTAM)

MSGID = 'IST102I' &
ATF('DSICGLOB VTAMDESIRED') = 'ACTIVE' THEN

COLOR(PIN)
EXEC(CMD('VTAMSTRT') ROUTE(ONE AUTOVTAM AUTO1 * PPT));

ALWAYS;
END;

* *

* BEGINNING OF 'DSI' MESSAGES *

* *
IF (LABEL: DSIPREFIX) MSGID = 'DSI' . THEN SEQ00001

BEGIN;
IF (LABEL: ALTDSIPREFIX)

MSGID = 'DSI034I' |
MSGID = 'DSI201I' |
MSGID = 'DSI208I' |
MSGID = 'DSI633I' THEN

DISPLAY(N) NETLOG(N) SYSLOG(N);
IF (ENDLABEL: ALTDSIPREFIX)

MSGID='DSI374A' THEN
HOLD(Y) BEEP(Y) DISPLAY(Y)
EXEC(ROUTE(ALL * +GRPOPS));

ALWAYS;
END;

* *

* BEGINNING OF MSU SECTION *

* *

IF MSUSEG(0000) ¬= '' THEN SEQ00002
BEGIN;

* PROBABLE CAUSE: COMMUNICATION CONTROLLER OR TERMINAL CONTROL UNIT
IF (GROUP: MSUSTATEMENT)

MSUSEG(0000.93 3) = HEX('3111') . |
MSUSEG(0000.93 3) = HEX('3121') . THEN
COLOR(RED) XHILITE(REV)
SRF(ROUTE PASS);

* PROBABLE CAUSE: LAN COMPONENT OR LAN ADAPTER
IF (GROUP: MSUSTATEMENT)

MSUSEG(0000.93 3) = HEX('37') . |
MSUSEG(0000.93 3) = HEX('332') . THEN
COLOR(PIN) XHILITE(REV)
SRF(ROUTE PASS);

ALWAYS;
END;

Figure 71. Automation-Table Member

242 Automation Guide

Assumptions of Message and MSU Processing for This Example
For this example, it is assumed that during the past hour, while automation-table
usage statistics were being kept, no statements were disabled. The automation
table processed these messages:

Message Type Number of Messages

IST097I messages 154

IST314I messages 20

IST526I messages 3

IST259I messages 9

IST102I messages 0

----------------------------- START OF 'AUTOSEG1' -----------------------------
**
* BEGINNING OF 'IST' MSGID'S *
**
* *
0001 001 IF MSGID = 'IST' . THEN BEGIN;
0002 002 IF MSGID = 'IST097I' | MSGID = 'IST314I' | MSGID = 'IST526I'

THEN DISPLAY(N) NETLOG(N) SYSLOG(N);
0003 002 IF MSGID = 'IST259I' THEN EXEC(CMD('INOPRU') ROUTE(ONE

AUTOVTAM AUTO1 * PPT));
0004 002 IF (LABEL: REACTIVATEVTAM) MSGID = 'IST102I' & ATF('DSICGLOB

VTAMDESIRED') = 'ACTIVE' THEN COLOR(PIN)
EXEC(CMD('VTAMSTRT') ROUTE(ONE AUTOVTAM AUTO1 * PPT));

0005 002 ALWAYS;
0006 002 END;
* *

* BEGINNING OF 'DSI' MESSAGES *

* *
0007 001 IF (LABEL: DSIPREFIX) MSGID = 'DSI' . THEN BEGIN; SEQ00001
0008 002 IF (LABEL: ALTDSIPREFIX) MSGID = 'DSI034I' | MSGID =

'DSI201I' | MSGID = 'DSI208I' | MSGID = 'DSI633I' THEN
DISPLAY(N) NETLOG(N) SYSLOG(N);

0009 002 IF (ENDLABEL: ALTDSIPREFIX) MSGID='DSI374A' THEN HOLD(Y)
BEEP(Y) DISPLAY(Y) EXEC(ROUTE(ALL * +GRPOPS));

0010 002 ALWAYS;
0011 002 END;
* *

* BEGINNING OF MSU SECTION *

* *
0012 001 IF MSUSEG(0000) ¬¬= '' THEN BEGIN; SEQ00002
* PROBABLE CAUSE: COMMUNICATION CONTROLLER OR TERMINAL CONTROL UNIT
0013 002 IF (GROUP: MSUSTATEMENT) MSUSEG(0000.93 3) = HEX('3111') . │

MSUSEG(0000.93 3) = HEX('3121') . THEN COLOR(RED)
XHILITE(REV) SRF(ROUTE PASS);

* PROBABLE CAUSE: LAN COMPONENT OR LAN ADAPTER
0014 002 IF (GROUP: MSUSTATEMENT) MSUSEG(0000.93 3) = HEX('37') . |

MSUSEG(0000.93 3) = HEX('332') . THEN COLOR(PIN)
XHILITE(REV) SRF(ROUTE PASS);

0015 002 ALWAYS;
0016 002 END;
------------------------------ END OF 'AUTOSEG1' -----------------------------

0 STATEMENT(S) IN ERROR

Figure 72. Automation-Table Listing for the Sample Member

Chapter 15. The Automation Table 243

Message Type Number of Messages

Other IST prefix messages 612

DSI034I messages 3

DSI201I messages 3

DSI208I messages 39

DSI633I messages 7

DSI374A messages 1

Other DSI prefix messages 107

Messages not prefixed by IST or DSI 1346

The automation table also processed these MSUs:

MSU Type Number of MSUs

Alert major vectors with a probable cause of
X'3111'

2

Alert major vectors with a probable cause of
X'3121'

3

Alert major vectors with a probable cause of
X'37'

14

Alert major vectors with a probable cause of
X'332'

3

Other alert major vectors not including the
above

3211

Nonalert MSUs 130

Detailed Automation-Table Usage Report
Detailed automation-table usage reports contain this information for each
automation-table statement in the active NetView automation table.
v Statement number (STMT NUMBER)

The sequential number of the statement in the automation table. You can also
find this number in the automation-table listing, which provides correlation if
you have a matching listing.

v Label indicator (L I)
This column contains a character that indicates the type of label specified or
whether a sequence number is specified if no label is present. These values for
the indicator are possible:

(blank) No label or sequence number is specified for this statement.

S No label is specified for this statement. However, a sequence
number is specified. The sequence number is found in the next
column.

L Regardless of any sequence number specified, there is a LABEL
specification for this statement. The LABEL name is found in the
next column.

E Regardless of any sequence number specified, there is an
ENDLABEL specification for this statement. The ENDLABEL
name is found in the next column.

244 Automation Guide

B Regardless of any sequence number specified, there is a LABEL
specification for this statement that matches a subsequent
ENDLABEL specification and, therefore, specifies a BLOCK of
statements. The BLOCK name is found in the next column.

G Regardless of any sequence number specified, there is a GROUP
specification for this statement. The GROUP name is found in
the next column.

v Sequence number or label name (SEQUENCE NUMBER/ LABEL NAME)
This column contains one of these values:

(blank) No sequence number or label name was specified for this
statement.

(sequence number)
A sequence number was specified for this statement without a
label name specification.

(label name) A label name that shows the value specified on the LABEL,
ENDLABEL, or GROUP specification for this statement.

v Member name (MEMBER NAME)
The member name where the statement is located. This, along with the sequence
number, provides correlation with the source automation-table members or files.

v Conditional comparisons (COMPARE COUNT)
The counter that is incremented when the associated conditional statement is
selected for evaluation.

v Evaluation matches (MATCH COUNT)
The counter that is incremented when the associated conditional statement is
evaluated as true, resulting in performance of all automation actions specified on
the statement.

v Executed commands (E C)
This column reports the number of commands that are run for this automation
statement when there is an evaluation match. If the number of EXEC actions
with CMD keywords is greater than 99, an asterisk (*) appears in the column.

v Continue indicator (C I)
A report column marked X indicates that the conditional statement contained a
CONTINUE action, causing NetView to continue to scan the automation table.
CONTINUE(Y) actions cause additional conditional processing for later
statements in the table, and can enable a conditional match on additional
statements.

v Always statement indicator (A I)
A report column marked X indicates that the statement was an ALWAYS. For
ALWAYS statements, the MATCH/COMP field is always 100%.

v Disable indicator (D I)
This column describes whether the statement is currently part of a DISABLE
request or whether it was part of a DISABLE request since the last time usage
statistics were reset. The possible values are:

(blank) The statement has not been part of a DISABLE request since the
last time usage statistics were reset.

d The individual statement has been disabled since the last time
usage statistics were reset, but is not currently disabled.

Chapter 15. The Automation Table 245

b The block of statements has been disabled since the last time
usage statistics were reset, but is not currently disabled.

S The statement is currently disabled using its sequence number.

L The statement is currently disabled using a LABEL request.

E The statement is currently disabled using an ENDLABEL
request.

B The statement is currently disabled using a BLOCK request.

G The statement is currently disabled using a GROUP request.

Note: To view the status of individual automation-table statements, blocks, or
groups, use the automation-table management (AUTOMAN) function.

v Match to compare percentage (MATCH/COMP)
A statistic calculated by dividing the ratio of MATCH COUNT by the
COMPARE COUNT of the conditional statement, multiplied by 100. If the
number of matches and the number of comparisons are both zero, the ratio is
shown as -.- to indicate division by zero.

v Compare percentage (COMP/TOTAL)
A statistic calculated by dividing the ratio of COMPARE COUNT of the
conditional statement by the total number of messages (or MSUs), multiplied by
100. If the number of comparisons against this statement and the total number of
messages or MSUs processed by automation are both zero, the ratio is shown as
-.- to indicate division by zero.

v Match percentage (MATCH/TOTAL)
A statistic calculated by dividing the ratio of MATCH COUNT of the conditional
statement by the total number of messages (or MSUs), multiplied by 100. If the
number of matches for this statement and the total number of messages or
MSUs processed by automation are both zero, the ratio is shown as -.- to
indicate division by zero.

Any numeric column value that exceeds 99999999 is overwritten with eight
asterisks (*).

Figure 73 and Figure 74 on page 247 illustrate the output of a detailed report.

----------------(AUTOSEG1 MESSAGE DETAILS 09/02/97 14:21:46)----------------
│-- PERCENTAGES --│

STMT L SEQUENCE NUMBER/ MEMBER COMPARE MATCH E C A D MATCH/ COMP/ MATCH/
NUMB I LABEL NAME NAME COUNT COUNT C I I I COMP TOTAL TOTAL

0001 AUTOSEG1 2304 798 0 34.6 100.0 34.6
0002 AUTOSEG1 798 177 0 22.2 34.6 7.7
0003 AUTOSEG1 621 9 1 1.4 27.0 0.4
0004 L REACTIVATEVTAM AUTOSEG1 612 0 1 0.0 26.6 0.0
0005 AUTOSEG1 612 612 0 X 100.0 26.6 26.6
0007 L DSIPREFIX AUTOSEG1 1506 160 0 10.6 65.4 6.9
0008 L ALTDSIPREFIX AUTOSEG1 160 52 0 32.5 6.9 2.3
0009 E ALTDSIPREFIX AUTOSEG1 108 1 0 0.9 4.7 0.0
0010 AUTOSEG1 107 107 0 X 100.0 4.6 4.6

Figure 73. MSG Detail Report

246 Automation Guide

The detailed statistics can indicate the effect of each statement on automation
processing. Examine the comparison and match counts to determine the optimal
order of automation statements. Generally, the statements with the highest match
counts should be near the beginning of their BEGIN-END sections. Likewise,
BEGIN-END sections with the highest total match counts for all statements within
the BEGIN-END section should be near the beginning of the automation table.

Move statements with care, ensuring that the sequential logic of the table is not
affected.

Consider the statements in Figure 75. Even if the usage statistics show that the
third statement is matched more frequently than the first and second statements,
moving the third statement sequentially ahead of the first two affects the
automation actions performed. The statements that call COMMAND1 and
COMMAND2 never match, because the statement that calls COMMAND3 always
matches the messages first.

Examine IF-THEN statements that always match to determine whether there are
logic errors in the statement specifications. Examine IF-THEN statements that
never match to determine whether:
v There is a logic error in the statement specification
v There is a statement preceding the statement in question that prevents this

statement from getting its intended messages or MSUs
v The statement is no longer required, and therefore be removed

Examine the comparison and match counts to determine the optimal order of
automation statements. When you add new automation statements, the COMPARE
and MATCH COUNTS can indicate part of the effect of the addition.

A high number of matches for a statement that contains one or more command
invocations can indicate excessive CPU processing for issuing the commands. If the
commands being issued are command lists, consider preloading them using the
LOADCL command.

Summary Automation-Table Usage Report: Summary automation-table usage
reports contain this information for all message-type or MSU-type statements in
the active NetView automation table.

-----------------(AUTOSEG1 MSU DETAILS 09/02/97 14:21:46)-------------------
│-- PERCENTAGES --│

STMT L SEQUENCE NUMBER/ MEMBER COMPARE MATCH E C A D MATCH/ COMP/ MATCH/
NUMB I LABEL NAME NAME COUNT COUNT C I I I COMP TOTAL TOTAL

0012 S SEQ00002 AUTOSEG1 3363 3233 96.1 100.0 96.1
0013 G MSUSTATEMENT AUTOSEG1 3233 5 0.2 96.1 0.1
0014 G MSUSTATEMENT AUTOSEG1 3228 17 0.5 96.0 0.5
0015 AUTOSEG1 3211 3211 X 100.0 95.5 95.5

Figure 74. MSU Detail Report

IF MSGID = 'XYZ123I' & TOKEN(5) = 'DEVICE1' THEN
EXEC(CMD('COMMAND1'));

IF MSGID = 'XYZ456I' & DOMAINID = 'CNM99' THEN
EXEC(CMD('COMMAND2'));

IF MSGID = 'XYZ123I' | MSGID = 'XYZ456I' THEN
EXEC(CMD('COMMAND3'));

Figure 75. Statements Evaluated with Usage Statistics

Chapter 15. The Automation Table 247

v Date and time of usage report generation
The date is in the format mm/dd/yy. The time is in the format hh:mm:ss, where hh
is based on a 24-hour clock. The date and time are reported in the label message
for the SUMMARY statistics (messages DWO810I and DWO811I).

v Date and time of start of usage count monitoring
The date is in the format mm/dd/yy. The time is in the format hh:mm:ss, where hh
is based on a 24-hour clock. The date and time are reported in message
DWO812I.

v Total number of messages or MSUs processed
A count of all the messages or MSUs that have passed through the automation
table.

v Total number of messages or MSUs matched
The number of messages or MSUs that were acted upon by at least one
automation-table statement. An ALWAYS statement causes a message or MSU to
be considered a match.

v Number of messages or MSUs resulting in command execution
A count of the number of messages or MSUs that resulted in one or more
commands being run from automation-table statements.

v Total commands run for messages or MSUs
The total number of commands run by all automation-table statements during
the period when statistics were taken. The EXEC action with the CMD keyword
indicates a command that is run from the automation table.

v Total routes run for messages
The total number of routes run by all automation-table statements during the
period when statistics were taken. The EXEC action with the ROUTE keyword
(and without the CMD keyword) indicates that a route is run from the
automation table.

v Average number of compares per message or MSU
The number of compares divided by the number of messages or MSUs that had
passed through the automation table.

v Average number of messages or MSUs processed per minute
The number of messages or MSUs processed by the NetView automation table
divided by the number of minutes since the last reset or load of the automation
table.

v Number of minutes elapsed
The amount of time, in minutes, since the last AUTOCNT RESET command or
since the current active automation table was activated.

Figure 76 on page 249 and Figure 77 on page 249 illustrate the output of a
summary report:

248 Automation Guide

The summary statistics can indicate how effective and efficient your automation
processing is:
v The number of messages or MSUs per minute can indicate the automation

processing load.
v The average compares per message or MSU indicate how much automation

processing time is taken to determine what, if any, automation-table actions to
take.
The smaller the average compares figure is, the smaller the CPU use by
automation processing of messages and MSUs. You can generally reduce the
average compares figure by adding BEGIN-END sections or combining multiple
statements.
A high number of messages that are not matched might indicate that one of
these activities is to be performed:
– Add automation statements
– Improve efficiency of the operating system message processing facility to

prevent messages from undergoing automation processing
– Suppress more messages

The summary statistics are especially useful for historical purposes so that you can
see the effect of:
v Adding more devices to the network
v Adding more automation statements to your automation table
v Using different automation tables
v Changes in shifts or days on your overall automation processing

Keeping historical statistics can be useful for capacity planning and system stress
analysis.

- AUTOMATION TABLE MSG SUMMARY REPORT BY OPER1
------------(AUTOSEG1 MESSAGE SUMMARY 09/02/97 14:21:46)------------
STATISTICS STARTED = 09/02/97 13:58:34
TOTAL MSGS PROCESSED = 2304
MSGS MATCHED = 958
MSGS RESULTING IN COMMANDS = 9
TOTAL COMMANDS EXECUTED = 9
TOTAL ROUTES EXECUTED = 1
AVERAGE COMPARES/MSG = 2.58
TOTAL MSGS/MINUTE = 38
MINUTES ELAPSED = 60
--

Figure 76. MSG Summary Report for Message Automation

- AUTOMATION TABLE MSU SUMMARY REPORT BY OPER1
--------------(AUTOSEG1 MSU SUMMARY 09/02/97 14:21:46)--------------
STATISTICS STARTED = 09/02/97 13:58:34
TOTAL MSUS PROCESSED = 3363
MSUS MATCHED = 3233
MSUS RESULTING IN COMMANDS = 0
TOTAL COMMANDS EXECUTED = 0
AVERAGE COMPARES/MSU = 2.92
TOTAL MSUS/MINUTE = 56
MINUTES ELAPSED = 60

Figure 77. MSU Summary Report for MSU Automation

Chapter 15. The Automation Table 249

General Reminders about Automation-Table Usage Reports: The
automation-table usage report is based on the usage for the current automation
table, such as:
v Table activated by the AUTOTBL command
v Table being tested using the AUTOTEST command

To ensure usage reports are correlated with automation-table statements:
v Allow changes to the source members only at certain times and save a backup

copy before making changes.
v Generate an automation-table listing when you activate a new automation table.

When you activate an automation-table, the counters that the AUTOCNT
command uses are set to zero. If you generate an automation-table listing when
you activate the automation table and if no AUTOCNT RESET command is issued
(between the time when the automation table is activated and the time when a
usage report is generated, the date and time indicated in the listing match the
STATISTICS STARTED date and time in the summary usage report. Comparing the
dates and times is one way you can verify that you have a correlation between the
detailed usage report statements and the actual automation statements.

Some statements can be both message-type and MSU-type. If this is the case, the
statement has both message and MSU usage statistics associated with it, and is
listed separately in both the message detailed usage report and the MSU detailed
usage report.

The usage report statistics might not be exact, because messages and MSUs
continue to be processed by the automation table when the AUTOCNT command
is run. Messages or MSUs currently undergoing automation processing might be
reflected in the detailed usage statistics. The usage statistics are used to identify
general trends, not as precise data.

Managing Multiple Automation Tables
The AUTOTBL command enables you to load multiple automation tables. An
automation table, typically, is made up of many included members. The
automation-table management (AUTOMAN) command enables you to make
changes to selected tables or changes that have an affect on all automation tables.
To help you work with automation tables, AUTOMAN provides a full-screen panel
interface.

AUTOMAN and the full-screen panel interface enable you to do the following
tasks:
v View and manage single or multiple automation tables
v Enable or disable individual automation tables or statements
v View existing tables and their status

Getting Started
AUTOMAN provides individual table commands and global commands. The
individual table commands apply to one or more selected tables, and global
commands apply to all automation tables. See these features and options of each
type of command:
v With individual table commands, you can enable or disable automation tables.

You can also enable or disable automation-table statements, as shown here:
– Sequence number

250 Automation Guide

– Label
– End label
– Block
– Group
– Include
With individual table commands, you can also issue these requests:
– Display disabled statements
– Display labels, blocks, and groups
– Load or unload tables
– Test tables
– Display the %INCLUDE structure
– Display synonyms

v With global commands, you can enable, disable, or unload automation tables.
You can enable disabled statements or enable and disable blocks, groups, and
labels. Global commands affect all automation tables.
Automation statements can be enabled or disabled across all tables based on
these features:
– Label
– Block
– Group
With global commands, you can also issue requests for the following tasks:
– Locate disabled statements
– Display labels, blocks, and groups
– Display the %INCLUDE structure

Using Automation-Table Management
To use the AUTOMAN command, follow the steps and panel descriptions in this
section.

From the command line, enter AUTOMAN. The panel in Figure 78 is displayed.
This panel enables you to see your automation-table structure and take action as
necessary.

EZLK8500 Automation Table Management

AUTOMATION TABLE Enter any character in the selection fields
SEL POS NAME STATUS MARKERS TASK DATE TIME
_ 1 DISTABLE ENABLED NETOP2 03/18/99 13:15:24
_ 2 DSITBL01 ENABLED (AON) NETOP2 03/18/99 13:11:09

Command ===>
F1=Help F2=Main Menu F3=Return F4=Commands F5=Refresh F6=Roll
F7=Backward F8=Forward F9=Responses F10=Global Commands F12=Cancel

Figure 78. Automation-Table Structure

Chapter 15. The Automation Table 251

In the previous figure, the current status of all loaded tables is displayed. The
fields in this figure are described as follows:

SEL Enter any character in this field. You can select multiple tables to be acted
upon. If your cursor is in a selection field shown in Figure 78 on page 251,
and you press F4 or Enter, the COMMANDS pop-up window is displayed.
A forward slash is automatically placed in the SEL field for your reference.

POS Displays the numerical position of each table.

NAME
Contains the name of loaded tables.

STATUS
One of these statuses is displayed in this field:

ENABLED
The table is loaded and active. This selection is green.

DISABLED
The table is loaded but disabled. This selection is green.

ALTERED
The table is loaded and enabled, but contains at least one disabled
statement. This selection is green.

MARKERS
Shows the marker you designated for each table. This field includes
(FIRST), (LAST), or (AON) if the table is so marked. The indicators in this field
are set by AUTOMAN.

TASK The name of the task that loaded the table.

DATE The date when the table was loaded.

TIME The time when the table was loaded.

Using Commands for Selected Tables
The Commands pop-up window in Figure 79 on page 253 provides options to help
you work with one or more selected automation tables. In this figure, options 1–6
apply to one or more selected tables (in contrast to global commands in Figure 82
on page 256, which apply to all tables). Options 7–8 apply to only one table.

At the Automation Table Management panel, shown in Figure 78 on page 251,
pressing F4 displays the Commands pop-up menuFigure 79 on page 253, where
DSITBL01 is selected to be disabled.

Selecting option 2 displays a pop-up menu where you can confirm that you want
to disable the selected table. After DSITBL01 is disabled, a message indicates if the
command was successful or if failures were detected. Press F9 in Figure 78 on page
251 to view the results of your command.

252 Automation Guide

These commands are available in the COMMANDS pop-up menu shown in
Figure 79:

1 Enables the selected tables.

2 Disables the selected tables.

3 Reloads the selected tables.

4 Reloads selected tables and reinstates all disabled elements.

5 Tests the selected tables.

6 Enables or disables parts of the selected tables.

7 Unloads or removes the selected tables.

8 Displays the panel where new tables (that are based on the currently
selected table) can be inserted. See Figure 80 on page 254.

9 Displays the panel where other display options are available for
automation tables. See Figure 81 on page 255.

Inserting an Automation Table: If you selected 8 in Figure 79, this panel is
displayed, where you can insert a new automation table:

EZLKATBC AUTOMATION TABLE MANAGEMENT

AUTOMATION TABLE Enter any character in the selection fields
SEL POS NAME ...
/ 1 DSITBL0 : COMMANDS (Choose a highlighted command option) :

: :
: _ 1 -ENABLE the selected tables :
: _ 2 -DISABLE the selected tables :
: _ 3 -RELOAD the selected tables :
: _ 4 -RELOAD and REINSTATE disabled elements :
: _ 5 -TEST the selected tables :
: _ 6 -ENABLE/DISABLE parts of the selected :
: tables :
: _ 7 -UNLOAD selected tables :
: _ 8 -INSERT a table :
: 9 -DISPLAY options :
: :
: Enter=Execute Command F3 or F12=Cancel :
:...:

Command ===>
F1=Help F2=Main Menu F6=Roll

F12=Cancel

Figure 79. Automation-Table Management Commands Popup

Chapter 15. The Automation Table 253

The automation-table INSERT option is used to insert tables based on the INSERT
command you chose in Figure 79 on page 253 and the focus table that was
selected in Figure 78 on page 251.

The insert panel displays the name of the focus table and its numerical position. To
the left of the focus table is the name of the Preceding Table and to the right is the
name of the Next Table. If there are no tables in those positions, N/A is displayed.
Using this information, you can specify the INSERT option as follows:

1 - AT Inserts a new table in the same position as the focus table.

The focus table is moved to the next position. You cannot insert a
table using the AT option if the focus table is marked as FIRST.

2 - AFTER Inserts a new table in the position following the focus table.

If the focus table is marked as LAST, you cannot insert a table using
the AFTER option.

3 - BEFORE Inserts a new table before the focus table. This request has the
same result as the default AT.

4 - REPLACE Replaces the focus table with the new table.

This function has the same result as the RELOAD option in
Figure 79 on page 253.

If the focus table is marked as FIRST or LAST, you cannot specify
the REPLACE option unless the tables have the same name.

5 - FIRST Inserts a new table and marks it as FIRST.

You cannot specify this option if another table is marked as FIRST
or if the current focus table is not the first table located at position
1.

6 - LAST Inserts a new table and marks it as LAST.

You cannot specify this option if another table is marked as LAST or
the current focus table is not the last table listed.

EZLKATBI AUTOMATION TABLE MANAGEMENT

AUTOMATION TABLE INSERT PANEL (Press Enter to process INSERT request)

Preceding Table Focus Table AT= 1 Next Table
---------------------- ---------------------- ----------------------
N/A DSITBL01 N/A

SELECT INSERT OR TEST OPTION

1 - AT(DEFAULT) Table Name (Required)
2 - AFTER Listing Name AUTOM819 Default listing name
3 - BEFORE (names can be reused,
4 - REPLACE but cannot be in use
5 - FIRST by another table)
6 - LAST SELECT A MARKER OPTION

OR
7 - AUTOTBL TEST _ Enter your own marker ________

_ Mark as AON's table ________

Command ===>
F1=Help F3=Return F6=Roll

F12=Cancel

Figure 80. Automation-Table Management Insert Option

254 Automation Guide

7 - AUTOTBL TEST
Performs an AUTOTBL test on the table name specified.

The table is not loaded. The other insert fields are ignored.

In Figure 80 on page 254, the following fields must be noted:

Table Name Enter the name (1–8 characters) of the automation table to be
inserted.

Listing Name The unique identifier for the listing member, which is required for
automation-table management.

Enter the name of the listing member (1–8 characters) for the
specified automation table. A unique listing member name is
provided by default, but can be overridden. Listing names can be
reused, but must not currently be in use.

To enter markers or identifiers, type any character in the Enter your own marker
field. Enter the text of the marker in the space following the field. You can select
either a custom marker or an AON marker, but not both. The table being used by
AON must be marked appropriately. If AON is not present, the Mark as AON's
table is not displayed.

Press Enter when all fields are complete and you are ready to insert the new table.

Using the Display Options Pop-up window: If you select 9 from the
COMMANDS pop-up menu (see Figure 79 on page 253), the following DISPLAY
OPTIONS pop-up window is displayed:

In Figure 81, the DISPLAY functions act only on a single automation table. The
table in this panel was selected in Figure 78 on page 251. You can choose the
following options on the DISPLAY OPTIONS panel:

1 Invokes the BROWSE command for the selected table with the default
XINCL option.

EZLKATLD AUTOMATION TABLE MANAGEMENT

AUTOMATION TABLE Enter any character in the selection fields
SEL POS NAME ...
/ 1 DSITBL01 : COMMANDS (Choose a highlighted command option) :

: :
: 9 1 -ENABLE the selected tables :

...
: DISPLAY OPTIONS (select option and press ENTER) :
: :
: _ 1 - Browse table with includes 8 - Browse listing :
: 2 - Browse table without includes :
: 3 - Display INCLUDE structure :
: 4 - Display synonyms :
: 5 - Display labels/blocks/groups :
: 6 - Display disabled statements :
: 7 - Display AUTOCNT statistics :
:...:

Command ===>
F1=Help F2=Main Menu F3=Return F6=Roll

F12=Cancel

Figure 81. Automation-Table Management Display Options Pop-up Window

Chapter 15. The Automation Table 255

2 Invokes the BROWSE command for the selected table with the NOINCL
option.

3 The %INCLUDE structure is displayed using the WINDOW command.
Each INCLUDE level is indented and color-coded. Refer to the NetView
online help for more information about the WINDOW command.

4 Displays the same %INCLUDE structure as option 3 with synonyms
included.

5 Displays a new panel where only label, block, and group names are
displayed.

The new panel provides additional enabling and disabling functions.

6 Displays the panel in Figure 84 on page 258, but displays only the disabled
statements in the selected table.

7 Displays the results of the following command in a WINDOW:
AUTOCNT REPORT=BOTH,STATS=DETAIL,NAME=(selected table)

8 Invokes the BROWSE command for the selected table listing file.

Using Global Commands
Global commands apply to all tables. To use a global command, press F10 at the
panel that is shown in Figure 78 on page 251. The following pop-up menu is
displayed:

When the GLOBAL COMMANDS pop-up menu is displayed, you can choose from
the following options:

1 Turn on all tables.

2 Turn off all tables. (See note 2.)

3 Remove all tables from memory. (See note 2.)

4 Shows the GLOBAL DISPLAY OPTIONS popup.

Any option selected from this pop-up menu applies to all tables.

EZLKATBG AUTOMATION TABLE MANAGEMENT

AUTOMATION TABLE Enter any character in the selection fields
SEL POS NAME ..
_ 1 DSITBL01 : GLOBAL COMMANDS (Choose a command option) :

: :
: _ 1 -Enable all tables :
: 2 -Disable all tables (must confirm) :
: 3 -Unload all tables (must confirm) :
: 4 -Display options :
: :
: Enter=Execute Command F3 or F12=Cancel :
:..:

Command ===>
F1=Help F2=Main Menu F6=Roll

F12=Cancel

Figure 82. Automation-Table Management Global Commands Popup

256 Automation Guide

Usage notes:

1. Characters that you typed in the SEL fields are ignored when the GLOBAL
COMMANDS pop-up window is displayed.

2. If you select the global command to UNLOAD or DISABLE all automation
tables, you receive a confirmation panel asking you to confirm whether you
want to disable or remove the tables or cancel the operation. See “The
Confirmation Panel” on page 260 for more information.

Using the Global Display Panel: If you select option 4 in Figure 82 on page 256,
the following GLOBAL DISPLAY OPTIONS pop-up window is displayed:

In the previous panel, you can select the following options:

1 Displays the %INCLUDE table structure using the WINDOW command.

Each nesting level is displayed in a different color and indentation. Each
table loaded by an AUTOTBL command is displayed in column one
followed by the text primary table.

2 Displays the %INCLUDE table structure and a list of the synonyms at each
level.

3 Displays the panel in Figure 84 on page 258, but shows only disabled
statements.

4 Displays the label, group, and block names for all tables.

In the displayed panel, you can enable or disable these names in all
automation tables. Enabling or disabling any label, group, or block from
this panel results in a global action.

Enabling and Disabling Automation-Table Statements: In Figure 84 on page 258,
the commands and information are gathered using the AUTOCNT STATISTICS
and the listing. This panel provides global display functions that act on all loaded
automation tables.

EZLKATGD AUTOMATION TABLE MANAGEMENT

AUTOMATION TABLE Enter any character in the selection fields
SEL POS NAME ...
_ 1 DSITBL01 : GLOBAL COMMANDS :

: :
: 1 -ENABLE ALL TABLES :

...
: GLOBAL DISPLAY OPTIONS (select option and press ENTER) :
: :
: _ 1 - Display Table structure (showing INCLUDES) :
: 2 - Display ALL synonyms :
: 3 - Display ALL disabled statements :
: 4 - Display ALL Labels/Blocks/Groups :
:...:

Command ===>
F1=Help F2=Main Menu F3=Return F6=Roll

F12=Cancel

Figure 83. Automation-Table Management Global Display Options Popup

Chapter 15. The Automation Table 257

Note: When you enter this panel from the GLOBAL DISPLAY OPTIONS or
DISPLAY OPTIONS (6) pop-up windows, only not allowed statements are
displayed.

In Figure 84, the following data is displayed:

MEMBER The name of the automation table that contains the statements that
follow.

STATEMENT The automation-table statements that were retrieved from the
automation-table listing member.

The status of each statement is displayed in different colors as
follows:

Green The statement is enabled.

Red The statement is disabled.

Blue The statement cannot be individually disabled because it
does not contain a label or sequence number.

Pink This statement is not disabled on its own, but as the result
of a disabled table, %INCLUDE, or begin block.

To activate a pink statement, you must place the cursor on
the preceding red statement, which caused this statement
to be disabled, and activate that statement accordingly.

To use this panel to enable or disable an automation-table statement, scroll to the
statement you want to take action on and choose one of the following function
keys:

F4 Enables the label, block, or group, depending on which statement is the
current focus and how that statement was disabled.

F5 Displays groups and blocks.

F9 Disables a statement or member; statements displayed in green might be
disabled.

EZLKENDI AUTOMATION TABLE MANAGEMENT More:

AUTOMATION TABLE (Place the cursor on a statement and select an action)
MEMBER LVL STATEMENT
FLBAUT 001 IF MSGID = 'FLB447I' THEN EXEC(CMD('PURGE TIMER=FLBTOPO'
FLBAUT 001 ROUTE(ONE AUTO1)) CONTINUE(Y);
******** 001 END OF FLBAUT
DSITBL01 001 IF MSGID = 'DWO' . & TEXT=MESSAGE THEN BEGIN;
DSITBL01 002 IF MSGID = 'DWO207I' THEN HOLD(Y);
******** 002 START OF EZLDWOAO
EZLDWOAO 002 IF MSGID ='DWO336I' & DOMAINID = DOMID & OPID = ORIGOP THEN
EZLDWOAO 002 EXEC(CMD('EZLE1IXL 'DOMID' 'ORIGOP' 'MESSAGE) ROUTE(ALL
EZLDWOAO 002 PPT)) DISPLAY(Y) NETLOG(Y) SYSLOG(N);
EZLDWOAO 002 IF MSGID = 'DWO575I' & DOMAINID = DOMID & OPID = ORIGOP THEN
EZLDWOAO 002 EXEC(CMD('EZLE1IXL 'DOMID' 'ORIGOP' 'MESSAGE) ROUTE(ALL
EZLDWOAO 002 PPT)) DISPLAY(Y) NETLOG(Y) SYSLOG(N);
EZLDWOAO 002 IF MSGID = 'DWO044I' & DOMID = NTV6D & TEXT = . 'LISTING

Command ===>
F1=Help F2=Main Menu F3=Return F4=Enable
F5=Display Group/Block F6=Roll F7=Backward F8=Forward
F9=Disable Stmt/Member F10=Disable Block F11=Disable Group F12=Results

Figure 84. Automation-Table Management ENABLE/DISABLE Panel

258 Automation Guide

F10 Disables a block. This function requires that your selection is a LABEL
statement that has a corresponding ENDLABEL statement.

F11 Disables a group. This function requires that your selection is a statement
that contains a group label.

F12 Displays a description of the most recent commands issued and their
respective results.

You can search the ENABLE/DISABLE panel for a particular statement, group,
block, or label. To search, use the following commands. An abbreviated version of
the command is in parentheses.

FIND anytext (F anytext) Searches for the text you specify.

NEXT TAG (NT) Searches for the next group, block, or label.

NEXT IDENTIFIER (NI) Searches for the next group, block, label, or
sequence number.

NEXT GROUP (NG) Searches for the next group.

NEXT BLOCK (NB) Searches for the next block.

NEXT SEQUENCE (NS) Searches for the next sequence number.

NEXT ENABLED (NE) Searches for the next enabled statement.

NEXT DISABLED (ND) Searches for the next disabled statement.

The search begins at the position of your cursor. The cursor is placed on the line
where the search target was found. If another search is specified prior to paging
forward or backward, the search begins after the previous search target.

Note: A member name of ******** denotes the start or end of an included
member.

Displaying the Labels/Blocks/Groups Panel: Figure 85 illustrates the pop-up
window that is displayed when you choose F5 in Figure 84 on page 258. In the
following panel, you can place your cursor on a Label/Block/Group and enable or
disable it directly.

EZLKATGB AUTOMATION TABLE MANAGEMENT

MEMBER TYPE LABEL/BLOCK/GROUP NAME STATUS NUMBER OF STATEMENTS
------ ---- ---------------------- ------ --------------------
DISTABLE LABEL BOB ENABLED 1
DISTABLE LABEL BOB2 ENABLED 1
DISTABLE LABEL JIM ENABLED 1
DISTABLE LABEL NITE2 ENABLED 1
DISTABLE LABEL STEVE ENABLED 1

DISTABLE BLOCK NITE ENABLED 8

DISTABLE GROUP KAT DISABLED 3

COMMAND ===>
F1=Help F2=Main Menu F3=Return F4=ENABLE
F5=DISABLE F6=Roll F7=Backward F8=Forward
F9=Toggle Display F12=Cancel

Figure 85. Automation-Table Management Label/Block/Group Panel

Chapter 15. The Automation Table 259

If you enter the previous pop-up window from Figure 81 on page 255, the display
panel, your actions affect only a single automation table. If you enter this pop-up
window from Figure 83 on page 257, the global display panel, your action affects
similarly named labels in all automation tables.

In Figure 85 on page 259, the following information is displayed:

MEMBER Indicates the name of the automation-table member
that contains the label, block, or group.

TYPE Indicates whether the type is a label, block, or
group.

LABEL/BLOCK/GROUP NAME
Indicates the name of the label, block, or group.

STATUS Contains one of the following statuses:
v ENABLED (The label, block, or group is

enabled.)
v DISABLED (The label, block, or group is

disabled.)

NUMBER OF STATEMENTS Indicates the number of statements within a label,
block, or group.

Labels are always 1. The number varies for groups
and blocks.

Note: The NUMBER OF STATEMENTS column
does not include all affected statements in
the case of labels or groups. The total shown
is the number of statements containing that
label or group. For example, if a labeled
statement ends with a BEGIN, those
statements within the BEGIN and END
block are not counted. To view all affected
automation-table statements, use the
ENABLE/DISABLE panel shown in
Figure 84 on page 258.

You can use the function keys in the LABEL/BLOCK/GROUP pop-up window to
enable the following actions:

F4 Enables the selected label, block, or group.

F5 Disables the selected label, block, or group.

F9 Toggles the display area so that only labels, blocks, or groups are displayed
at one time.

F12 Displays the commands issued by your actions and the results of the
commands.

Note: If you accessed this pop-up window from Figure 83 on page 257, the
functions of F4 and F5 become global enable and disable functions that
affect all automation tables. For example, if group NITEOPS is defined in
two tables, pressing F5 disables that group in both tables.

The Confirmation Panel
Many of the functions provided by AUTOMAN require an automation-table listing
file for the table being acted upon. If the listing file is not available following a

260 Automation Guide

request for action on a table, a warning message is displayed. You can press F4 on
the warning panel, to authorize AUTOMAN to create the list files that are
necessary to complete your request.

When you create the listing file, the automation tables involved must be reloaded.
Reloading the tables resets the following conditions:
v The operator ID for the individual who loaded the current table, date, and time
v AUTOCNT statistics
v Interval and threshold condition-item counts
v Any statements currently disabled within the table

If any of the previously listed conditions has an adverse affect on your
environment, press F12 to cancel the listing request.

Chapter 15. The Automation Table 261

262 Automation Guide

Chapter 16. Policy Services Overview

NetView Policy Services is a set of functions that enable dynamic policy-based
management and automation of your resources. Several NetView functions exploit
the Policy Services. Before an action is taken against a resource, these functions use
the policy definitions to determine what action, if any, is to be taken.

You can write your own policy-based applications using NetView Policy Services.
This section provides you with information to write your own policy applications
and manage NetView policy.

NetView Policy Services consist of:

Policy Repository
A persistent data store in storage for your policy

Policy APIs
A set of functions that enable access to the policy repository for querying,
modifying, adding, deleting, or loading the policy definitions.

Any application using NetView Policy Services needs to provide policy definitions
to be loaded into the Policy Repository as well as application code to interpret the
policy and take appropriate action. NetView is shipped with two applications that
use the NetView Policy Services:

Network Management Console (NMC)
Provides you with function to define time schedules (for resources in NMC
views), based on NMCSTATUS policy definitions. With these schedules,
policy can be applied to views to specify when:
v The displayable status of one or more resources in a view is disabled at

the NMC console
v One or more resources in a view is suspended from aggregation

Automated Operations Network (AON)
Provides you with automation of your network resources based on policy
definitions.

Each of these applications defines default policy in the Policy Repository and then
interprets the policy in order to take appropriate action based on that policy. You
can modify the default policy statements shipped by NMC and AON. All of the
policy definitions used by NMC and AON are documented in IBM Tivoli NetView
for z/OS Administration Reference. This chapter provides information about installing
Policy Services, the syntax of the policy file statements, how to load the policy files
into the Policy Repository, and how to manage the policy.

Using Policy Services
To use NetView policy services:
v Customize DSITBL01
v Define your Policy
v Define your Policy Files

© Copyright IBM Corp. 1997, 2009 263

Customizing DSITBL01 (optional)
To customize DSITBL01, perform these steps:
1. Modify the statements associated with message EZL110I.

NetView ships with statements (for AON and NMC) that resynchronize those
components whenever an EZL110I message is received.

2. Optionally, add statements as appropriate for any other policy-based
application.

Defining Your Policy Files
The CNMSTYLE member contains statements that enable you to define your policy
definition files. Those statements are used every time you want to load or reload
the Policy Repository. Information about the CNMSTYLE member can be found in
the IBM Tivoli NetView for z/OS Installation: Getting Started.

You can define one or more individual policy files. They are merged and loaded as
one logical file name. The default logical file name is NVPOLICY. Those statements
are:

POLICY.&domain = NVPOLICY
This defines a logical file name to be used when loading the Policy
Repository.

POLICY.xxx = file_name
This defines a real file name within DSIPARM that contains policy
definitions. You can have one or more of these statements, depending on
your needs. The ″xxx″ can be any set of characters as defined by each
policy application. NetView ships with 2 policy file names:
POLICY.AON = EZLCFG01 for AON
POLICY.GRAPHICS = DUIPOLCY for NMC status

Required NetView Tasks
During initialization NetView loads the Policy Repository with the defined policy
files based on the POLICY statements in the CNMSTYLE member. The Policy
Repository remains active and loaded in storage while the EZLTCFG task remains
active.

EZLTCFG must be initialized with NetView every time (INIT=YES). When you
installed NetView there was a step for you to customize active tasks. Ensure
EZLTCFG is in that list.

Policy File Syntax
The Policy Repository is open and flexible so applications using it are able to do so
with minimal coding effort.

The policy files must reside in DSIPARM and must be referenced in the POLICY
statements in the CNMSTYLE member..

You can also use %INCLUDE within your policy files to imbed other members as
part of your policy files.

There are only a few syntax rules. The basic syntax within any policy construct
must adhere to this convention:

264 Automation Guide

|
|
|
|

|

|
|

Policy_Name Policy_definition, keyword1=value1,
keyword2=value2,
keyword3=value3

Where:

Policy_Name
The name of your policy (such as RECOVERY or NMCSTATUS) This is
used for the ENTRY= parm on POLICY requests. This name must start in
column 1 and must contain from 1 to 32 characters without embedded
blanks (), commas (,,,), single (’ ’) or double quotation marks (″ ″),
parentheses (), or equal signs (=).

Note: Before creating your own policy refer to Automated Operations
Network (AON) Definitions in IBM Tivoli NetView for
z/OS Administration Reference for a list of policy names to avoid.

Policy_Definition
The policy you want to define (for example: HOLIDAY) . This is used for
the TYPE= parm on POLICY requests. This name must have from 1 to 32
characters without embedded blanks (), commas (,,,), single or double
quotation marks (’ ’) (″ ″), parentheses (), or equal sign (=).

keywordn
The keyword=value pairs are required for the policy definition. Keywords
are 1 or more characters without embedded blanks (), commas (,,,), single
or double quotation marks (’ ’) (″ ″), or equal signs (=)

Valuen Keyword value syntax is defined by each application. Do not use values
that contain a blank or the equal sign (=) unless it is contained within
single or double quotation marks (’ ’) (″ ″). For example:
TEXT=A=B is invalid
TEXT='A=B' is ok
TEXT="A=B" is ok
TEXT=A B is invalid
TEXT="A B" is ok

Usage Notes:

v Comments start in column 1 with an asterisk (*).
Do not imbed comments within a policy definition. Place your comments before
the start of a given policy definition.

v Policy definitions, such as RECOVERY or NMCSTATUS, start in column 1.

Note: Policy statements must begin in column 1. Continuation lines for these
statements must not begin in column 1.

v Continuation to the next line is supported.
To continue a line, end the current line with a comma and then start the next
line in column 2 or greater.

v Continuation is not supported for text strings or for parenthesis-delineated
strings.

v Policy statements must be in columns 1–72.
v If a policy statement contains a syntax error, the load of the policy repository

terminates.
v Do not use a Tivoli NetView predefined policy for your own applications.

Changing Tivoli’s NetView policy might cause errors. For additional information
refer to the IBM Tivoli NetView for z/OS Administration Reference.

Chapter 16. Policy Services Overview 265

Examples:

Policy information is defined by the application and stored in the Policy
Repository. The following examples of AON’s RECOVERY policy illustrate how
you can define policy. The comments are used to explain the purpose of the policy.
* AON RECOVERY Policy for all Physical Units (PUs) :
* automate recovery except from midnight to 6am every day of the week
* Policy_name=RECOVERY
* Policy_definition=PU
* keyword1=AUTO
* value1=Y
* keyword2=NOAUTO
* value1=(*,00:00,06:00)
RECOVERY PU,AUTO=Y,NOAUTO=(*,00:00,06:00)

* AON RECOVERY Policy for all "Holidays" :
* automate recovery except from midnight to 6am every Holiday
* Policy_name=RECOVERY
* Policy_definition=HOLIDAY
* keyword1=AUTO
* value1=Y
* keyword2=NOAUTO
* value1=(*,00:00,06:00)
RECOVERY HOLIDAY,AUTO=Y,NOAUTO=(*,00:00,06:00)

* AON RECOVERY Policy for a resource called NCP10 :
* automate recovery except from midnight to 2am every Holiday
* automate recovery except from midnight to 4am on weekends
* automate recovery except from midnight to 6am on weekdays
* This example shows continuation for lines 2 through 4.
RECOVERY NCP10,AUTO=Y

NOAUTO=(HOLIDAY,00:00,02:00),
NOAUTO=(WEEKEND,00:00,04:00),
NOAUTO=(WEEKDAY,00:00,06:00)

Remember that the keyword value syntax is defined by the application. In this
case, the application is AON.

For additional information on the AON RECOVERY policy as well as other
NetView policy please refer to the Tivoli NetView for OS390 Administration Reference.

Policy File Management
You can use the NetView POLICY command to manage which policy files are
loaded into the Policy Repository and to perform actions on those policy
definitions.

The POLICY command is a multi-purpose, generic Application Programming
Interface (API) into the Policy Repository. This command provides standardized
access to all policy definitions in the Policy Repository.

Some applications ship more specific interfaces. For example, the SETAUTO
command enables you to manage just the AON RECOVERY policy. When using
SETAUTO, you do not see other policy definitions – even if they are loaded.
Application-specific interfaces are documented in the appropriate User’s Guide.

266 Automation Guide

Using the Policy API

POLICY Syntax

POLICY

�� POLICY REQ=
GET

SET
ADD
DEL
LOAD
STATUS
TEST

MEMBER=member_name

DISP=Y

DISP=N
�

�
ENTRY =Policy_Name

TYPE=*

TYPE=Policy_Def

SAFE=EZLPOLCY

SAFE=Safe_Name
�

�

�

,

(Keywd=value)

��

Where:

GET Retrieves the requested policy definition from the Policy Repository. This is
the default.

SET Updates the requested policy definition keyword with a value.

ADD Creates a new policy definition in the Policy Repository with provided
keywords and values.

DEL Deletes a policy definition from the Policy Repository.

LOAD
Loads the Policy Repository based on definitions in the CNMSTYLE
member.

STATUS
Queries which policy files have been loaded in the Policy Repository.

TEST Performs a syntax check of the policy files.

MEMBER=member_name
The name of the actual policy file to test. If not specified on a TEST
request, then all of the currently active policy files are tested.

DISP

Y: Displays pertinent messages at the user console. Y is the default.

N: Option that does not display pertinent messages at the user console.

Note: This option must be used by 3270 applications to avoid being
interrupted by messages.

Chapter 16. Policy Services Overview 267

|
|

ENTRY=Policy_Name
Any valid policy name, such as RECOVERY or NMCSTATUS, as defined in
the Tivoli NetView for OS390 Administration Reference or by other
applications.

Type=*
If you enter type=*, the POLICY command returns all policy definitions for
a given Policy_Name. Type=* is the default.

TYPE=Policy_Def
Any valid policy definition, such as HOLIDAY, as defined in the Tivoli
NetView for OS390 Administration Reference or by other applications.

SAFE=Safe_Name
The name of a safe containing the output from the request. EZLPOLCY is
the default.

keyword
Any valid policy keyword allowed by the policy application, such as
NOAUTO.

Value Any valid keyword value allowed by the policy application.

Return Codes:

-1 SIGNAL FAILURE

-5 SIGNAL HALT

0 Request was successful

1 Requested policy definition not found (GET/ADD/SET)

3 Missing Parameters--look for message EZL203I

4 Invalid Parameters--look for message EZL204I

7 SIGNAL NOVALUE--look for message EZL271E

8 SIGNAL SYNTAX--look for message EZL275E

9 Security Authorization Failure--look for message EZL228E

10 Request not processed--other error encountered

Usage Notes:

v You can have one or more keyword=value pairs.
v You can specify TYPE=* to retrieve all policy definitions for a given policy

grouping.
For example, if you type POLICY REQ=GET ENTRY=RECOVERY TYPE=*, the
system returns all RECOVERY policy definitions from all polices.

v You cannot delete (REQ=DEL) keywords or keyword values, only specific policy
definitions.

v You cannot query (REQ=GET) keywords or keyword values, only specific policy
definitions.

v No parameters are allowed with REQ=STATUS or REQ=LOAD
v If you enter POLICY from a command line, DISP= is ignored.
v If MEMBER= is not specified for a REQ=TEST then all currently active policy

files are syntax-tested, based on the current policy loaded in the Policy
Repository.

268 Automation Guide

Determining Which Policy Files are Loaded
To determine if the Policy Repository is loaded (and if it is loaded, with which
files), issue this command:

POLICY REQ=STATUS

The response must look like:
EZL005I MEMBER NVPOLICY CURRENTLY BEING USED FOR THE CONTROL FILE
EZL006I NVPOLICY FILE 1 = EZLCFG01
EZL006I NVPOLICY FILE 2 = DUIPOLCY
EZL002I END

Where NVPOLICY is the logical file name used to load the Policy Repository.
EZLCFG01 and DUIPOLCY are the real files used to create NVPOLICY when the
policy definitions were loaded.

Syntax Testing the Policy Files
Before loading a policy file you must perform a syntax test on it. To perform a
syntax test, issue these commands:

POLICY REQ=TEST,MEMBER=member_name member_name is the name of your
policy file in DSIPARM. The file can be an existing file that you just changed or it
can be a new file that you want to load.

Perhaps you made changes to several policies within your policy files. You can test
new versions of the currently loaded policy files by issuing a POLICY REQ=TEST
without the MEMBER= parameter. For every file that is tested successfully, you
see:
EZL023I TEST OF CONTROL FILE MEMBER "EZLCFG01" WAS SUCCESSFUL

For every file that is not tested successfully, you see this message, along with other
more descriptive messages that document errors:
EZL023I TEST OF CONTROL FILE MEMBER "MYPOLICY" WAS UNSUCCESSFUL

When all files test accurately, you can reload the Policy Repository. See “Loading
Policy Files.”

Loading Policy Files
The Policy Repository is loaded during NetView initialization based on the
POLICY statements in the CNMSTYLE member. If you want to load the Policy
Repository when NetView is active, issue a POLICY REQ=LOAD command. You
must see:
EZL110I NVPOLICY BEING USED FOR THE CONFIGURATION TABLE
EZL006I NVPOLICY FILE 2 = EZLCFG01
EZL006I NVPOLICY FILE 2 = DUIPOLICY
EZL002I END

Reloading the policy removes temporary changes that were made to the previous
policy that was loaded.
1. Use caution when loading and reloading the Policy Repository.

Test your policy files before you load them. See “Syntax Testing the Policy
Files.”
Applications that use the Policy Repository must resynchronize whenever the
policy is reloaded.

Chapter 16. Policy Services Overview 269

|
|

2. Authorize the tasks that load the policy.
Applications that use the Policy Repository must resynchronize whenever the
policy is reloaded.

3. If you have written your own application that uses the Policy Repository, do
these steps:
a. Review the EZLI110I automation statements that are used to resynchronize

the application when the policy is reloaded.
b. Provide similar functions for your application.
DSITBL01 provides automation for message EZL110I.

To determine if your policy loaded successfully, you can use a sample clist
(EZLECKPF) that is provided by NetView.

For example, add these lines to your EZL110I process:
'PIPE SAFE * | KEEP EZL110I' /* save AIFR */
'EZLECKPF ' component /*ie; AON */
IF RC <> 0 THEN

/* HANDLE POLICY NOT LOADED */
ELSE

/* POLICY LOADED, CONTINUE */

Querying a Policy Definition
To query a policy definition, issue this command:

POLICY REQ=GET ENTRY=Policy_Name TYPE=Policy_Definition

If the policy exists, you receive a multi-line response that includes the
keyword=value pairs. For example, to query RECOVERY policy for NCP10, issue
this command:

POLICY REQ=GET ENTRY=RECOVERY TYPE=NCP10

This is an example of what is returned:
EZL115I RECOVERY NCP10 AUTO Y
EZL115I RECOVERY NCP10 NOAUTO (HOLIDAY,00:00,02:00)
EZL115I RECOVERY NCP10 NOAUTO (WEEKEND,00:00,04:00)
EZL115I RECOVERY NCP10 NOAUTO (WEEKDAY,00:00,06:00)
EZL002I END

The Policy_Name is RECOVERY. The Policy_Definition is NCP10. There are four
keyword=valuee pairs. The first keyword=value pair is AUTO=Y. The second
keyword=value pair is NOAUTO=(HOLIDAY,00:00,02:00). The third keyword=value
pair is NOAUTO=(WEEKEND,00:00,04:00). The fourth keyword=value pair is
NOAUTO=(WEEKDAY,00:00,06:00).

Querying a Group of Policy Definitions
To query multiple policy definitions with one command, issue this command:

″POLICY REQ=GET ENTRY=TCP390 TYPE=*″.

You see:
EZL115I TCP390 DEFAULTS PINGCNT 3
EZL115I TCP390 DEFAULTS PINGRETRY 3
EZL115I TCP390 DEFAULTS PINGLEN 64
EZL115I TCP390 DEFAULTS PINGTIME 10

270 Automation Guide

EZL115I TCP390 DEFAULTS DEBUG 0
EZL115I TCP390 DEFAULTS VERBOSE Y
EZL115I TCP390 DEFAULTS SNMPRETRY 2
EZL115I TCP390 DEFAULTS SNMPTO 3
EZL115I TCP390 DEFAULTS MAXREP 10
EZL115I TCP390 DEFAULTS NONREP 0
EZL115I TCP390 DEFAULTS RPLENGTH 64
EZL115I TCP390 DEFAULTS RPTO 5
EZL115I TCP390 NMPIPL10 IPADDR 9.67.50.52
EZL115I TCP390 NMPIPL10 HIER2 SP-APPL
EZL115I TCP390 NMPIPL10 HIER3 NETSP
EZL115I TCP390 NMPIPL10 DOMAIN LOCAL
EZL115I TCP390 NMPIPL10 UNIXSERV YES
EZL115I TCP390 NMPIPL10 TCPNAME TCP38
EZL115I TCP390 NMPIPL10 FORMAT STACK
EZL115I TCP390 NMPIPL10 SNMP MVS
EZL115I TCP390 NMPIPL10 HOSTNAME NMPIPL10 raleigh.ibm.com
EZL115I TCP390 NMP190 IPADDR 9.67.50.34
EZL115I TCP390 NMP190 HIER2 SP-APPL
EZL115I TCP390 NMP190 HIER3 NETSP
EZL115I TCP390 NMP190 DOMAIN NTV74
EZL115I TCP390 NMP190 UNIXSERV YES
EZL115I TCP390 NMP190 TCPNAME TCP38
EZL115I TCP390 NMP190 FORMAT STACK
EZL115I TCP390 NMP190 SNMP MVS
EZL115I TCP390 NMP190 HOSTNAME NMP190.raleigh.ibm.com
EZL002I END

In this case, the Policy_Name is TCP390. The query returned 3 Policy_Definition
values: DEFAULTS, NMPIPL10, and NMP190.

Wild cards are supported. For example, issue POLICY REQ=GET ENTRY=TCP390
TYPE=NMP* to retrieve TCP390 policy definitions for only NMP*. You see a
response similar to this:
EZL115I TCP390 NMPIPL10 IPADDR 9.67.50.52
EZL115I TCP390 NMPIPL10 HIER2 SP-APPL
EZL115I TCP390 NMPIPL10 HIER3 NETSP
EZL115I TCP390 NMPIPL10 DOMAIN LOCAL
EZL115I TCP390 NMPIPL10 UNIXSERV YES
EZL115I TCP390 NMPIPL10 TCPNAME TCP38
EZL115I TCP390 NMPIPL10 FORMAT STACK
EZL115I TCP390 NMPIPL10 SNMP MVS
EZL115I TCP390 NMPIPL10 HOSTNAME NMPIPL10.raleigh.ibm.com
EZL115I TCP390 NMP190 IPADDR 9.67.50.34
EZL115I TCP390 NMP190 HIER2 SP-APPL
EZL115I TCP390 NMP190 HIER3 NETSP
EZL115I TCP390 NMP190 DOMAIN NTV74
EZL115I TCP390 NMP190 UNIXSERV YES
EZL115I TCP390 NMP190 TCPNAME TCP38
EZL115I TCP390 NMP190 FORMAT STACK
EZL115I TCP390 NMP190 SNMP MVS
EZL115I TCP390 NMP190 HOSTNAME NMP190.raleigh.ibm.com
EZL002I END

In this case, the query returned two policy_definitions, NMPIPL10 and NMP190.

Modifying a Policy Definition
To modify a policy definition change the value of one or more keywords.
Modifying a policy definition changes the keywords and values you specify and
leaves all other keywords and values unchanged. To change a policy definition,
issue this command:

POLICY REQ=SET ENTRY=Policy_Name TYPE=Policy_Definition keyword=value

Chapter 16. Policy Services Overview 271

To change the RECOVERY policy for NCP10 to set AUTO to N, issue this
command:

POLICY REQ=SET ENTRY=RECOVERY TYPE=NCP10 AUTO=N

You see a response similar to this:
EZL001I REQUEST "REPL" WAS SUCCESSFUL FOR EZLEPOLY

To verify your changes, issue this command:

POLICY REQ=GET ENTRY=RECOVERY TYPE=NCP10

You see a response similar to this:
EZL115I RECOVERY NCP10 AUTO N

Updates are made to the copy of the policy definition that is loaded into the Policy
Repository. The original policy file in DSIPARM remains unchanged. If you want
the change to be permanent, modify the original policy file in DSIPARM so that
the change is not lost the next time the policy is loaded

Note: If you want to replace an existing policy definition in its entirety, delete the
current policy definition and then add the new policy definition.

Deleting a Policy Definition
To delete a policy request, issue this command:

POLICY REQ=DEL ENTRY=Policy_Name TYPE=Policy_Def

To delete the RECOVERY policy for NCP10, issue this command:

POLICY REQ=DEL ENTRY=RECOVERY TYPE=NCP10

If the command works, you see a response similar to this:
EZL001I REQUEST "DEL " WAS SUCCESSFUL

Deletions are made from the policy file that is in the Policy Repository. The
original policy file in DSIPARM remains unchanged. If you want the change to be
permanent, modify the original policy file in DSIPARM. Then the change is not lost
the next time the policy is loaded.

Adding a Policy Definition
To dynamically create or add a new policy definition issue this command:

POLICY REQ=ADD ENTRY=Policy_Name TYPE=Policy_Definition
keyword=value1 keyword2=value2 ...

To define RECOVERY policy for MYRES with AUTO set to yes and a NOAUTO
window daily from midnight to 6 AM, issue this command:

POLICY REQ=ADD ENTRY=RECOVERY TYPE=MYRES AUTO=Y
NOAUTO=(*,00:00,06:00).

272 Automation Guide

The policy_name is RECOVERY. The policy_definition is MYRES. The first
keyword=value pair is AUTO=Y. The second keyword1=value1 pair is
NOAUTO=(*,00:00,06:00).

This message is returned:
EZL001I REQUEST "ADD " WAS SUCCESSFUL

You can now query the policy to see what was loaded into the Policy Repository.
Updates are made to the copy of the policy definition which is loaded into the
Policy Repository. The original policy file in DSIPARM remains unchanged. If you
want the change to be permanent, modify the original policy file in DSIPARM so
that the change is not lost the next time the policy is loaded.

REXX API Usage
You can write complex routines using the POLICY API. For information refer to
“Using the Policy API” on page 267.

The syntax of the POLICY API is unchanged when it is called from a REXX
procedure. The output changes when you attempt to query (REQ=GET) a policy
definition. The response does not contain a message id (such as EZL115I). All other
data remains the same.

For example, to write a REXX routine to query the Tivoli NetView RECOVERY
policy for NCP10, issue this command:

/* REXX */

’PIPE NETV |’,

’POLICY REQ=GET ENTRY=RECOVERY TYPE=NCP10’,

’| STEM POL.’ \DO I=1 to POL.0

END

_

_

EXIT

Timer APIs
This section presents information that enables you to use NetView Timer APIs.
Each section describes what the API does, the syntax for the API, and some
examples on how to use the API. It also lists the return codes that you might
receive when you issue the API.

EZLETAPI
The EZLETAPI API is used to define parameters to establish or change a timer.

The syntax for the EZLETAPI API is:

Chapter 16. Policy Services Overview 273

EZLETAPI

��
SAFE=EZLTASAF

EZLETAPI ACTION=’text’
SAFE=safename

TYPE= CHANGE--HANDLE=timerid
SET

HANDLE=timerid

�

�
STARTAT=NOW

STARTAT= hh.mm.ss.micros
yyy-mm-dd

STARTAFTER= hh.mm.ss.micros
dd

TASKID=’’

TASKID=taskname
�

�
RECOVERY=IGNORE

RECOVERY=IGNORE
RECOVERY=AUTOLGN
RECOVERY=PURGE

TIMEZONE=GMT

TIMEZONE=LOCAL

�

�

�

,

NOTIFYIGNORE=(taskname) �

,

NOTIFYPURGE=(taskname)

�

�

�

,

NOTIFYREMOVE=(taskname) �

,

NOTIFYRUN=(taskname)

�

�
REMARK=’any string’

REPEATING=NO

REPEATING=YES repeatoptions TEST
��

repeatoptions:

INTERVAL=DAILY

REPEATMAX=NOLIMIT
INTERVAL= hh.mm.ss.micros

ddd REPEATMAX=repeatcount
REPEATOFF=hh.mm.ss.micros
REPEATFOR=hh.mm.ss.micros

�

�
REMOVE=MANUALLY

REMOVE=yyyy-mm-dd-hh.mm.ss.micros
REMOVEAFTER=ddd-hh.mm.ss.micros

�

274 Automation Guide

�

�

�

DAYOFWEEK=ALL

,

DAYOFWEEK=(dayname)
NOT ,

(1st)
2nd
3rd
4th
5th
LAST
LAST-n

�

�

�

DAYOFMONTH=ALL

,

DAYOFMONTH=(dayofmonthnumber)
NOT LAST

LAST n

�

�

�

CALDAY=ALL

,

CALDAY=(keyname)
NOT

Where:

SAFE The name of the safe where the output is placed. The default is EZLTASAF.

ACTION
The action to be taken when the timed event occurs. The string must be
enclosed in single quotation marks or apostrophes. Neither the single
quotation mark nor apostrophe can be contained within the string. If
needed, use two apostrophes together or double quotation marks within
the string.

TYPE Specifies the type of timer request:

Set Specifies that this is a new request. Passing a timer handle with
this option creates a timer with that handle.

Change
Specifies that this is a change to an existing timer. The existing
timer handle must be passed in order to delete the existing timer.

Note: If TYPE=CHANGE, all parameters that are not to be
changed on an existing timer must also be specified on the
invocation. These parameters can be obtained by using
EZLEQAPI and changing the preferred parameter. If all
parameters are not specified, the timer is set using the
parameters provided and defaults for parameters not
specified.

Chapter 16. Policy Services Overview 275

HANDLE
A unique identifier (1-8 characters) for the timer. If a handle is not
specified, a unique identifier is generated. Handles cannot begin with ALL,
RST, or SYS.

STARTAT
Specifies the date and time that the action starts. If not specified, the
default is to start immediately. The STARTAT and STARTAFTER keywords
are mutually exclusive.

STARTAFTER
Specifies an interval after which the action starts. The STARTAT and
STARTAFTER keywords are mutually exclusive. If not specified, the
default is to start immediately.

TASKID
The name of a task or group on which the timer is to be scheduled. The
default is to schedule the timer on the task issuing EZLETAPI.

RECOVERY
Specifies how to proceed when the ACTION is scheduled to run and the
specified task is not active.

AUTOLGN
Specifies that an autotask is to be started with the specific task
name. AUTOLGN cannot be specified with a group of tasks.

IGNORE
Specifies that the ACTION is not to run unless the task is active.
This is the default.

PURGE
Specifies that the timer is to be removed if the task is not active.

TIMEZONE
Specifies whether a time is relative to Greenwich mean time (GMT) or local
system time. The default is GMT.

NOTIFYIGNORE
Specifies that the operators listed are sent a notification when an action is
not run because the specified task was not active.

NOTIFYPURGE
Specifies that the operators listed are sent a notification when an action is
purged because a task is not active or the timer was deleted.

NOTIFYREMOVE
Specifies that the operators listed are sent a notification when an action is
removed because the REMOVE time was reached or the command was
scheduled to run without an interval time.

NOTIFYRUN
Specifies that the operators listed are sent a notification when an action is
scheduled to run and the specified task is active.

REMARK
Enables a remark to be specified when the timer is set. For example, you
can specify what command list set the timer. The remark must be enclosed
in single quotation marks or apostrophes.

REPEATING
Specifies that the action is to be repeated. The default is NO.
REPEATING=YES is required to use these keywords:

276 Automation Guide

INTERVAL
Specifies the time the action is to be repeated between the
STARTAT and REPEATOFF times. DAILY specifies that the action
is to run once each day subject to the DAYOFWEEK, DAYOFMON,
and CALDAY entries. ’ddd’ can be in the range of 1 to 365.

REPEATMAX
Specifies the number of times the command is repeated and
applies during each AT time each day. The interval timespec
multiplied by the repeat count must be less than 24 hours.
REPEATMAX=NOLIMIT causes the timer to be scheduled at
regular intervals, starting from the STARTAT or STARTAFTER
time. Each new timer is set to run exactly at INTERVAL amount of
time from the previous calculated run time. On subsequent days,
the AT or AFTER time is not a factor. NOLIMIT is the default.

REPEATOFF
Specifies the time of day the interval is to end. The value must be
less than 24 hours and can run into the next day. The timer does
not run at, or after, the REPEATOFF time.

REPEATFOR
Specifies the length of time the interval is to run. The timer does
not run at, or after, the STARTAT time of day with the
REPEATFOR time. The interval can be anything less than 24 hours,
and can run into the next day.

REMOVE
Specifies when a timed action is to be deleted. The default is
MANUALLY, which means the timer is not automatically removed.

REMOVEAFTER
Specifies when a timed action is to be deleted. The
dd-hh.mm.ss.micros specifies when a timer is removed following a
STARTAT or STARTAFTER time.

DAYOFWEEK
The name of the weekday. DAYOFWEEK affects and is affected by
DAYOFMON and CALDAY. DAYOFWEEK=ALL is the default.
Valid values are:
v SUN
v MON
v TUE
v WED
v THU
v FRI
v SAT
v WEEKDAY
v WEEKEND

Specifying NOT to omit selected days eliminates a longer list of
days to be included. For example, instead of specifying
DAYOFWEEK=(TUE,WED,THU,FRI), you can achieve the same
result by specifying DAYOFWEEK=(NOT MON,WEEKEND) and
the command runs only on Tuesdays through Fridays.

You can specify that a command is to run on certain occurrences of
that day within the month. For example,

Chapter 16. Policy Services Overview 277

DAYOFWEEK=(MON(1ST,3RD),FRI(LAST)) causes the command to
run only on the first and third Monday, and the last Friday of the
month. Unsigning the LAST or LAST-n prevents having to consider
the number of a specific weekday within that month. Valid values
are:
v In the range 1ST - 5TH
v LAST
v In the range LAST -1 through LAST -4

DAYOFMONTH
The number of the day within the month. DAYOFMONTH=ALL is
the default. Valid values are:
v In the range of 1 to 31
v ALL
v LAST
v In the range of LAST -1 through LAST -30
v NOT

DAYOFMONTH=ALL is the default. DAYOFMONTH affects and is
affected by DAYOFWEEK and CALDAY.

Specifying NOT to omit selected days reduces a longer list of days
to be included. For example, instead of specifying
DAYOFMON=(2,4,5,6,7,8,...29,30) you can achieve the same result
by specifying DAYOFMON=(NOT 1,3,31) and the command is not
run on the first, third, and thirty-first day of the month. Specifying
LAST or LAST -n eliminates having to consider the number of
days within that month.

CALDAY
Name of a key as defined in DSISCHED. The command runs on
the specified days. If NOT is specified, the command does not run
on the specified days. You can enter up to 1,000 unique keys in the
list. If you exceed this limit, message DSI656I is issued.
CALDAY=ALL is the default.

TEST Optional keyword which enables you to verify that the command
you are building is syntactically correct–without actually
scheduling the CRON timer.

Return Codes:

Note: For a return code of 0, no messages are returned. For non-zero return codes,
messages that CHRON generates are returned in the safe.

-8 REXX syntax failure

-5 REXX halt

-1 REXX failure

0 Successful completion

4 TYPE not specified correctly

8 Incorrect safe name

12 Error in operands passed

16 Security check failed

278 Automation Guide

20 Timer identifier not unique

24 An invalid value was found by the timer command.

28 The time specified has already passed.

32 The calendar was not available.

36 No response from the timer command.

40 The existing timer deletion failed

44 Internal processing error

OUTPUT:

Safe Containing: For non-zero return codes, any message generated.

For Return Code 0:
Timer handle beginning in column 1.

Messages

The following messages and their associated return codes are generated by
EZLETAPI:

EZL228
RC 16

EZL984
RC 12

DSI450
RC 12

DSI486
RC 12

DSI649
RC 4, 8, 12

DSI651
RC 12

DSI654
RC 12

DSI655
RC 12

Other messages are returned that are generated by the invoked timer command.

Example

The following test exec uses EZLETAPI, EZLEQAPI, and EZLEDAPI:
/* */
/* Valid parameters to this test exec are TIMERID and OPID */
/* This routine changes the ACTION keyword of an existing timer */
/* and sets the timer using EZLETAPI. */
trace o
parse arg argstring
parse var argstring TMRID OPID .

/* Make OPID valid for the call*/
If OPID = '' Then

Chapter 16. Policy Services Overview 279

OPID = ''''''
delfailed = 0
/* Build the command to be invoked */
testcmd = 'EZLEQAPI '
testcmd = testcmd || 'TASKID='OPID' '
testcmd = testcmd || 'HANDLE='TMRID' '
testcmd = testcmd || 'SAFE=SOMSAFE '

Address NETVASIS
/* Issue the command that was built */
'PIPE CORRCMD (MOE) 'testcmd,
'| SEP',
'| STEM CHRON1.'

/* Check for messages returned from PIPE */
If CHRON1.0 ¬= 0 Then

Do I = 1 to CHRON1.0 until I = CHRON1.0
say CHRON1.I
end
Else /* No PIPE errors */

Do
/* Put the EZLEQAPI safe output into stem */
'PIPE SAFE SOMSAFE ',
'| sep ',
'| STEM SOUTPUT.'
/* Line 1 contains the return code from EZLQAPI */
If soutput.1 = 0 Then /* Check return code */

Do
/* Line 2 contains the list of keywords that were set */
temp_var = soutput.2
/* Prime the EZLETAPI command */
newtimer = 'EZLETAPI SAFE=NEWSAFE '

/* Line 3 is the first line of keywords. Loop until the */
/* end of the stem to retrieve them all. */
do i = 3 to soutput.0 /* Get the parms */

'PIPE var soutput.'i' | varload ' /* Save the keywords */
parse var temp_var var_name ',' temp_var
Select
/* NEXT_POP is not a valid keyword for EZLETAPI */
When var_name = 'NEXT_POP' Then
nop

/* Set the value of the ACTION keyword and append it to */
/* to the command being built */
When var_name = 'ACTION' Then
newtimer = newtimer || 'ACTION=''DISCONID'''
When var_name = 'HANDLE' Then

Do
If substr(HANDLE,1,3) = 'SYS' |,

substr(HANDLE,1,3) = 'RST' Then
Do

oldhandle = value(handle)
End

Else
Do

oldhandle = ''
newtimer = newtimer || 'HANDLE='value(HANDLE)' '

End
End

/* Append any other keyword found */
Otherwise
newtimer = newtimer || var_name ||'='||value(var_name)||' '

End
end /* Get the parms */

End

280 Automation Guide

Else /* non-zero EZLEQAPI return code */
Do

do i = 1 to soutput.0
say soutput.i

end
End

End

/* If there was an invalid timerid found earlier, delete that */
/* timer before continuing. */
If oldhandle ¬= '' Then

Do
deletecmd = 'EZLEDAPI safe=DELSAFE HANDLE='oldhandle' ' ||,

'TASKID='value(taskid)
newtimer = newtimer || 'TYPE=SET'
'PIPE CORRCMD (MOE) 'deletecmd,
'| SEP',
'| STEM Chron1.',
'| COUNT',
'| VAR errorcnt',

If Chron1.0 ¬= 0 Then
Do
'PIPE SAFE DELSAFE ',
'| STEM DOUTPUT.'

If Doutput.0 ¬= 0 Then
If Doutput.1 ¬= '0' Then

Do
delfailed = 1
say Doutput.I

End
End

End
Else
newtimer = newtimer || 'TYPE=CHANGE'
If delfailed = 0 Then

Do
/* Issue the EZLETAPI command just built */
'PIPE CORRCMD (MOE) 'newtimer,
'| SEP',
'| STEM Chron1.',
'| COUNT',
'| VAR errorcnt',
If Chron1.0 ¬= 0 Then

Do
'PIPE SAFE NEWSAFE ',
'| STEM NOUTPUT.'

If Noutput.0 ¬= 0 Then
If Noutput.1 = 0 Then

Do
say 'The handle is 'Noutput.2

End
Else

say 'Failure in EZLETAPI: Return code is 'Noutput.1
Else

say 'Nothing in the safe'
End

End
Else

SAY 'The delete of timer 'oldhandle' was not successful'
exit

Chapter 16. Policy Services Overview 281

EZLEQAPI
EZLEQAPI is an API that enables you to easily query timers (that were set by the
CHRON command) to determine if a particular timer has been set.

The syntax for the EZLEQAPI API is:

�� EZLEQAPI
SAFE=EZLQASAF

SAFE=safename
HANDLE=timerid TASKID=taskid ��

Where:

SAFE Specifies the name of the safe where the output from the EZLEQAPI
command is placed. The default is EZLQASAF.

HANDLE
The timers to be queried. Valid values are:

timerid Displays the status of the named timer request. The timerid is the
optional handle specified on the HANDLE operand of the
SETTIMER command or generated by the system.

TASKID
The tasks to be queried. Valid values are:

taskid Lists only requests for the named operator and timer request. You
can specify taskid even if the operator is not currently logged on.

Return Codes:

-8 REXX syntax failure

-5 REXX halt

-1 REXX failure

0 Successful completion

4 No timers found matching the criteria specified.

8 Incorrect safe name

12 Error in operands passed

16 Security check failed

20 Internal processing error

24 Requested timer was not a CHRON timer.

OUTPUT:

Safe Containing:

For non-zero return codes:
Error messages generated

Messages generated by this routine and associated return codes:

EZL228
(RC 16)

EZL253
(RC 4)

282 Automation Guide

DSI450
(RC 12)

DSI486
(RC 12)

DSI649
(RC 8, 12)

DSI651
(RC 12)

Other messages are returned that are generated by the invoked timer command.

For Return Code 0
For return code zero requested timer information is returned in the form:

/* Line 1 contains the return code*/
/* Line 2 contains a comma delimited list of variables that are being
returned in the safe*/
/* Line 3 to the end of the safe contains the values that can be set using
the VARLOAD stage.*/
/HANDLE/timerid

/ACTION/’text’

/START/value|/STARTAFTER/value

/TASKID/value

/RECOVERY/value

/TIMEZONE/value

/NOTIFYIGNORE/values

/NOTIFYPURGE/values

/NOTIFYREMOVE/values

/NOTIFYRUN/values

/REMARK/’text’

/REPEATING/
/INTERVAL/value

/REPEATMAX/value

/REPEATOFF/value

/REPEATFOR/value

/REMOVE/value

/REMOVEAFTER/value

/DAYOFWEEK/value

/DAYOFMON/value

/CALDAY/value

/NEXTPOP/yyyy-mm-dd-hh.mm.ss

Note: NEXTPOP is the next time when this timer pops.

Example

For an example of a test exec using EZLEQAPI see page 279.

Chapter 16. Policy Services Overview 283

EZLEDAPI
EZLEDAPI

The EZLEDAPI API enables applications to delete timers they have established.

�� EZLEDAPI
SAFE=EZLDASAF

SAFE=safename
HANDLE=timerid

TASK=’’

TASK=taskname
��

Where:

HANDLE
The timers to be deleted. Valid value is:timerid Deletes the specific timer
request.

SAFE The name of the safe in which output from the EZLEDAPI command is
placed. The default is EZLDASAF.

TASKID
The task on which the delete timer is to be performed. Valid values are:

’’ Deletes timer requests for your own operator ID. If you do not
specify TASKID, this is the default.

taskid Deletes only timer requests for the specified operator. You can
specify taskid even if the operator is not currently logged on.

Return Codes:

-8 REXX syntax failure

-5 REXX halt

-1 REXX failure

0 Successful completion

4 No timers were deleted.

8 Incorrect safe name

12 Error in operands passed

16 Security check failed

20 Internal processing error

Safe Containing:

For Return Code 0:
Timer handle that was deleted, beginning in column 1.

For return codes above 8:
Error messages generated

Messages

The following messages and their associated return codes are generated by
EZLEDAPI:

EZL228
RC 16

284 Automation Guide

DSI450
RC 12

DSI486
RC 12

DSI649
RC 8, 12

DSI651
RC 12

Other messages are returned that are generated by the invoked timer command.

Note: This routine requires access to the NetView PURGE TIMER=timerid
OP=operid.

Example

For an example of a test exec using EZLEDAPI see page 279.

EZLEQCAL
The EZLEQCAL API enables you to query the calendar to determine what
definitions are in place.

The syntax for the EZLEQCAL API is:

�� EZLEQCAL
SAFE=EZLQCSAF

SAFE=safename

QRYDATE=currdate

QRYDATE=yyyy-mm-dd
:nnn

��

Where:

QRYDATE
Date to be queried. This can specify the number of days to be queried by
specifying :nnn following the date specification. The range for yyyy is from
1 to 9999. The range for nnn is 1 to 999. The range of dates that can be
queried (including the nnn) is 0001-01-01 through 9999-12-31.

SAFE Name of the safe in which output from the EZLEQCAL command is
placed. The default is EZLQCSAF.

Return Codes:

-8 REXX syntax failure

-5 REXX halt

-1 REXX failure

0 Successful completion

4 Incorrect safe name

8 Error in operands passed

Safe Containing:

Chapter 16. Policy Services Overview 285

For Return Code 0:
A safe containing the data as described in this information. Data begins in
column 1.

This example displays four days, beginning with the 31st of December,
1999.
EZLEQCAL 1999-12-31:4

DEC 31,LAST 1999 FRI 5TH,LAST (NO SPECIAL CALENDAR DAYS)
JAN 1,LAST-30 2000 SAT 1ST,LAST-4 DAYA,HOLIDAY,NEW_YEARS_DAY
JAN 2,LAST-29 2000 SUN 1ST,LAST-4 DAYB
JAN 3,LAST-28 2000 MON 1ST,LAST-4 DAYC

The first column is the Month. The second column is the date specification.
The third column is the year. The fourth column is the day of the week.
The fifth column is the day specification. The last column is user-defined
days.

Note: This routine requires READ access to the DSISCHED data set in
DSIPARM.

286 Automation Guide

Chapter 17. Installation Exits

This chapter provides product-sensitive programming interfaces and associated
guidance information.

Installation exits available for automation are briefly described in this section.

What Are Installation Exits?
Some NetView exits enable programming access to data. Through these exits,
user-written functions can obtain the text of operator commands, logons, messages,
and MSUs. Different exits are driven based on the origin of the text and the stage
of NetView processing. The key exits associated with automation are installation
exits DSIEX02A, XITCI, DSIEX16, DSIEX16B, and DSIEX17.

For more information about the automation installation exits and about other
installation exits, refer to IBM Tivoli NetView for z/OS Programming: Assembler and
IBM Tivoli NetView for z/OS Programming: PL/I and C.

Installation Exit DSIEX02A
NetView calls exit DSIEX02A to process standard output to an operator’s terminal.
Because DSIEX02A processing occurs before the automation table is used, any
changes you make to messages in exit DSIEX02A can affect message automation.
Besides altering or replacing messages, you can also use exit DSIEX02A to delete
messages. If a message has been deleted, the automation table is not used for that
message. You can write exit DSIEX02A in assembler, PL/I, or C, but use assembler
for performance reasons.

Installation Exit XITCI for BNJDSERV
The BNJDSERV task calls exit XITCI after receiving an MSU. You can modify,
replace, or delete MSUs before they go to the automation table or to hardware
monitor logs. An advantage of using BNJDSERV’s XITCI exit instead of DSICRTR’s
is that BNJDSERV processes MSUs from ALERT-NETOP, in addition to MSUs from
DSICRTR. You can write exit XITCI in assembler, PL/I, or C, but use assembler for
performance reasons.

Installation Exits DSIEX16 and DSIEX16B
NetView calls exit DSIEX16 and exit DSIEX16B immediately after automation table
processing occurs. You must write exit DSIEX16 and exit DSIEX16B in assembler.
These exits are not called for automation table testing.

NetView calls exit DSIEX16 after a message has been processed by the automation
table and before any commands issued from the automation table are run. With
exit DSIEX16, you can modify the processing options for a message, reformat a
message, or replace it. You can replace the processing options specified by the
automation table, such as whether the message must be logged and displayed, and
can prevent the NetView override settings from taking effect. You can specify new
automation commands to be issued in response to the message. You can also use
exit DSIEX16 to monitor the effectiveness of message suppression and automation.

© Copyright IBM Corp. 1997, 2009 287

NetView calls exit DSIEX16B after an MSU has been processed by the automation
table and before any commands issued from the automation table are run. With
exit DSIEX16B, you can:
v Examine or modify an MSU and its attributes
v Change the results of automation processing
v Monitor the effectiveness of your MSU automation

Depending on the functions you perform, you might be able to use the same
routine for both exit DSIEX16 and exit DSIEX16B.

Installation Exit DSIEX17
Exit DSIEX17 is called after NetView converts MVS messages and delete operator
messages (DOMs) into automation internal function request (AIFR) format. It
enables you to modify or delete a message or a DOM. You can write exit DSIEX17
only in assembler.

288 Automation Guide

Part 5. Single-System Automation
Chapter 18. Automation Setup Tasks. 293
Establishing Communication between NetView and the Operating System 293

Preparing MVS for System Automation. 293
Defining NetView to MVS as a Subsystem. 297
Ensuring That MVS Forwards System Messages to NetView. 297

Using the Subsystem Interface. 297
Using EMCS Consoles . 297

Dynamically Defining EMCS Consoles . 298
The GETCONID Command . 298
The SETCONID Command . 299
The RELCONID Command. 299

Reviewing the NetView Start-up Procedures . 299
Adding CMDDEF Statements to Allow System Commands from NetView 300

Defining and Activating Autotasks . 300

Chapter 19. Suppressing Messages and Filtering Alerts 301
Suppressing System Messages . 301
Suppressing Network Messages . 301
Filtering Alerts . 301

Recording Filters . 302
Statistics, Events, and Alerts . 304
COLOR and OPER Filters . 304
Other Recording Filter Information . 305

Viewing Filters . 305
Bypassing Filters . 306

Chapter 20. Consolidating Consoles . 307
How to Consolidate Consoles . 307
Differences between NetView and Multiple Console Support Consoles 307

Screen Handling and Message Placement . 307
Message Line Format . 308
Display Area Capability . 308
Screen Refresh . 308
Prefix Command Name . 308
Message Holding . 309
Color and Other Highlighting Attributes . 309

Benefits of NetView Command Facility Screens . 310
Using Multiple-Support-Console Consoles with Autotasks 311

Chapter 21. Consolidating Commands . 313
Writing Simple Command Procedures . 313
Anticipating Additional Automation. 314
Modifying Command Procedures. 314
Documenting Command Procedures. 315

Chapter 22. Automating Messages and Management Services Units (MSUs) 319
Deciding Which Messages and MSUs to Automate . 319
Writing Automation Table Statements to Automate Messages 320

Checking by Message ID . 320
Automating Action Messages . 320
Checking Other Specific Criteria . 320

Checking Messages by Domain ID . 321
Checking Messages with Tokens . 321
Checking Messages by Position . 321
Checking Messages by a Placeholder . 322

© Copyright IBM Corp. 1997, 2009 289

Checking General Criteria . 322
Checking Criteria with Logical-AND Logic . 322
Checking Criteria with Logical-OR Logic . 322
Checking Criteria Using Placeholders . 322

Comparing Text with Parse Templates . 323
Using Placeholders in a Parse Template . 323
Using Variables in a Parse Template . 323
Using Parse Templates with Multiline Messages . 324

Writing Automation Table Statements to Automate MSUs 324
Checking for Field Existence . 326

Checking Subvectors . 326
Checking Subfields . 327

Checking Field Contents. 327
Checking for RECMSs and RECFMSs . 328

RECMS 82 . 328
Encapsulated RECMS . 328
Example: Checking for a RECMS with a Recording Mode of X'82' 329

MSU Actions . 329
Hexadecimal, Character, and Bit Notations . 330

Using Hexadecimal Notation . 330
Using Character Notation . 330
Using Bit Notation . 330

When a Field Occurs More than Once . 331
Using Header Information . 331
Using Major Vectors Other than Alerts . 332

Checking Resolution Major Vectors . 332
Checking R&TI GDS Variables. 332

Using the Resource Hierarchy . 333
Using the Domain ID. 334

Automating Other Data by Generating Messages . 334
Automating Hardware Monitor Records . 334
Automating Status Changes . 335

Putting Your Automation Statements into Effect . 335
Correlating Messages and MSUs Using the Correlation Engine 336

Correlation Overview . 336
Storage Considerations . 337
Correlation Processing . 338

Creating Correlation Events Using COREVENT and CNMCRMSG 338
Message and MSU to Event Mapping . 339

Filtering with State Correlation . 341
Creating Rules . 342

Predicates . 344
Actions . 345
Attributes common to all rules . 345
Matching rules . 345
Duplicates rules . 345
Threshold rules. 346
Collector rules . 348
Passthru rules . 349
Reset on match rules . 351

Cloning state machines . 352
Writing custom actions . 353

Event objects . 353
Action structure . 354
Working with events . 355

Chapter 23. Establishing Coordinated Automation . 357
The State-Variable Technique . 357
Automating Initialization, Monitoring, Recovery, and Shutdown 359

Automating Initialization . 360
Automating Monitoring . 360

290 Automation Guide

Passive Monitoring . 360
Proactive Monitoring . 360
Combining Active and Passive Monitoring . 361

Automating Recovery . 361
Automating Shutdown . 361

Chapter 24. Enhancing the Operator Interface . 363
Displaying Messages . 363
Displaying Status Information . 363

Tracking Status with the Status Monitor . 364
Tracking Status with the NetView Management Console Display 364

Monitoring Alerts with the Hardware Monitor . 364
Sending Alerts with the Program-to-Program Interface 365
Sending Alerts with the GENALERT Command . 365
Sending Alerts with the MS Transport . 366

Monitoring Alerts with the NMC . 366
Creating Full-Screen Panels. 366
Sending E-mail or Alphanumeric Pages . 367

Part 5. Single-System Automation 291

292 Automation Guide

Chapter 18. Automation Setup Tasks

Before you can use automated operations, you must perform these setup tasks:
v If you want to use system automation, set up communication between NetView

and the operating system.
v Define and activate autotasks to perform automation processing.

Establishing Communication between NetView and the Operating
System

For system automation or for your operators to issue operating system commands
from NetView, activate the interface between the operating system and NetView.

Preparing MVS for System Automation
To prepare an MVS operating system for system automation using NetView:
v Define NetView to MVS as a subsystem.
v Choose the MVS message delivery option you want to use:

– The subsystem interface
– extended multiple console support (EMCS) consoles

v Forward system messages from the operating system to NetView (MPF table).
v Define subsystem allocatable consoles to MVS.
v Review the NetView start-up procedures.
v Optionally, add CMDDEF statements for MVS commands to make it easier to

issue MVS system and subsystem commands from NetView (thereafter, it is not
necessary to prefix your system commands with MVS).

These steps prepare for the interaction of MVS with both the NetView subsystem
address space and the NetView application address space. The two NetView
address spaces cooperate to provide automation capabilities on MVS operating
systems.

Figure 86 on page 294 shows message flow between the z/OS system and NetView
when the subsystem interface is used. Figure 87 on page 295 shows the message
flow when EMCS consoles are used. Figure 88 on page 296 shows the command
flow.

© Copyright IBM Corp. 1997, 2009 293

Message
Processing
Facility
(MPF)

WTO/WTOR

MPF exits

Extended
MCS
consoles

MVS
messages
by console name

NetView
application

All other
Messages

Trash

Deleted
Messages

NetView Subsystem

JES

Subsystem Interface (loop)

Multiple
Console
Support
(MCS)

2

1

1 All except those messages delivered at 2

NetView
Operators

Automation/
ASSIGN

Revision
Table

Local
MCS
Consoles

Figure 86. Message Flow between the z/OS System and NetView through the Subsystem Interface

294 Automation Guide

Message
Processing
Facility
(MPF)

WTO/WTOR

MPF exits

Extended
MCS
consoles

MVS
messages
by console name

NetView
application

NETVONLY
Messages

Trash

Deleted
Messages

NetView Subsystem

JES

Subsystem Interface (loop)

Multiple
Console
Support
(MCS)

NetView
Operators

Automation/
ASSIGN

Revision
Table

Automation messages

Figure 87. Message Flow between the z/OS System and NetView through EMCS Consoles

Chapter 18. Automation Setup Tasks 295

The NetView subsystem address space acts as an MVS subsystem. It selects
messages that are broadcast on the MVS subsystem interface and forwards copies
of the selected messages to the NetView application address space for automation
processing. If you are using EMCS consoles, the subsystem address space is used
to receive commands, not messages. For more information about the flow of
messages within MVS and across the subsystem interface into NetView, see
Appendix D, “MVS Message and Command Processing,” on page 525.

The NetView application address space performs all network management
functions, system and network message processing, and presentation services for
NetView. It contains the automation table and autotasks that you use for
automation.

Subsystem Interface (loop)

MVS Commands

MVS
Command
Processors

NetView
application

NetView
commands
with designator

Multiple
Console
Support
(MCS)

NetView Subsystem

JES

NetView
commands

Autotasks

MVS commands

MVS
Stop/Modify

Figure 88. Command Flow between z/OS and NetView

296 Automation Guide

Defining NetView to MVS as a Subsystem
Define NetView as an MVS subsystem for these reasons:
v To use the subsystem interface for system, subsystem, and application messages
v To enable you to enter NetView commands from MVS consoles
v To enable the program-to-program interface

To define NetView as a subsystem, update the IEFSSNnn member of
SYS1.PARMLIB. The IEFSSNnn member contains parameters that define the
secondary subsystems during MVS system initialization. Each 80-byte IEFSSNnn
record contains parameters defining a single secondary subsystem.

The entry name of the NetView subsystem is the 4-character name of the NetView
subsystem. The first 4 characters of the names of the start-up procedures for both
the application address space and the subsystem address space must match the
4-character subsystem name you define for NetView. For example, in the samples
shipped with NetView, the start-up procedure for the application address space
and the one for the subsystem address space both begin with CNMP. If you use
this procedure, include the CNMP entry in the IEFSSNnn member. The definition
takes effect the next time you IPL MVS.

Ensure that the values you specified for MAXUSER and RSVNONR in the
IEASYSnn member of SYS1.PARMLIB at installation are adequate for the number
of times you expect to stop and restart NetView. Refer to IBM Tivoli NetView for
z/OS Installation: Getting Started for more information.

Ensuring That MVS Forwards System Messages to NetView
You can forward system messages from MVS to NetView two ways:
v Through the subsystem interface
v Through EMCS consoles

You can obtain more information about system messages if you use EMCS
consoles, because MVS sends the messages in message data blocks (MDBs) instead
of write-to-operator queue elements (WQEs). MDBs include additional information,
such as the color in which the message is displayed.

Using the Subsystem Interface: For NetView to have access to MVS system,
subsystem, and application messages, MVS must broadcast the messages on the
subsystem interface. NetView examines each message on the subsystem interface
unless you specified AUTO(NO) for the message in MPF. Then NetView ASSIGN
command and automation-table processing occurs, and you can route or automate
the message. See “Suppressing System Messages” on page 301 for information
about using MPF’s AUTO function to determine which messages NetView is to
examine. Be sure to use AUTO(YES) for each message that you want to forward to
NetView for use in automation.

Using EMCS Consoles: If you use EMCS consoles, the CNMCSSIR task receives
by default all messages marked AUTO(YES) or AUTO(token) in the MPF table, or
which are subject to NETVONLY or REVISE(″1″ AUTOMATE) revision table
actions or similar. Other extended consoles being used by NetView are set up by
default to receive only their own command responses or WTOs directed by console
ID or console name.

You can change the attributes of your EMCS consoles to enable delivery of
messages with certain route codes to the consoles you specify. You can specify
route codes with the RACF OPERPARM segment, or the ROUT keyword on the

Chapter 18. Automation Setup Tasks 297

MVS VARY command. Refer to the IBM Tivoli NetView for z/OS Security Reference
for a description of attributes for the extended console.

If you change the attributes of your EMCS consoles, ensure you have extended
consoles set up to receive all the messages that were previously received by the
CNMCSSIR task.

If an MVS command is issued from a console owned by NetView and the response
is marked AUTO(YES) and SUP(YES), the message is automated under the
CNMCSSIR task. The message is treated as an unsolicited MVS system message.

Dynamically Defining EMCS Consoles
To use extended consoles, set the MVSPARM.MSGIFAC statement in the
CNMSTUSR or CxxSTGEN member that is included in the CNMSTYLE member to
SYSTEM or CMDONLY. When these conditions are met, issuing any MVS
command obtains an extended MCS console for you (if no console has previously
been obtained). The console name is the same as the NetView operator ID. Another
way to obtain an extended MCS console is to use the GETCONID command.

If you intend to use extended MCS consoles for NetView operators, the extended
MCS console names must be unique across your system and across a sysplex. Any
names defined in the CONSOLxx member of your SYS1.PARMLIB are not available
as extended MCS console names.

The GETCONID Command: This command obtains a console for an operator,
autotask, or the primary program operator interface task (PPT). A console obtained
with the GETCONID command can have a different name than the default for that
task. Specifying a name other than the default helps you comply with the MVS
restriction that console names must be unique within a sysplex. Refer to the
NetView online help for a complete description of the GETCONID command and
its parameters.

Note: Use the GETCONID command if you are sure the operator or autotask will
issue MVS commands, or needs to receive MVS messages directed to that
console name. Use SETCONID to assign a unique name to the console
without allocating it for operators or autotasks that are less likely to enter
MVS commands.

Consider using the GETCONID command in each operator or autotask initial
command list so you can control the STORAGE, QLIMIT, ALERTPCT, and
QRESUME parameters. You can specify these parameters with the GETCONID
command, but you cannot use the MVS VARY command to change them. These
parameters are:

STORAGE
Specifies the maximum megabytes allocated to the MVS data space for
extended MCS console messages. This storage is for all the extended MCS
console messages coming to NetView, not just the messages for this
console. The first extended MCS console you define specifies the maximum
storage. To change this storage value, you need to release all extended
MCS consoles and then issue the GETCONID command again with the
new storage maximum.

NetView issues message DWO201I when this storage is full.

QLIMIT
Specifies the number of messages that can be queued for this console at
any one time in the extended MCS console data space for NetView.

298 Automation Guide

|
|

NetView issues message DWO202I when QLIMIT is reached.

ALERTPCT
MVS issues a warning message (DWO204I) to the console when a certain
percentage of QLIMIT is reached. ALERTPCT specifies that percentage.

If QLIMIT is reached, MVS stops queuing messages for that console.
NetView retrieves messages from the queue until a certain level of
messages (the QRESUME value) is reached, and then MVS resumes
queuing messages. However, all messages for the console from the time
queuing stopped until the time queuing resumed are lost. You can trap this
message and take immediate action (such as switching message traffic to
another console) to prevent loss of messages.

QRESUME
Specifies the percentage of QLIMIT that must be reached before queuing
resumes.

NetView issues message DWO608I when the value of QRESUME has been
reached.

If the default values for GETCONID are sufficient, you can use command
authorization to prevent operators from entering values for STORAGE, QLIMIT,
QRESUME, and ALERTPCT. Refer to the IBM Tivoli NetView for z/OS Security
Reference for more information about restricting keywords.

If you want to use values other than the defaults, code them in each initial
command list used by operators having access to an extended MCS console. With
this approach, the initial command list that runs first sets the appropriate values.

The SETCONID Command: This command enables you to dynamically pick a
name for the console an operator will use. Unlike the GETCONID command, the
console is not obtained when the command is issued. This command is useful
during the running of a clist when the operator logs on, or when an autotask starts
to reserve a unique console name in a SYSPLEX. This reduces system overhead
because the console is not obtained until it is needed (an MVS command is entered
by that operator).

The RELCONID Command: Use the RELCONID command to release an
extended MCS console or subsystem console for the operator, autotask, or PPT. You
can also define an alternative MVS console group and use the SWITCH parameter
to route message traffic to the alternative group when you release the console.

Messages are lost when you release the console, and generally you do not need to
release the console. However, the SWITCH parameter is useful during logoff if you
want to transfer message traffic to an alternative console group. MVS rules
determine which console in a group receives the messages.

Refer to NetView online help for a complete description of the RELCONID
command.

Note: Beginning with z/OS v1r8, the SWITCH parameter is not supported.

Reviewing the NetView Start-up Procedures
CNMPSSI (CNMSJ010) in the CNMSAMP library is the sample start-up procedure
for the NetView subsystem address space. CNMPROC (CNMSJ009) is the sample
start-up procedure for the NetView application address space. In the NetView
samples, CNMP is the 4-character subsystem name defined to MVS in IEFSSNnn.

Chapter 18. Automation Setup Tasks 299

Refer to IBM Tivoli NetView for z/OS Installation: Getting Started for a description of
the symbolic parameters in the sample CNMPSSI procedure. You can adjust the
parameters to meet your own installation requirements.

You can start NetView before you start JES and VTAM and have NetView
automate the start-up of JES, VTAM, other subsystems, and applications. The
advanced automation sample set for initialization takes that approach. If you want
to start NetView first, see “Preparing to Use the Advanced Automation Sample
Set” on page 602 for information about the system definition changes required.

Adding CMDDEF Statements to Allow System Commands from
NetView
System automation is based on the ability to issue MVS system, subsystem, and
application commands from NetView. NetView provides an MVS command
processor that enables a NetView operator to enter an MVS system, subsystem, or
application command from NetView by preceding the command with MVS.
Additional actions are not necessary.

As long as an MVS system or subsystem command is not also a NetView program
or VTAM command, you can set up a CMDDEF statement for it in CNMCMD.
This enables you to enter specific MVS system and subsystem commands from
NetView without preceding them with MVS.

The syntax of the CMDDEF statement for MVS system or subsystem commands is:
CMDDEF.commandname.MOD=CNMCMJC
CMDDEF.commandname.TYPE=R
CMDDEF.commandname.RES=Y

Where:

commandname
Is any MVS system or subsystem command name.

For examples of CMDDEF statements that define MVS, JES2, and JES3 commands
in this manner, refer to members CNMS6401, CNMS6402, and CNMS6403 in the
advanced automation sample set.

Note: Many common system operator command verbs are spelled like NetView
commands. For example, the system commands VARY, MODIFY, DISPLAY,
and REPLY have the same names and abbreviations as the ACF VTAM
commands in NetView, and the MVS abbreviation for HOLD is the same as
the NetView-defined command synonym for the HELP command. You
cannot change the name of an MVS command. Avoid defining these MVS
verbs, or rename the appropriate CMDDEF statements.

Defining and Activating Autotasks
Autotasks can issue commands and respond to messages. Autotasks are vital to
both system and network automation. Because autotasks are operator station tasks
(OSTs), they require OST definition statements in NetView. Include OST definition
statements in DSIOPF for all of the autotasks you need to implement your
automation plan.

For a discussion of how to define autotasks, see “Defining Autotasks” on page 123.

300 Automation Guide

Chapter 19. Suppressing Messages and Filtering Alerts

Message suppression and alert filtering are vital first steps toward automated
operations. Suppression and filtering can relieve the operator of viewing
information that does not require operator intervention. Message suppression can
also relieve NetView automation facilities of the burden of handling many
informational messages.

The sample set for automation provides lists of messages that are good candidates
for suppression. The sample set for automation also provides a log analysis
program that can help you identify messages to suppress. For more information,
see “Log Analysis Program” on page 465.

Suppressing System Messages
Prior to NetView for z/OS Version 5 Release 2, the best way to suppress many
system messages was through the MVS message processing facility (MPF) table or
MPF exit. For more information about MPF, refer to the z/OS library.

With NetView for z/OS Version 5 Release 2, a message revision table can be coded,
which has much more capability than MPF. These references provide more
information:
v Discussion of the Message Revision Table, found in “Message Revision Table” on

page 25.
v The sample CNMSMRT1 table.
v The REVISE command in the NetView online help or IBM Tivoli NetView for

z/OS Command Reference Volume 1 (A-N).

Suppressing Network Messages
Some messages, such as network messages, do not go through the operating
system’s message processing facilities. To suppress unnecessary messages of this
sort, you can use the automation table. You can write automation-table statements
that select exactly the messages you want to suppress, based on message ID,
message text, or many other message attributes. Chapter 15, “The Automation
Table,” on page 149 explains how to code automation-table statements. For
examples, see “Writing Automation Table Statements to Automate Messages” on
page 320.

After identifying a message, you can use the DISPLAY(NO) action to suppress it
from display. You can also use the HCYLOG, NETLOG, and SYSLOG actions to
specify whether NetView must log the suppressed message. “Actions” on page 211
discusses all of these automation-table actions.

Filtering Alerts
NetView provides two sets of filters to assist you with alert management:
v Recording filters

Determine which records NetView logs in the hardware monitor databases. You
can use them to avoid accumulating unnecessary data. Recording filters also

© Copyright IBM Corp. 1997, 2009 301

|
|

allow you to generate messages from alerts, route alerts to a focal point, and
select alert color and highlighting options.

v Viewing filters
Limit the information displayed to individual operators. Viewing filters allow
operators to display only the alerts for which they are responsible, without
sorting through all the information in the hardware monitor databases.

Recording Filters
You can set recording filters with the hardware monitor’s SRFILTER (SRF)
command or with NetView automation-table actions.

An alert-type problem record flows first to the hardware monitor. There, any
SRFILTER commands that you have issued determine the problem record’s initial
filter settings. Next, if the record is eligible for automation, it flows to the
automation table. Statements in the automation table can use SRF, COLOR, and
other actions to override the initial settings for the alert. Finally, the resulting
settings take effect, and NetView processes the record according to your
specifications. For complete routing information, see “NetView Hardware-Monitor
Data and MSU Routing” on page 100.

Note: When you use the SRFILTER command to block a record, the record still
goes to the automation table. The automation table has an opportunity to
override the BLOCK setting.

Unsolicited records coming to the hardware monitor go into the database only if
they pass recording filters. You can use several levels of filtering:

ESREC Event and Statistics Recording Filter. Defines whether a record
must be logged as an event. Operators can view the record on
event panels.

AREC Alert Recording Filter. Defines whether a record that passes the
ESREC filter must also be logged as an alert. Operators can view
the record on alert panels.

OPER Operator Filter. Defines whether the hardware monitor must
generate BNJ146I and BNJ030I messages containing information
about the alert. The messages are sent to the authorized receiver
and go through normal message processing. The OPER filter
applies only if a record passes the AREC filter.

ROUTE Route Filter. Defines whether NetView forwards the alert to the
hardware monitor’s alert focal point in addition to logging the alert
locally. You cannot forward an alert unless it passes the AREC
filter. Both LUC and LU 6.2 forwarded alerts go through the OPER
and COLOR filters again at the focal point. For more information
about filtering at the focal point for LUC forwarded alerts, see
“Alert Forwarding with LUC” on page 392. For more information
on filtering at the focal point for LU 6.2 forwarded alerts, see
“Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts” on
page 388.

TECROUTE TECROUTE Filter. Defines whether NetView forwards the alert to
the Tivoli Enterprise Console (in addition to logging the alert
locally). You cannot forward an alert unless it passes the AREC
filter.

TRAPROUT TRAPROUT Filter. Defines whether NetView forwards the alert to

302 Automation Guide

the SNMP manager in addition to logging the alert locally. You
cannot forward an alert unless it passes the AREC filter.

COLOR Color and Highlighting Filters. Defines how the hardware
monitor must display the record. You can choose the color of the
alert or specify high intensity. You can also choose extended
highlighting options (underscoring, blinking, or reverse video) and
specify whether an alarm must beep when the record is displayed.
Color and highlighting filters, unlike other filters, do not take
BLOCK or PASS values.

You can set the ESREC, AREC, OPER, ROUTE, TECROUTE, and TRAPROUT
filters with the SRFILTER (SRF) command from the hardware monitor or with the
SRF action from the automation table. You can set color and highlighting attributes
with the SRFILTER command from the hardware monitor using the COLOR
parameter. However, you cannot use the SRF action to set color and highlighting
attributes from the automation table. Instead, use the COLOR, HIGHINT, and
XHILITE actions. The automation table can override any or all of the settings
specified by the SRFILTER command.

After a record receives filter settings from the SRFILTER command and the
automation table, the hardware monitor examines the resulting settings for
inconsistencies. Figure 89 on page 304 shows the hierarchy among the filters; any
one of the filters except COLOR can block a record, stopping any of the actions
below the filter from taking place.

Chapter 19. Suppressing Messages and Filtering Alerts 303

Statistics, Events, and Alerts
All unsolicited records received by the hardware monitor are classified as either
events or statistics. Statistics can lead to events if they exceed established
thresholds.

The default SRFILTER setting for all events is PASS. Therefore, each event is placed
in the ESREC database. However, there can be times when you want to block
certain records from being logged to the hardware monitor database. You can
select the events to block with either an SRFILTER ESREC BLOCK command or an
automation-table SRF(ESREC BLOCK) action.

If a record passes the ESREC filter, the hardware monitor records it as an event. If
the event also passes the AREC filter, the hardware monitor creates an alert from
the event. Operators can view the alert on the Alerts-Dynamic panel and other
panels. The default AREC settings depend on the event type and the resource type.
See NetView online help for information about the defaults.

COLOR and OPER Filters
COLOR filters determine how the alert appears on the Alerts-Dynamic and the
Alerts-Static panels. If any filter specifies a color or highlighting value for the alert,
the alert appears in that color. Otherwise, the alert is left to default handling. You
can specify default handling with color maps (refer to the IBM Tivoli NetView for
z/OS Customization Guide, SC31-8859) and the SRFILTER COLOR DEFAULT

Alert from the network

An event is recorded in the
event and statistic database

The alert is
forwarded

to the Tivoli
Enterprise
Console

The alert is
forwarded

to the SNMP
manager.

BNJ146I and
BNJ030I messages

are generated
from the alert

The alert is
forwarded to
a focal point

The alert is
forwarded to
a focal point

An alert is recorded in
the alert database

ESREC
Filter

TECROUTE
Filter

TRAPROUT
Filter

OPER
Filter

ROUTE
Filter

COLOR
Filters

AREC
Filter

Figure 89. Filter Hierarchy

304 Automation Guide

command. With the standard color maps and COLOR DEFAULT setting, an alert
initially appears in white at the top of the Alerts-Dynamic panel and sounds an
alarm; otherwise, the alert is displayed in turquoise.

After an alert is recorded, the hardware monitor examines the setting of the
OPER-filter attribute for the alert. The OPER filter determines whether NetView
must send messages to the NetView authorized operator to describe the alert. The
default for the SRFILTER OPER command is BLOCK.

For example, a record passes the ESREC and AREC filters and is displayed on the
hardware monitor Alerts-Dynamic panel as shown in Figure 90.

If you have set an OPER filter to PASS for resource IBMRING, the NetView
program generates the messages for the alert shown in Figure 91.

Other Recording Filter Information
You can selectively forward alerts to the hardware monitor’s alert focal point by
using the ROUTE filter. The default ROUTE filter is PASS, meaning that the
distributed system forwards all alerts to its focal point. For information about alert
forwarding, see Chapter 26, “Centralized Operations,” on page 375.

You can selectively forward alerts to the Tivoli Enterprise Console by using the
TECROUTE filter. The default TECROUTE filter is BLOCK, meaning that the alert
is not forwarded to the Tivoli Enterprise Console.

You can selectively forward alerts to the SNMP manager by using the TRAPROUT
filter. The default TRAPROUT filter is BLOCK, meaning that the alert is not
forwarded to the SNMP manager.

You can use the DFILTER command to display filters that you have established
with the SRFILTER command. For details about SRFILTER, DFILTER, and other
hardware monitor filtering topics, refer to the NetView online help. For examples
of how to code automation-table statements that select particular records, refer to
“Writing Automation Table Statements to Automate MSUs” on page 324. For
information about the SRF, COLOR, XHILITE, and HIGHINT actions used to
control filtering from the automation table, see “Actions” on page 211.

Viewing Filters
Viewing filters enable a hardware monitor operator to concentrate on certain parts
of the network or certain types of alerts by limiting the alerts that the operator
sees. You can select NetView events and alerts for viewing by using the hardware
monitor SVFILTER (SVF) command. You can display viewing filter settings with
the DFILTER command.

DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION:PROBABLE CAUSE
CNM01 IBMRING LAN 12:30 LOBE WIRE FAULT:RING ADAPTER CABLE

Figure 90. Alert Received on the Alerts-Dynamic Panel

BNJ030I 10/15 12:30 PERM ALERT RECEIVED FROM THE FOLLOWING
RESOURCE: LAN IBMRING

BNJ146I 10/15 12:30 N TYPE=PERM PRID=3725 MAJ=01 MIN=01 ACT=10
HIER=A03NCP,COMC,IBMRING,LAN DOMID=CNM01

Figure 91. Messages Generated for Alerts by NetView

Chapter 19. Suppressing Messages and Filtering Alerts 305

The SVFILTER command affects only the display of the operator whose OST runs
the command. With the SVFILTER command, the operators responsible for
monitoring the system or network can use filters to exclude any extraneous alert
records. This enables the operator to focus on a specified area of responsibility.

The SVFILTER command, like the SRFILTER command, can affect a particular
event type, resource name, or resource type, or can affect all resources attached to
a specified resource. In addition, you can base viewing filters on the time that
NetView received the record. The defaults for viewing filters are PASS.

For example, suppose you have one department dedicated to ensuring that
service-level agreements are met in the area of system performance. An operator in
that department might set viewing filters to BLOCK for all event types other than
PERF. This allows the operator to view only those alerts that affect that particular
department (the performance alerts).

To implement effective viewing filters, become familiar with the syntax of the
SVFILTER command and its various options. For syntax information, refer to the
NetView online help.

Bypassing Filters
In unusual conditions, you might want to bypass normal filtering. You can write
an XITCI installation exit routine that gives a return code of 252 or use an XLO
action in the automation table to specify external logging only for a record. In this
case, NetView sets all filters to BLOCK for the record. You can also give an XITCI
return code of 253, in which case NetView sets the ESREC filter to PASS but all
other filters to BLOCK. Another installation exit that can alter normal filtering is
DSIEX16B. Refer to IBM Tivoli NetView for z/OS Programming: Assembler and IBM
Tivoli NetView for z/OS Programming: PL/I and C for information about installation
exits.

306 Automation Guide

Chapter 20. Consolidating Consoles

Attention: Beginning with z/OS v1r8, some of the functions described in this
chapter are not supported.

Console consolidation enables you to reduce the number of consoles your
operators must monitor. You can combine operations for NetView, the MVS master
console, and subsystem consoles on a single NetView command facility screen.
Operators can issue MVS commands from the NetView console to perform master
console operations.

For example, if an MVS system that is a focal point is monitoring the activities of
several MVS systems, you can consolidate messages from all of the systems on one
screen. The NetView command facility, at the focal point, displays messages from
the target systems to operators in a consistent way, even if you have a variety of
operating systems. In addition, you can reduce the number of consoles required for
monitoring, possibly to one console. Chapter 26, “Centralized Operations,” on page
375 describes the operation of remote systems and networks from a centralized
focal point system.

How to Consolidate Consoles
You can consolidate consoles using the message processing facility (MPF), which
can route system messages to NetView. These messages flow to NetView over the
subsystem interface or to extended multiple console support (EMCS) consoles
being used by NetView, depending on which MVS message delivery mechanism
was selected in the CNMSTYLE member.

With extended console support, MPF can route system messages to NetView by
sending to the CNMCSSIR task all messages marked AUTO(YES) or AUTO(token)
in the MPF table, or which are subject to NETVONLY or REVISE(″1″ AUTOMATE)
revision table actions or similar. Use the NetView automation table to route
messages to any NetView operator console.

The terminal access facility (TAF) enables you to intercept messages from certain
applications or subsystems to their own master terminals or consoles. You can
issue commands from NetView as if it were the console of the application.
Therefore, you can manage many subsystems or applications from a single
command facility screen. The subsystems include but are not limited to CICS and
IMS. For more information about using TAF to consolidate consoles, see Table 18
on page 432.

Differences between NetView and Multiple Console Support Consoles
When displaying system and network messages through NetView in an automated
environment, be aware of the differences in the way messages are displayed on the
command facility screen as compared to the operating system consoles, particularly
in an MVS environment. The following sections describe these differences.

Screen Handling and Message Placement
With both the command facility screen and the multiple-support-console console,
new lines are written below the last message displayed. If the screen fills on a

© Copyright IBM Corp. 1997, 2009 307

|

multiple-support-console console, the complete screen is rewritten with the newest
message on the lowest message line, giving the effect that the whole message area
has been shifted up. The oldest (deletable) line is then lost.

If the screen fills in the command facility, the newest message is written to the first
message line, which is not necessarily at the bottom of the screen. A wraparound
approach is used: each message stays where it is, and a line of dashes divides the
newest message from the oldest. As new messages arrive, the dividing line moves
down the screen, overwriting the oldest message each time (which is similar to the
technique used for JES3 consoles). If you press ENTER, the section of the panel
below the line of dashes moves to the top, and the section of the panel above the
line of dashes moves to the bottom.

Message Line Format
The multiple support console can optionally precede each message with a time
stamp and a JOB, STC, or TSO number that indicates which job, started task, or
TSO user issued the message. For NetView command facility screens, you can use
a screen format (SCRNFMT) definition to customize the message prefix. Among
the items that can be added to the message prefix are:
v The date, in variable format
v The domain name
v The job name and ID for MVS messages
v The TAF session name

The screen format definition can be activated using the DEFAULTS command or
the OVERRIDE command. See NetView online help for a complete list of items,
and information about the DEFAULTS and OVERRIDE commands.

Messages that arrive in NetView as message data blocks (MDBs) can contain
additional source information. You can specify the name of this additional source
information as a message prefix. Refer to the IBM Tivoli NetView for
z/OS Administration Reference and the IBM Tivoli NetView for z/OS Customization
Guide for more information about screen format definitions.

Display Area Capability
A multiple-support-console console operator can use the MVS CONTROL (K)
command to change characteristics of the console. NetView command facility
screens do not have an out-of-line display area capability, so all command response
information is displayed in-line (similar to the effect of K A,NONE for the multiple
support console). That means that parts of a response can be overwritten if the
message has many lines or occurs at a time of heavy message traffic. Operators can
use the AUTOWRAP command to control the flow of messages to a NetView
display.

Screen Refresh
NetView command facility screens have a timed AUTOWRAP capability, such as
that offered to multiple-support-console consoles using the RTME parameter of the
CONTROL command. Operators can use the AUTOWRAP NO command to stop
the refresh.

Prefix Command Name
By defining each command in CNMCMD, operators can issue MVS commands
without the prefix MVS. Sample definitions are provided in the automation
samples in CNMS6401, CNMS6402, and CNMS6403.

308 Automation Guide

If a CNMDEF definition is used to allow JES2 commands to be entered without the
MVS prefix, they must be entered in the form $D J555 rather than $DJ555 because
NetView uses the first token as the command. CNMDEF can also be used to
provide an alternative prefix other than MVS.

Message Holding
Action messages are WTORs or those marked with a Descriptor code that matches
one of those specified on the MVSPARM.ActionDescCodes CNMSTYLE statement.
Assuming no automation, if an MVS action message is received and displayed at
an operator’s screen, it is handled as if HOLD(Y) was specified in the automation
table entry. Conversely, if a non-action message is automated with
DOMACTION(DELMSG) or DOMACTION(AUTOMATE) rather than by
HOLD(NO), the message is also held. Either of these message types can be deleted
by a DOM. Action messages are highlighted as soon as they are displayed. For
either of the above cases, the message does not roll off the screen when more
messages arrive. If the task where one of these messages is held receives a
subsequent MVS DOM request, any message highlighting is removed.
Alternatively, an operator can delete any held or action messages from the
NetView screen by putting the cursor on any line of the message and pressing
ENTER.

For descriptions of the actions that can be performed in the automation table, see
the Actions section in Chapter 13.

Delete operator message (DOM) requests are also passed to NetView-NetView
tasks (NNTs). That means that the associated operator station task (OST) at a focal
point system automatically removes action messages held on its screen. The OST
then reroutes the DOM to all OSTs and NNTs in its own domain, allowing the
message to be deleted wherever it might have been routed. If an NNT session
breaks after a message has been routed on it, DOM routing does not occur.

Note: NNTs do not support all types of DOMs. Therefore, when you use EMCS
consoles, use the DOM(NORMAL) EMCS console attribute.

Color and Other Highlighting Attributes
You can specify the colors to be used in the command facility in any of several
ways:

Note: With the Message Revision Table capability added in NetView Version 5.2,
most of the functions available to the MPF table can also be performed by
using the Message Revision Table, described in “Message Revision Table” on
page 25.

v You can set colors with an installation exit.
v If you are using EMCS consoles, the MVS system messages are delivered in the

color specified in the MPF table or the Message Revision Table.
v You can set the color, highlighting, and intensity for messages using the COLOR,

XHILITE, and HIGHINT actions in the automation table. Colors set with
automation table actions override the colors specified in the MPF table or the
Message Revision Table. You can change values in the automation table without
stopping and restarting NetView.

v You can use a screen format definition to set colors of certain fields on the
NetView command facility screen, such as the command area. In addition, the

Chapter 20. Consolidating Consoles 309

screen format definition can specify colors for action, normal, and immediate
messages. The DEFAULTS or OVERRIDE command activates the screen format
definition.

For a general description of customizing the NetView command facility screen,
refer to the IBM Tivoli NetView for z/OS Customization Guide. For specific screen
format definition statements, refer to the IBM Tivoli NetView for z/OS Administration
Reference. Refer to the NetView online help for a complete list of items, and details
about the DEFAULTS and OVERRIDE commands.

Notes:

1. MPF table color and highlighting for MVS system messages overrides the
screen format definition for message color and highlighting.

2. Automation table specification of color and highlighting overrides the MPF
color specification and the screen format definition for color and highlighting.
Automation table specification of color and highlighting also overrides the
color and highlighting specified with installation exit DSIEX02A or installation
exit DSIEX17.

3. Installation exit specification of color and highlighting overrides the MPF color
specification and the screen format definition for color. Installation exit
DSIEX16 can override the color and highlighting specified in the automation
table.

4. When you browse the network log, the messages do not appear in the same
colors they appeared in on the NetView command facility screen.

Operators can manipulate each of the color and highlighting attributes
independently. For example, an MVS system message that has a match in the
automation table with a COLOR action is presented in the intensity and
highlighting specified in the MPF table. The color of the message is the color
specified in the automation table.

Benefits of NetView Command Facility Screens
The benefits provided by using NetView command facility screens are:
v You can customize the NetView command facility screens by changing the

message colors and prefixes.
v An operator can be located some distance from the system (possibly over a

communication link), in a geographically remote location.
v Using the NetView BROWSE command, an operator can directly view the

network log, operational command lists, and parameter library members of the
NetView application. NetView operators can view other system libraries, such as
SYS1.PARMLIB, if they are included in the NetView DD statements (for
example, as part of DSIPARM). They can also use TAF to browse libraries on
other NetView systems.

v The NetView help facility provides information about command syntax and the
use of each command, as well as VTAM return-code information. Operators
have ready access to help information from any NetView terminal. You can
easily add custom online help information for your own operators.

v You can use NetView command security checklists and your own command lists
and command processors to provide each operator with appropriate commands
and functions.

v A NetView operator can use TAF sessions to other applications such as TSO,
CICS, and IMS, eliminating the need for separate application consoles.

310 Automation Guide

Using Multiple-Support-Console Consoles with Autotasks
You can use the AUTOTASK command to associate a multiple-support-console
console with a NetView autotask. You can then enter NetView commands from the
multiple-support-console console for execution under the autotask and receive
messages in response.

The multiple-support-console console also receives all messages that it would
receive normally as a console. For consoles assigned with the AUTOTASK
command, these considerations apply:
v Definitions for the multiple-support-console console in the CONSOLxx member

and those of the active MPFLSTxx apply.
v The display area can still be used only by specific MVS commands. NetView

commands do not write output to multiple-support-console console status
display areas. Their output appears as normal message traffic.

v NetView commands entered at an multiple-support-console console must be
preceded by the designator character string for the NetView subsystem. The
designator character string is specified in the parameter field of the NetView
subsystem START procedure. NetView screen control actions such as HOLD(Y)
and BEEP(Y) in the automation table have no effect on multiple-support-console
consoles that display messages for their associated autotask. Similarly, NetView
screen control commands such as INPUT and RETRIEVE have no effect on an
EMCS console.

v BROWSE and other full-screen applications are not available under autotasks
and so cannot be used from multiple-support-console consoles.

v WTOR and action messages from other domains do not have console
characteristics (HELD/HIGHLIGHT) so that they are not confused with the
action messages from the system.

Chapter 20. Consolidating Consoles 311

312 Automation Guide

Chapter 21. Consolidating Commands

You can consolidate commands by replacing or supplementing a complex process
or sequence of commands with a command procedure. Consolidating commands
decreases the amount of typing needed to accomplish a process and reduces the
chance of a mistake. Consolidating commands ensures that all operators use the
same process to accomplish a particular action or to solve a particular problem.
Consolidating commands also prepares the way for additional automation, because
automation facilities, such as the automation table and timer commands, can use
some of the command procedures you develop.

Writing Simple Command Procedures
You can consolidate commands most easily with command lists, which are written
in REXX or the NetView command list language. For long, performance-sensitive
procedures, you might want to use a command processor written in PL/I or C.
You can start by writing command lists and convert some of them to command
processors after they have been tested, debugged, and tuned. Chapter 10,
“Command Lists and Command Processors,” on page 113 discusses command lists,
command processors, and the languages available on each operating system. For
detailed information about command lists and command processors, see the
NetView customization books.

The first step is to identify action sequences that your operators perform
repeatedly. Actions in the sequence can include issuing NetView commands,
VTAM commands, and system commands. Actions can also include such things as
waiting for the messages that result from a command or periodically checking the
status of a resource. Good sources of information about common operator actions
include operator procedure books, system and network logs, and the operators
themselves.

Next, create a command procedure that accomplishes the action sequence you have
identified:
v Use a text editor (such as ISPF) to place your instructions in a file. See the

NetView customization books for coding information.
v If you are writing a command list with a member name equal to the name of the

command list, place the command list in a DSICLD data set.
v If you are writing a PL/I or C command processor, compile the command

processor and link-edit it into a STEPLIB data set. Add a CMDDEF statement for
the procedure to CNMCMD and stop and restart the NetView program to put
the new statement into effect. See IBM Tivoli NetView for z/OS Programming: PL/I
and C for complete information about defining a PL/I or C command processor
to the NetView program.

To illustrate with a simple example, suppose that your operators activate an NCP
with the command in Figure 92.

To provide them with a shorter command, you can write a command list called
ACTNCP1 in the NetView command list language. The command list might look

V NET,ACT,ID=NCP1,LOAD=YES,LOADSTA=LINK1

Figure 92. Activating an NCP with a Command

© Copyright IBM Corp. 1997, 2009 313

like Figure 93.

After you create this command list, operators can issue the command ACTNCP1
(or any command synonyms you define) instead of the whole command.

When your operators are comfortable with the change, you can enhance the
command list. For example, you can make it more generic by receiving the name
of the NCP to activate as a parameter. You can also have it verify that the NCP
was activated successfully.

Anticipating Additional Automation
Many of the command procedures that you create for operators can later be used
by automation facilities. For example, you can use an EVERY command to
schedule the ACTNCP1 command list shown in Figure 93 so that it runs every day.

Therefore, consider suitability for automation when writing a command procedure.
For example, any command procedure that pauses to wait for operator input or
uses a full-screen panel for operator input needs to be modified before you can use
the procedure from an autotask. Similarly, command procedures that wait for
messages must have a time-out value specified so that an autotask does not wait
indefinitely if an expected message does not arrive. A command procedure that
you intend to use for automation must also provide a good audit trail, so that you
can check on the automated actions taking place. For example, a command
procedure can send a message to the network log every time it runs.

Modifying Command Procedures
If you want to modify a command procedure after it is in production, make a copy
of the procedure under another name or in another data set. Test and tune the
procedure under the test name or in the test data set before placing it into
production. You can substitute the new procedure for the one in production after
you have tested and tuned the new procedure. Waiting until then reduces the
chance that an error in an untested procedure affects your production environment.

You can control the order in which the NetView program searches your
command-procedure data sets for a command list. You can do so by concatenating
the data sets in your NetView start procedure in the order you want them
searched. Consider using this order:
1. Production data set
2. Test data set
3. Original command-list data set (CNMCLST)

ACTNCP1 CLIST
&CONTROL ERR

* *
* ACTNCP1 - Activates NCP1 *
* *

V NET,ACT,ID=NCP1,LOAD=YES,LOADSTA=LINK1
&EXIT

Figure 93. Sample Command List for Activating an NCP

314 Automation Guide

Documenting Command Procedures
In an automated environment, command procedures take the place of many critical
operator activities. Therefore, it is important to create command procedures that
are easily understood and maintained.

You must include the information in Table 12 in a consistent format in all
command procedure prologs.

Table 12. Documenting Command Procedures

Information Reason

Creation date For tracking purposes

Software level of command procedure For reference, if your system software is
changed

Author For tracking purposes

Function To provide a quick reference of the
procedure’s function

Expected input and output For reference when updating this and other
procedures

Variables used For reference when updating this and other
procedures

Procedures that call or are called by this
procedure

To enable quick reference to other procedures
in the chain

Change activity To maintain control of change activity

For example, Figure 94 on page 316 shows the documentation within the
AOPIGUPD (CNME6401) command list. AOPIGUPD is a bilingual command list in
the advanced automation sample set. An asterisk at the beginning of a line
indicates a comment in the NetView command list language portion. Comments in
the REXX portion begin with /* and end with */ delimiters.

Chapter 21. Consolidating Commands 315

/*AOPIGUPD CLIST
&CONTROL ERR

* (C) COPYRIGHT IBM CORP. 1990 *
* IEBCOPY SELECT MEMBER=((CNME6401,AOPIGUPD,R)) *
* LAST CHANGE: 12/18/89 *
* *
* DESCRIPTION: SEE COMMENTS AT END OF SAMPLE *
* *
* CNME6401 CHANGED ACTIVITY: *
* CHANGE CODE DATE DESCRIPTION *
* ----------- -------- --------------------------------------*

* BUILD THE COMPLEX COMMON GLOBAL VARIABLE *
* &COMPLEXVAR IS SET TO THE CONCATENATION OF THE FIRST THREE *
* INPUT PARAMETERS *

&COMPLEXVAR = &CONCAT &1 &2
&COMPLEXVAR = &CONCAT &COMPLEXVAR &3

* SET THE VALUE OF THE CONSTRUCTED GLOBAL VARIABLE *

&CGLOBAL &COMPLEXVAR
&&COMPLEXVAR = &4
&EXIT

* CLIST NAME : AOPIGUPD *
* CATEGORY : INITIALIZATION UTILITY *
* DESCRIPTION : SET COMMON GLOBAL VARIABLE VALUE FOR AN *
* : AUTOMATED APPLICATION. THE DESIRED COMPLEX *
* : GLOBAL VARIABLE IS CONSTRUCTED USING INPUT *
* : PARAMETERS &1, &2, AND &3 THE CONSTRUCTED *
* : GLOBAL VARIABLE IS THEN SET TO THE VALUE *
* : PASSED IN INPUT PARAMETER &4 *
* INPUT PARMS : &1 - RESOURCE COMMON PREFIX (MAX. 5 CHARS) *
* : &2 - FUNCTION IDENTIFIER (MAX. 3 CHARS) *
* : &3 - APPLICATION IDENTIFIER (MAX. 3 CHARS) *
* : &4 - DESIRED VARIABLE VALUE *
* VARIABLES : &COMPLEXVAR IS A TEMPORARY VARIABLE TO HOLD *
* : THE NAME OF THE CONSTRUCTED COMPLEX *
* : GLOBAL VARIABLE. *
* ACTION : VALUE SET FOR COMMON GLOBAL VARIABLE *
* CALLING CLISTS : AOPIVARS *
* CALLED CLISTS : NONE *
* *

&EXIT

END OF CLIST */

Figure 94. Sample Command Procedure (Part 1 of 2)

316 Automation Guide

/* REXX CONVERSIONS */

/* AOPIGUPD Command List */

TRACE E
/***/
/* (C) COPYRIGHT IBM Corp. 1990 */
/***/
/***/
/* Build the complex common global variable COMPLEXVAR and set */
/* it to the concatenation of the first three input parameters */
/***/
complexvar = MSGVAR(1)||MSGVAR(2)||MSGVAR(3)
/***/
/* Set the value of the constructed global variable */
/***/
INTERPRET complexvar '= MSGVAR(4)'
'GLOBALV PUTC 'complexvar
EXIT
/***/
/* Command List Name : AOPIGUPD */
/* Category : Initialization utility */
/* Description : Set common global variable value for an */
/* : automated application. The desired complex */
/* : global variable is constructed using input */
/* : parameters 1, 2, and 3. The constructed */
/* : global variable is then set to the value */
/* : passed in input parameter 4. */
/* Input Parms : MSGVAR(1) - resource common prefix */
/* (max. 5 chars) */
/* : MSGVAR(2) - function identifier */
/* (max. 3 chars) */
/* : MSGVAR(3) - application identifier */
/* (max. 3 chars) */
/* : MSGVAR(4) - desired variable value */
/* Variables : COMPLEXVAR is a temporary variable to hold */
/* : the name of the constructed complex */
/* : global variable. */
/* Action : Value set for common global variable */
/* Called By : AOPIVARS */
/* Calls : None */
/* */
/***/

Figure 94. Sample Command Procedure (Part 2 of 2)

Chapter 21. Consolidating Commands 317

318 Automation Guide

Chapter 22. Automating Messages and Management Services
Units (MSUs)

This chapter describes how you can use the NetView automation table to automate
the handling of common messages and management services units (MSUs). It
includes information about how you can automate other information by first
converting it to messages or MSUs. For example, you can generate messages from
hardware monitor records other than MSUs and from status changes detected by
the status monitor and the NetView management console.

While reading this chapter, you might want detailed syntactical information about
how to code certain automation-table statements. For this type of information, see
Chapter 15, “The Automation Table,” on page 149.

You can also use the Automated Operations Network (AON) component of
NetView to automate handling of common messages and MSUs. See Chapter 31,
“Using Automated Operations Network,” on page 443 for more information.

Deciding Which Messages and MSUs to Automate
A good way to identify which messages and MSUs to automate is to review with
your operators the system and network logs that record activity during a typical
shift.

Operators can help identify messages and MSUs that always lead to a predictable
sequence of commands at the operator console. For example, a message might
require a REPLY command, might indicate that it is time to cancel a job, or might
indicate a recoverable device failure. Look for and automate the most obvious
candidates first. Later, you can review your environment with your operators to
select another set of messages and MSUs to automate.

A log analysis program for MVS can help you analyze the messages in your
message logs. See “Log Analysis Program” on page 465. When you are identifying
messages to automate, try to handle system messages with the operating system’s
message processing facility. Use NetView to suppress messages that the operating
system cannot suppress, such as network messages or messages on an MVS system
that you want to identify by both job name and message ID.

Operators and logs are just two of many sources that can help you find messages
and MSUs to automate. See Chapter 3, “Defining an Automation Project,” on page
41 for a discussion of several other sources that you might find useful, such as
procedure books, problem management reports, help desk logs, service level
agreements, and users.

Some messages cannot be automated. For example, messages issued by the DSIPSS
macro with TYPE=FLASH are not exposed and cannot be automated.

After you decide on the messages and MSUs you want to automate, you can code
automation-table statements to select those messages and MSUs.

© Copyright IBM Corp. 1997, 2009 319

Writing Automation Table Statements to Automate Messages
After you decide to automate a message, the next step is determining how to select
it, or describe it to the automation table so that it cannot be mistaken for another,
similar message. Depending on the message or class of messages you want to
automate, you can use the message ID, other specific criteria, or general criteria
that select a large class of messages. Many message attributes are available for
automation, such as whether a message is solicited or unsolicited and whether a
message was issued by an authorized or unauthorized program.

Checking by Message ID
In many cases, you can select a message by using its message ID. The message ID
is a key that distinguishes the message from all others and typically appears at the
beginning of the message. You can use the MSGID keyword to automate a message
based on its ID.

For example, suppose you want to select a NetView message DSI001I MESSAGE
SENT TO taskid. To select this message and suppress it, you can use the IF-THEN
statement in Figure 95.

The message ID is not always the first word, or token, in a string. In MVS WTORs,
the ID is the second token, because the message begins with a reply ID. In the
WTOR message 01 AHL125A RESPECIFY TRACE OPTION OR REPLY U, AHL125A is the
message ID. In these cases, you can still use the message ID to select a message.
For example, you might select and suppress the preceding WTOR message with
the statement in Figure 96.

Automating Action Messages
Messages that NetView marks as action messages may or may not have associated
DOMs. Therefore, ensure that messages that do not have associated DOMs are
accounted for with appropriate automation statements. The
DOMACTION(NODELMSG) automation action prevents storage usage associated
with waiting for the DOM. See IBM Tivoli NetView for z/OS Administration Reference
for more information about the MVSPARM.ActionDescCodes CNMSTYLE
statement. See “DOMACTION” on page 214 for more information about what
action to take regarding a DOM.

A backup approach is to specify a threshold on the MAXCSSIR keyword of the
DEFAULTS command. This uses a REXX procedure to remove the oldest, most
duplicated messages from the address spaces having the most held messages. Refer
to sample CNME1103 for more information.

Checking Other Specific Criteria
Sometimes the message ID is not specific enough to identify a message you want
to automate. The message text might contain additional information that you can
use to select the message for a specific action. These sections provide examples of

IF MSGID = 'DSI001I' THEN
DISPLAY(N);

Figure 95. Example of Checking a Message by Message ID

IF MSGID = 'AHL125A' THEN
DISPLAY(N);

Figure 96. Example of Checking an MVS WTOR Message Using the Message ID

320 Automation Guide

how you can select a subset of the messages with a certain message ID, such as
DSI039I MSG FROM AUTOMGR : CHECKING AUTOTASK - AUTOJES.

DSI039I, in the previous example, is a message that one operator or autotask can
send to another by issuing the MSG command. In this case AUTOMGR, one of the
autotasks in the advanced automation sample set, is issuing the MSG command. If
you were to select the message based on the ID alone, you would be automating
all messages generated by MSG. But you can use additional criteria to select just
those DSI039I messages that you want to automate.

Checking Messages by Domain ID
One criterion you can use is the domain ID. For example, you can select all
DSI039I messages from domain CNM01 and place copies in the MVS system log,
as shown in Figure 97.

Checking Messages with Tokens
You can use tokens to help specify a message for automation. NetView divides the
message text into tokens wherever blanks, or spaces, appear. The message DSI039I
MSG FROM AUTOMGR : CHECKING AUTOTASK - AUTOJES. has nine tokens:
TOKEN(1) DSI039I
TOKEN(2) MSG
TOKEN(3) FROM
TOKEN(4) AUTOMGR
TOKEN(5) :
TOKEN(6) CHECKING
TOKEN(7) AUTOTASK
TOKEN(8) -
TOKEN(9) AUTOJES

In the DSI039I message, TOKEN(4) is the task that issued the message command.
The statement in Figure 98 selects all DSI039I messages from AUTOMGR.

Checking Messages by Position
Message DSI039I is arranged so that the content of the message begins in position
29. Therefore, you might use TEXT(29) to obtain the contents of the message. You
fail to select the message if you specify only part of the contents, as in the
statement in Figure 99.

The statement in Figure 99 does not select the message, because TEXT(29) equals
CHECKING AUTOTASK - AUTOJES, rather than just CHECKING.

IF MSGID = 'DSI039I' &
DOMAINID = 'CNM01' THEN

SYSLOG(Y);

Figure 97. Example of Checking a Message by Domain ID

IF MSGID='DSI039I' &
TOKEN(4)='AUTOMGR' THEN

SYSLOG(Y);

Figure 98. Example of Logging A Message Using a Token

IF MSGID = 'DSI039I' &
TEXT(29) = 'CHECKING' THEN

SYSLOG(Y);

Figure 99. Example of Logging a Message Using a Text Position

Chapter 22. Automating Messages and Management Services Units (MSUs) 321

Checking Messages by a Placeholder
In contrast, the statement in Figure 100 uses a placeholder (.) and does select the
sample message.

This statement compares the text beginning in position 29 to the string CHECKING
followed by anything else, which is indicated by the placeholder.

Checking General Criteria
By using general criteria, you can make your automation statements select a large
group of messages instead of a single message ID or domain ID. Again, the
message used for demonstration purposes is DSI039I MSG FROM AUTOMGR :
CHECKING AUTOTASK - AUTOJES.

Checking Criteria with Logical-AND Logic
The statement in Figure 101 selects DSI039I messages from any domain whose
name starts with the string CNM. The statement sends these messages to OPER1, if
OPER1 is logged on; otherwise, the statement does not affect the routing. The
statement compares the domain ID to the string CNM followed by anything, as
indicated by the placeholder (.).

Checking Criteria with Logical-OR Logic
You can also make IF conditions more general by using logical-OR logic. You can
select a statement if either of two (or more) conditions applies. The statement in
Figure 102 selects the DSI039I message if it comes from either AUTOMGR or
SYSOP.

Checking Criteria Using Placeholders
You can use placeholders both before and after a string value for comparison. The
statement in Figure 103 selects any DSI039I message that has the string
CHECKING in it anywhere starting with position 29.

Use caution when using such general comparisons. Too general a comparison can
lead to automation of messages that you did not intend to process. The IF
condition in Figure 103 matches the example message DSI039I MSG FROM

IF MSGID = 'DSI039I' &
TEXT(29) = 'CHECKING' . THEN

SYSLOG(Y);

Figure 100. Example of Logging a Message Using a Placeholder

IF MSGID = 'DSI039I' &
DOMAINID = 'CNM' . THEN

EXEC(ROUTE(ONE OPER1 *));

Figure 101. Example of Routing Messages Using Logical-AND Logic

IF MSGID = 'DSI039I' &
(TOKEN(4) = 'AUTOMGR' | TOKEN(4) = 'SYSOP') THEN

EXEC(ROUTE(ONE OPER1 *));

Figure 102. Example of Routing Messages Using Logical-OR Logic

IF MSGID = 'DSI039I' &
TEXT(29) = . 'CHECKING' . THEN

EXEC(ROUTE(ONE AUTO1));

Figure 103. Example of Routing Messages Using a Placeholder

322 Automation Guide

AUTOMGR : CHECKING AUTOTASK - AUTOJES but also matches the message DSI039I
MSG FROM OPER1 : I AM CHECKING ON THE STATUS OF THE SPOOL UTILIZATION.

Do not use a general comparison for a string anywhere in the text of a message
unless you use a more specific condition in conjunction with it. In Figure 103 on
page 322, the MSGID='DSI039I' condition prevents the statement from matching
any other messages that contain the string CHECKING after the 28th position.

Comparing Text with Parse Templates
When you are describing the messages you want to automate, you can perform
flexible text comparisons with parse templates.

For example, you might want to automate a message whose contents are not
always the same. The data in the message can be different each time the message
is displayed, but the location of the data in the message helps identify the message
as the one you want to automate.

Using Placeholders in a Parse Template
For example, suppose you want certain actions to occur whenever the message
IEE362A SMF ENTER DUMP FOR SYS1.MANx ON volser appears.

The IF-THEN statement in Figure 104 selects that message for automation. This
statement uses placeholders (periods) to skip unpredictable text.

The statement checks for a message ID of IEE362A and the string FOR SYS1.MAN
anywhere in the message text, followed by anything, followed by the string ON,
followed again by anything. With a statement like this, you can check a long text
string without knowing exactly what data appears in all parts of the string. You do
not have to know the sizes or contents of the fields indicated by the placeholders.

Using Variables in a Parse Template
By using variables instead of placeholders, you can extract data from a message.
You can then use the variable in the action portion of the statement to represent
the extracted data. For example, you can code an IF condition using the variable
names LIBIND and VOLSER instead of the second and third placeholders in
Figure 104. The statement appears as shown in Figure 105.

The variable LIBIND stores whatever data is in the message between the strings
FOR SYS1.MAN and ON. The variable VOLSER applies to whatever data follows
the string ON, to the end of the message.

If the message IEE362A SMF ENTER DUMP FOR SYS1.MANX ON CPDLIB occurs, the
value of the variable LIBIND becomes X, and the value of VOLSER becomes
CPDLIB.

IF MSGID='IEE362A' & TEXT= . 'FOR SYS1.MAN' . 'ON' . THEN
EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Figure 104. Example of Using a Placeholder in a Parse Template

IF MSGID='IEE362A' & TEXT= . 'FOR SYS1.MAN' LIBIND 'ON' VOLSER THEN
EXEC(CMD('CLISTA ' LIBIND ',' VOLSER) ROUTE(ONE AUTO1));

Figure 105. Example of Using Variables in a Parse Template

Chapter 22. Automating Messages and Management Services Units (MSUs) 323

Using Parse Templates with Multiline Messages
You can automate single-line and multiline messages. For multiline messages, you
can use a parse template to extract information only from the first non-blank line
of the message. You must use a command procedure if you want to extract
information from the other lines of the message. Examples of multiline messages
are those that are issued in response to the NetView MAPCL command, the VTAM
DISPLAY command, the MVS DISPLAY command, and several forms of the JES2
$D command. Actions that you specify for these messages apply to the entire
message, including all the individual lines of the message.

Writing Automation Table Statements to Automate MSUs
The NetView automation table enables you to automate handling of management
services units (MSUs). You can automate five types of MSUs:
v NMVTs
v CP-MSUs
v MDS-MUs
v RECMSs
v RECFMSs

Figure 106 shows the structure of a multiple domain support message unit
(MDS-MU) that contains a control point management services unit (CP-MSU).
Figure 107 on page 325 shows the structure of a network management vector
transport (NMVT). For more information, refer to the Systems Network
Architecture library.

Multiple Domain Support Message Unit (MDS-MU) GDS Variable

MDS-MU
Containing
CP-MSU

All numbers are in hexadecimal format.
LL or LLLL refers to a 1- or 2-byte field specifying a structure's length.

MDS Routing Information GDS Variable

NetID SF NetID SFNAU SF NAUAppl. SF Appl. SF

Origin Location Subvector Destination Location Subvector

Management Services Major Vector
LLLL 1310

LLLL 1311 LL 81 LL 01 data LL 02 data LL 03 data LL 01 data LL 02 data LL 03 dataLL 82

LLLL 1311 data LLLL 1549 data LLLL 1212

MDS Routing
Information
GDS Variable

Unit of Work
Correlator
GDS Variable Possible

Additional MS
Major Vectors

CP-MSU GDS Variable

Figure 106. Conceptual View of a CP-MSU

324 Automation Guide

Notice that the data being conveyed, in this case an alert, lies in a structure called
a management services major vector. A management services major vector includes
these major vectors:
v X'0000'
v X'0001'
v X'0002'
v X'0025'
v X'1332'
v X'1044' (encapsulated RECMS)
v X'1045' (encapsulated RECFMS)

A management services major vector looks the same in a CP-MSU as in an NMVT.

You can use the RATE statement to suppress repetitive MSUs from resources.
MSUs that are blocked by a filter generated as a result of the RATE function are
not passed to automation. If you want these MSUs to be automated, add an
AUTORATE statement to the BNJDSERV DST initialization member. Refer to the
RATE and AUTORATE statements in the IBM Tivoli NetView for z/OS Customization
Guide.

For these examples, suppose you want to automate an alert that you are receiving
from a local area network. The alert comes to NetView in an NMVT, and you
decide to select the NMVT for automation. You might start by observing an
instance of the alert on the hardware monitor’s Alerts-Static panel. From there, you
can type DM to get the detail menu and choose 1 to get a hexadecimal display of
the NMVT. Paging through two or three panels, you can view the entire contents
of the alert, as shown in Figure 108 on page 326.

LLLL 0000 LL 31 data LL 10 data LL 01 data LL 51 data LL 92 data LL 93 data LL 96 data LL 05 data

NS Header
41038D

Self-Def.
Text
Message

Product
Set ID

Date/
Time

LAN Link
Connect.
Data

Generic
Alert
Data

Probable
Causes

Failure
Causes

Hierarchy
Resource
List

0 3 5 7 8

xx PRID Flags Management Services Major Vector

Example of a Managment Services Major Vector (an Alert)

NMVT

All numbers are in hexadecimal format.
LL or LLLL refers to a 1- or 2-byte field specifying a structure's length.

Figure 107. Conceptual View of an NMVT

Chapter 22. Automating Messages and Management Services Units (MSUs) 325

Checking for Field Existence
To select an MSU for automation, you can use the MSUSEG compare item (see
“MSUSEG” on page 197 for syntax rules). Begin at the major-vector level and work
your way down. For example, you might select all MSUs that pass through the
hardware monitor and contain alert major vectors, which have a key of X'0000',
and color them green, as shown in Figure 109.

In the example, MSUSEG(0000) returns the entire contents of the alert major vector,
if one exists. By comparing the result to the null ('') keyword, you can ignore the
contents of the alert major vector and merely check whether such a major vector
exists.

Checking Subvectors
To move down in levels, use the period (.) character. The level below the major
vector is the subvector. If you want to select only those X'0000' major vectors that

TIVOLI NetView SESSION DOMAIN: CNM99 R350581 12/02/97 15:11:18

NPDA-44C * HEXADECIMAL DISPLAY OF DATA RECORD * PAGE 1 OF 3

CNM01 DEVLAN3 LANMGR DEVLAN3

+--------+ +--------+ ----
DOMAIN | SP |---| TP |---(LAN)

+--------+ +--------+ ----
DATE/TIME: 05/02 15:10

NMVT MAJOR VECTOR 0000 - 41038D 0000000000 0157 0000
SUBVECTOR 31

B1310602 02B90025 07110349 00140003 21119F30 E3888540 D9899587 40C59999
969940D4 969589A3 9699404D D9C5D45D 408881A2 408485A3 8583A385 8440A388
81A34081 95408184 8197A385 994089A2 4085A797 85998985 95838995 874085A7
8385A2A2 89A58540 83969587 85A2A389 96954081 95844089 A2408489 A2838199
84899587 408140A2 89879589 86898381 95A34095 A4948285 99409686 40869981
9485A24B 40404DC4 C6C9D7C4 F1F0F7C5 5D

SUBVECTOR 10
2E10002B 11040908 F5F6F0F1 F2F2F708 04F0F2F0 F0F0F017 06C9C2D4 40D3C1D5
40D4C1D5 C1C7C5D9 40404040 4040

SUBVECTOR 01
0A010810 5B05020F 0B39

SUBVECTOR 51
20510402 057C0808 10005A74 355C1228 40404040 40404040 40404040 40404040

SUBVECTOR 92
0B920000 03501157 D16A21

SUBVECTOR 93
04933223

SUBVECTOR 96
0E960601 10223324 06812010 3101

SUBVECTOR 05

2D052B10 00098395 94F0F140 4040003E 08938195 D3C1D5F3 008107D3 C1D5D4C7
D9001808 938195D3 C1D5F300 39

???
CMD==>

Figure 108. Hardware Monitor’s Hexadecimal Display of Data Record

IF HMONMSU = '1' & MSUSEG(0000) ¬= '' THEN
COLOR(GRE);

Figure 109. Example of Selecting an MSU

326 Automation Guide

contain X'31' subvectors (self-defining text messages), you can use the statement in
Figure 110.

Checking Subfields
You can also go to the subfield or sub-subfield level as shown in Figure 111.

The example statement selects any MSU that passes through the hardware monitor
and contains a X'0000' major vector (alert) with a X'51' subvector (LAN link
connection subsystem data) that in turn contains an X'02' subfield (ring or bus
identifier).

Checking Field Contents
To be more specific, you might want to test the contents of a particular field, rather
than just testing for existence. For example, you can test for an alert that passes
through the hardware monitor and whose probable cause, given in subvector X'93',
is X'3223'. As explained in Systems Network Architecture Formats a probable cause of
X'3223' means a token-ring adapter interface. To select alerts with this probable
cause, you might code the statement shown in Figure 112.

Here, MSUSEG returns the entire contents of the subvector X'93', including the
length byte (X'04' in this case) and the key (X'93'). However, you can skip the
length and the key by specifying a byte position. A position of 1 is the default and
starts the comparison at the first byte, which is a length byte. This is different from
the notation described in Systems Network Architecture Formats, where 0 designates
the first byte. The statement in Figure 113, using a position of 3, skips the length
byte and the key byte, giving you the remainder of the data.

In an automation table statement, you can also use a placeholder (.) or assign a
value to a variable. Placeholders and variables work the same with MSUs as they
do with messages. For instance, the statement in Figure 113 checks whether
subvector X'93' contains exactly the data X'3223'. But you can check whether the
subvector merely begins with the data X'3223' by adding a placeholder at the end,
as in Figure 114 on page 328.

IF MSUSEG(0000.31) ¬= '' THEN
COLOR(GRE);

Figure 110. Example of Selecting a Subvector

IF HMONMSU = '1' & MSUSEG(0000.51.02) ¬= '' THEN
COLOR(GRE);

Figure 111. Example of Selecting a Subfield

IF HMONMSU = '1' & MSUSEG(0000.93) = HEX('04933223') THEN
COLOR(GRE);

Figure 112. Example of Checking the Contents of a MSU Subvector

IF MSUSEG(0000.93 3) = HEX('3223') THEN
COLOR(GRE);

Figure 113. Example of Checking the Contents of a Position in an MSU Subvector

Chapter 22. Automating Messages and Management Services Units (MSUs) 327

Checking for RECMSs and RECFMSs
When the hardware monitor submits RECMSs and RECFMSs to automation, it
encapsulates them within an architected major vector. The X'1044' major vector is
used for RECMSs. The X'1045' major vector is used for RECFMSs.

RECMS 82
Figure 115 is an example of a RECMS 82 (recording mode) received by the
hardware monitor.

Where:

X'010381' Is the RECMS header.

X'82' Indicates RECMS 82 (see byte 8). RECMS 82 starts with offset 1
instead of offset 0.

F04000zzzz Is the remainder of RECMS 82.

Refer to the Network Control Program library for information about RECMS and
RECFMS record formats.

Encapsulated RECMS
When the hardware monitor receives this RECMS 82, it encapsulates it in a
CP-MSU that contains major vector X'1044'. An example is shown in Figure 116 on
page 328.

Where:

LLLL Is the 2-byte length. The length equals the sum of:

X'D' Length of the RECMS. Your RECMSs can be longer.

X'2' Length of X'1044'.

X'2' Length of nnnn.

X'2' Length of 1212.

X'2' Length of LLLL. In Figure 116, the 2-byte length of LLLL is X'0015'.

1212 Indicates a CP-MSU.

nnnn Is the 2-byte length. The length equals the sum of:

X'D' Length of the RECMS. Your RECMSs can be longer.

X'2' Length of X'1044'.

X'2' Length of nnnn. In Figure 116, the 2-byte length of nnnn is X'0011'.

IF MSUSEG(0000.93 3) = HEX('3223') . THEN
COLOR(GRE);

Figure 114. Example of Using a Placeholder to Check the Contents of a Position in an MSU
Subvector

01038103C4000182F04000zzzz

Figure 115. RECMS 82

LLLL1212nnnn104401038103C4000182F04000zzzz

Figure 116. RECMS Encapsulated in X'1044'

328 Automation Guide

X'1044'
Is the major vector key indicating a RECMS.

X'010381'
Is the RECMS header.

X'82' Indicates RECMS 82 (see byte 16). RECMS 82 starts with offset 1 instead of
offset 0.

F04000zzzz
Is the remainder of RECMS 82.

Example: Checking for a RECMS with a Recording Mode of X'82'
IF MSUSEG (1044 12) = HEX('82') . THEN

COLOR(GRE);

This example checks the 12th byte for a X'82', indicating a RECMS 82, and if
found, colors the MSU green. You not include the 2-byte length and the X'1212' of
the CP-MSU.

Note: RECMSs do not support subvector, subfield, and sub-subfield keys, and
RECFMSs support only a limited number of subvectors. You cannot use
MSUSEG to access any subvectors, subfields, or sub-subfield keys in
RECMSs and RECFMSs.

MSU Actions
The actions you can specify for an MSU include issuing a command, command list,
or command processor with the EXEC action. EXEC is available for any MSU.

The other actions control how the hardware monitor processes alerts. These actions
have meaning only for MSUs containing alert major vectors and passing through
the hardware monitor.

Some actions set highlighting attributes for the alert:

XHILITE Sets a foreground highlighting option, such as blinking text,
underscoring, or reverse video

COLOR Lets you choose a color for color monitors

HIGHINT Determines whether the high-intensity 3270 setting is used for
monochrome monitors

BEEP Determines whether an audible alarm sounds

The remaining actions control recording:

SRF Sets recording-filter attributes and determines whether the MSU passes
ESREC, AREC, OPER, ROUTE, TECROUTE, and TRAPROUT filters.
v Set the ESREC filter to pass for the AREC filter to function. These are

methods of setting the ESREC filter:
– The automation table
– The SRFILTER command
– The DSIEXI6B installation exit

v Set the ESREC and AREC filters to pass for the OPER, ROUTE,
TECROUTE, and TRAPROUT filters to function as follows:
– The OPER filter controls message generation.
– The ROUTE filter controls alert forwarding.

Chapter 22. Automating Messages and Management Services Units (MSUs) 329

– The TECROUTE filter controls alert forwarding to the Tivoli
Enterprise Console.

– The TRAPROUT filter controls alert forwarding to the SNMP
manager.

XLO Specifies that none of the recording filters take effect, and the MSU goes to
external logging only

Highlighting and recording attributes that you set in the automation table override
those specified by the hardware monitor. For example, the SRF action overrides the
hardware monitor SRFILTER command. However, installation exit DSIEX16B can
override even the automation table.

Hexadecimal, Character, and Bit Notations
It is often convenient to use hexadecimal notation when working with MSUs.
However, you might prefer character notation in some statements. Character
notation is helpful when the MSU contains an EBCDIC representation of character
data.

The sample alert contains EBCDIC characters in subvector X'05' (the
hierarchy/resource list) in subfield X'10' (hierarchy name list). You can use either
hexadecimal or character notation to test the hierarchy name list.

Using Hexadecimal Notation
For example, suppose you want to block the sample alert from being recorded in
the alert database, based on the first resource in the list. As explained in SNA
Formats, the first resource begins in position 5 of subfield X'10'; therefore, you can
code the MSUSEG statement with hexadecimal notation, as shown in Figure 117.

Using Character Notation
You can also use the equivalent character notation, as shown in Figure 118.

Using Bit Notation
Another option is to specify a bit position. With a bit position, the rules of the
comparison change, and the item you specify on the right side of the expression
must be a bit string. Like byte positions, bit positions begin at one (1) rather than
zero (0). Figure 119 uses a bit position and a bit string to test for the hierarchy
name list (subfield X'10').

IF MSUSEG(0000.05.10 5) = HEX('C3D5D4F0F1') . THEN
SRF(ESREC PASS)
SRF(AREC BLOCK);

Figure 117. Example of Using Hexadecimal Notation

IF MSUSEG(0000.05.10 5) = 'CNM01' . THEN
SRF(ESREC PASS)
SRF(AREC BLOCK);

Figure 118. Example of Using Character Notation

IF MSUSEG (0000.05.10 5 1) = '1000001110010101100101001111000011110001' THEN
SRF(ESREC PASS)
SRF(AREC BLOCK);

Figure 119. Example of Using Bit Notation

330 Automation Guide

A placeholder is not used in Figure 119 on page 330, because bit-string
comparisons test only as many bits as you provide. You can also use Xs in the bit
string if you want the comparison to skip specified bits.

The location specification is in hexadecimal, while the byte and bit positions are in
decimal numbers. In Figure 119 on page 330, for example, the X'0000', X'05', and
X'10' are in hexadecimal, while the 5 and the 1 are decimal numbers.

When a Field Occurs More than Once
Sometimes, an MSU contains more than one instance of a particular major vector,
subvector, or other field. To check an instance other than the first, use an
occurrence number.

For example, the statement in Figure 120 highlights an alert if its second subvector
X'10' (product-set ID) contains the string IBM LAN MANAGER.

The sample alert in Figure 108 on page 326 fails the test, because it only has one
X'10' subvector. However, the sample alert passes the test if you check all X'10'
subvectors at once. You can do this by using an asterisk (*) for the occurrence
number as shown in Figure 121.

In Figure 121, the asterisk results in a match if the comparison evaluates as true for
any subvector X'10' in the first major vector X'0000'. You can also use occurrence
numbers or asterisks at other levels such as the major-vector and subfield levels.
For an MSU that comes through the hardware monitor, NetView separates extra
major vectors into individual MSUs prior to automation.

The default at each level is to check only the first occurrence of a specified field.
The statement in Figure 122 determines whether any X'0000' major vectors contain
X'10' subvectors, the first of which contains any X'11' subfields, the second of
which contains any X'00' sub-subfields. If so, the statement checks the first X'00'
sub-subfield to see whether the third byte beginning with the fourth bit contains a
1 followed by a zero (0).

Because the sample alert in Figure 108 on page 326 has only one X'11' subfield in
its X'10' subvector, it does not satisfy the condition in the statement in Figure 122.

Using Header Information
Figure 106 on page 324 shows that MDS-MUs contain a substantial amount of
header information outside of the major vector. In some cases, you might want to
automate MDS-MUs based on their header information.

IF MSUSEG(0000.10(2)) = . 'IBM LAN MANAGER' . THEN
XHILITE(REV) COLOR(BLU) BEEP(YES);

Figure 120. Example of Checking Multiple Occurrences of a Field

IF MSUSEG (0000.10(*)) = . 'IBM LAN MANAGER' . THEN
XHILITE(REV) COLOR(BLU) BEEP(YES);

Figure 121. Example of Checking All Occurrences of a Field

IF MSUSEG(0000(*).10.11(2).00 3 4) = '10' THEN
EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Figure 122. Example of Detailed Checking of an MSU Field

Chapter 22. Automating Messages and Management Services Units (MSUs) 331

To automate MDS-MUs based on their header information, add an H to the
beginning of the MSUSEG. When you use the H, the syntax rules for MSUSEG
remain the same. However, the first level of field you specify is the level of a GDS
variable within the MDS-MU, rather than a major vector. Therefore, you can obtain
information from outside the major vector.

For example, you can examine the data in the MDS routing information GDS
variable (X'1311'), destination-location subvector (X'82'), destination-application
subfield (X'03'). The statement in Figure 123 skips the length byte and the key byte
and obtains the data, which begins in position 3.

You can use the H parameter only for MDS-MUs. NMVTs processed with
MSUSEG(H) return a value of null, as do any CP-MSUs that are not within
MDS-MUs, such as those from the program-to-program interface. Therefore, you
can check for alert major vectors carried in MDS-MUs by entering this statement:

In Figure 124, H1212 selects a CP-MSU within an MDS-MU, and 0000 checks for an
alert major vector.

Using Major Vectors Other than Alerts
Alerts are the most commonly automated major vectors, but you can automate
other major vectors (such as X'0001', X'0002', X'0025', X'1332', RECMSs, and
RECFMSs).

Checking Resolution Major Vectors
For example, resolution major vectors, which have a key of X'0002', inform you
that a problem identified by an alert has now been resolved. Resolution major
vectors can be accessed from the hardware monitor BNJDSERV XITCI exit and are
forwarded to the automation table for automation processing. Just as with alerts,
the hardware monitor displays resolution major vectors, logs them to a VSAM
database, and makes them available for hardware monitor filters (set by the
SRFILTER command).

Suppose you want to trap each resolution major vector and deliver it along with
its entire MSU to CLISTA. CLISTA might be a command list you have written to
track the resolution data by sending it over the NetView Bridge to
Information/Management. You can enter this statement:

Checking R&TI GDS Variables
If you are working with operations management served applications, an MDS-MU
sent from a served application to the hardware monitor can contain a routing and
targeting instruction (R&TI) generalized data stream (GDS) variable (X'154D'). The
hardware monitor places the routing and targeting information after the alert or

IF MSUSEG(H1311.82.03 3) = 'APPLA' THEN
EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Figure 123. Example of Checking an MDS Header

IF MSUSEG(H1212.0000) ¬= '' THEN
EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Figure 124. Example of Checking for Alert Major Vectors in an MDS-MU

IF MSUSEG(0002) ¬= '' THEN
EXEC(CMD('CLISTA') ROUTE(ONE AUTO1));

Figure 125. Example of Automating a Resolution Major Vector

332 Automation Guide

resolution major vector, still in the same CP-MSU. Suppose you want to check for a
CP-MSU containing an alert major vector (X'0000') and a routing and targeting
instruction GDS variable (X'154D') with an origin application name subfield (X'60').
To extract the origin application name and pass it to CLISTA, you can enter this
statement:

The hardware monitor sends X'0000', X'0001', X'0002', X'0025', X'1332', RECMSs
(encapsulated in a X'1044'), and RECFMSs (encapsulated in a X'1045') major vectors
to the automation table, along with any X'154D' GDS variables that might be
appended. However, you can send any major vector to the automation table
through the NVAUTO MS application, the CNMAUTO service routine, or the
DSIAUTO macro. MSUSEG can process any major vector you send and can accept
more than one major vector per CP-MSU. The major vectors must be in valid
MSUs.

Using the Resource Hierarchy
When an alert comes through the hardware monitor, NetView builds a resource
hierarchy for the alert. The hierarchy can contain up to five resources. As
Figure 108 on page 326 shows, the hierarchy for the sample alert has three
resources:
DEVLAN3 The service point (SP)
LANMGR The transaction program (TP)
DEVLAN3 The local area network (LAN)

To test the resource hierarchy, use the HIER keyword. If you specify the number of
the resource in the list, as shown in Figure 127, HIER returns the 8-character name
followed by the 4-character type.

The spacing is important in Figure 127. You need the two spaces after LANMGR to
make TP start in the ninth column. The statement in Figure 128 also matches the
sample alert.

If you omit the resource number, as shown in Figure 129, you get a concatenated
string of all the resource names and resource types.

IF MSUSEG(0000) ¬= '' & MSUSEG(154D.60) ¬= '' &
MSUSEG(154D.60) = ORIGIN THEN

EXEC(CMD('CLISTA 'ORIGIN) ROUTE(ONE AUTO1));

Figure 126. Example of Automating a Routing and Targeting Instruction GDS

IF HIER(2) = 'LANMGR TP ' THEN
COLOR(GRE);

Figure 127. Example of Checking a Resource in the Resource Hierarchy

IF HIER(2) = 'LANMGR' . &
HIER(3) = 'DEVLAN3' . &
HIER(4) = '' THEN

COLOR(GRE);

Figure 128. Example of Checking Multiple Resources in the Resource Hierarchy

IF HIER = 'DEVLAN3' . 'LANMGR' . 'DEVLAN3' . THEN
COLOR(GRE);

Figure 129. Example of Checking All Resources in the Resource Hierarchy

Chapter 22. Automating Messages and Management Services Units (MSUs) 333

For the sample alert, the resource hierarchy is based on the information in
subvector X'05', the hierarchy/resource list. Therefore, you can also obtain resource
hierarchy information from MSUSEG(0000.05). However, this is not true for all
alerts. The most reliable way to test the hardware monitor resource hierarchy is to
use the HIER keyword.

Using the Domain ID
The DOMAINID keyword indicates which NetView domain first received the
MSU. Checking DOMAINID is a general test. Use it with other conditions, as
shown in Figure 130.

Automating Other Data by Generating Messages
The automation table processes messages and MSUs. There are other types of data
that the NetView automation table does not process. If you want to automate
responses to these types of data, you must first convert them to messages or
MSUs. Two important examples that illustrate this process are hardware monitor
data records and status information.

Automating Hardware Monitor Records
You can automate problem notifications sent to the hardware monitor by
generating messages from them and sending the messages to automation.

Many problem records sent to the hardware monitor are MSUs. For these records,
you have the option of generating messages to automate, or automating the MSUs
directly. Direct automation, which is more efficient, is described in “Writing
Automation Table Statements to Automate MSUs” on page 324. However, there are
several other types of problem records, such as OBR and MDR records, that do not
go to the automation table. You can automate these problem records by generating
messages.

The hardware monitor can produce two messages for each record that the alert
database receives:
BNJ030I States that the database has received an alert
BNJ146I Contains information about the alert

Automation usually uses the BNJ146I message because it contains more
information.

The OPER filter determines which alerts generate messages. However, an alert
must pass the ESREC and AREC filters before it can pass the OPER filter and
generate the messages.

To automate an alert, you can use the MSGID keyword to select message BNJ146I.
You can use several of the fields in BNJ146I as a basis for automation, or you can
automate a small subset of the fields sufficient to uniquely identify the alert.

In addition to routing the message for display, you can use the NetView
automation table to schedule one or more command procedures to run under one

IF MSUSEG(0000) ¬= '' &
HIER(1) = 'DEVLAN3 SP ' &
DOMAINID = 'CNM01' THEN

COLOR(GRE);

Figure 130. Example of Using the DOMAINID Keyword

334 Automation Guide

or more NetView tasks when a BNJ146I message arrives. For example, suppose a
command procedure is scheduled to run under the task of a monitor operator. That
command procedure can receive the BNJ146I message and process it so that a more
meaningful message is written to the operator. Another command procedure can
automate the recommended actions of the alert.

Automating Status Changes
Status changes tracked by the status monitor or the NMC can trigger automation.
By coding SENDMSG statements in the status monitor initialization member
DSICNM (CNMS5001), you can cause the NetView program to issue the message
CNM094I when specified types of resources change status. For more information
about the SENDMSG statement, refer to the IBM Tivoli NetView for
z/OS Administration Reference.

CNM094I indicates a change as shown in Figure 131.

You can automate status changes by using the MSGID keyword to select the
CNM094I message.

Putting Your Automation Statements into Effect
To enable automation statements, place all your automation statements into
members of the DSIPARM library. The member name can be from 1 to 8 characters
long.

If you are making changes to an existing automation table used in production,
consider copying the table into a new file or member before making the changes.
You can leave the existing automation table in production while you are creating
and testing the new one in a separate file.

Before activating an automation table, you can verify that your statements are
syntactically correct by issuing the AUTOTBL command with the TEST keyword.
You can also use the LISTING keyword to obtain detailed debugging information.
For example, if your main automation table is in ATABLE1, you can issue the
command shown in Figure 132.

If there are syntax errors, messages are sent indicating the records in which errors
occur and describing the kinds of errors. With this information, you can correct the
syntax of your table.

You can test the logic of an automation table using the AUTOTEST command. For
testing information, see Chapter 34, “Automation Table Testing,” on page 473.

You can activate the table by entering AUTOTBL MEMBER=ATABLE1. To avoid
unintended actions caused by a syntax error in the automation table, NetView does
not activate a table unless all of the syntax is correct.

CNM094I STATUS UPDATE FOR RESOURCE = resourcename IN NETWORK = netname
FROM DOMAIN = domainname STATUS = status

Figure 131. Format for a CNM094I Message

AUTOTBL MEMBER=ATABLE1,TEST,LISTING=LIST1

Figure 132. Example of Verifying an Automation Table

Chapter 22. Automating Messages and Management Services Units (MSUs) 335

To add another DSIPARM member to the list of active automation tables, use the
AUTOTBL command and specify where in the list the new member is to be
inserted. For example, to insert member DSITBL99 as the second member in the
list of active automation table members, enter this command:
AUTOTBL MEMBER=DSITBL99 AT=2

To verify what automation tables are still active, use the AUTOTBL command with
the STATUS keyword as follows:
AUTOTBL STATUS

The AUTOMAN command provides a full-screen panel interface to enable you to:
v View and manage single or multiple automation tables
v Enable or disable individual automation tables or statements
v View existing tables and their status

For more information, see “Managing Multiple Automation Tables” on page 250.

Correlating Messages and MSUs Using the Correlation Engine
You can convert copies of messages and MSUs to an event format and route them
to an automation correlation engine running outside the NetView address space.
This correlation engine allows different messages and MSUs to be correlated
according to criteria you specify. For example, messages with different identifiers
or a message and MSU can be related for automation purposes.

Use the correlation engine simplifies timer and state variable management. You can
correlate multiple events over time. For example, automation might be used to
check that three different messages are issued within a 10-minute interval. State
variables can be used to record that each message was issued and a timer set to
verify that all three state variables are set at the end of 10 minutes. By using the
correlation engine, you can simplify this coding by using a single correlation rule.

The correlation process is linked to the automation table. It is triggered as a
command on an automation table action. The output from the correlation process
is one or more of the messages or MSUs that have been correlated being run
through the automation table again. You can then use automation table conditions
that allow correlated output to be identified and final processing performed using
automation table actions.

For information on installing the correlation engine, refer to IBM Tivoli NetView for
z/OS Installation: Configuring Additional Components.

Correlation Overview
This is an overview of the correlation process:
v A message or MSU passes through the automation table. You can use an

automation table condition (CORRELATED=’0’) to test whether this message or
MSU has gone through correlation.

v If the message or MSU is not already correlated, a copy of the message or MSU
is made and an event is constructed from the copy and sent to the correlation
engine using the COREVENT pipe stage or the CNMCRMSG command list. A
predefined subset of information from the message or MSU is contained in the
event sent to the correlation engine. You can add additional information using

336 Automation Guide

the PIPE EDIT stage or the CNMCRMSG command list. The original message or
MSU can be discarded or continue through the automation table for further
processing.

v The event is then processed by the correlation engine. The event is checked
against a rules base constructed from an XML document. If the event meets the
rule criteria, one or more events (depending on the type of rule and the options
specified) are returned to the NetView address space. The rules base must be
coordinated with the automation table to successfully correlate messages and
events. The correlation rules determine what information from the message or
MSU is contained in the event.

v When the event is returned from the correlation engine, the copy of the original
message or alert is retrieved and resubmitted to the automation table. The
automation table can detect this resubmission by testing for CORRELATED=’1’.
Automation table actions can then be driven to handle the correlation detection.

v When correlated output is run through the automation table, you can access the
event data that is returned using the COREVTDA PIPE stage. You can check the
contents of the event, which might be modified by user-written code during
correlation processing. The COREVTDA stage constructs an MLWTO on the
secondary output stream with each slot and value representing one line of the
MLWTO.

This is a sample automation table entry that detects a command message that is
not valid. In this example, the original message is suppressed when its copy is sent
to the correlation process.
IF MSGID='DSI002I' THEN

BEGIN;
IF CORRELATED='0' THEN

EXEC(CMD('CNMCRMSG INVALID'))
DISPLAY(N)
NETLOG(N)
SYSLOG(N)
CONTINUE(N);

IF CORRELATED='1' THEN
EXEC(ROUTE(NETOP))
CONTINUE(N);

END;

You can use the CORRFAIL condition to determine if there is a problem with the
correlation process. Notice in the example that follows that you test the CORRFAIL
condition first. The CORRELATED condition always returns ’0’ if there is a failure
in the correlation process.
IF MSGID='DSI002I' THEN

BEGIN;
IF CORRFAIL='1' THEN

EXEC(CMD('MSG NETOP CORRELATION FAILED'))
CONTINUE(N);

IF CORRELATED='0' THEN
EXEC(CMD('CNMCRMSG INVALID'))
DISPLAY(N)
NETLOG(N)
SYSLOG(N)
CONTINUE(N);

IF CORRELATED='1' THEN
EXEC(ROUTE(NETOP))
CONTINUE(N);

END;

Storage Considerations
Messages and MSUs are processed as follows:

Chapter 22. Automating Messages and Management Services Units (MSUs) 337

v The NetView program translates the messages and MSUs that the automation
table processes into events for the correlation engine. When this translation
occurs, the NetView program keeps the original messages or MSUs on a special
queue waiting to be matched with the corresponding event when a correlation
rule fires.

v Statements in the CNMSTYLE member control how long the NetView program
keeps the original message or MSU on the queue. If a message or MSU is
discarded because of exceeding the time limit, correlation events can be received
by the NetView program without finding a match on the queue. In this case, the
NetView program attempts to construct a new message or MSU.
Only a subset of the content of the original message or MSU is converted into
the correlation event format. Because of this, when the event is sent back to the
NetView program, the reconstructed message or MSU is not an exact copy of the
original. MSUs can lose some information about the forwarding mechanisms
that were used to send the MSU to the NetView program, and messages lose
AIFR and message data block information. A reconstructed message contains the
AIFR time field and the job name and job number fields. If the restored message
or MSU is sufficient for your needs, you can supply a timer value of 0 on the
COREVENT pipe stage indicating that the original message or MSU can be
discarded. This can be useful in reducing the amount of storage used for
correlation.
You might also specify a value of 0 for other reasons. For example, using event
correlation rules you can also modify the event. If you modified the message
text in the event and returned the event to the NetView program, the message
modifications are not used if the original message is retrieved from the queue.

Correlation Processing
The NetView program takes data from a message or MSU and constructs an event
(name/value pair) for the correlation engine. The correlation engine does not work
directly with messages or MSUs.

The correlation logic is presented as a series of rules in an XML file. Information
from the message or MSU becomes an attribute of the event and can be tested
according to rules in the XML file.

Creating Correlation Events Using COREVENT and CNMCRMSG
Messages and alerts are sent to the correlation engine by using the COREVENT
pipe stage.

You can use the COREVENT stage to set the eventType attribute for the
constructed event and to optionally specify the amount of time to keep the original
message or alert on the queue to wait for a matching returned correlation event.
For syntax of the COREVENT stage, refer to IBM Tivoli NetView for
z/OS Programming: Pipes or the online help.

You can add slot and value pairs to the outgoing event by using the NAMEBIND
edit order. As an example, this pipe takes the current message and sends it to the
correlation engine with a user-defined slot called USERDATA. The eventType
attribute is SAMPEVENT.
'PIPE (NAME CORSAMP)',
'| SAFE *', /* copy complete message into pipeline */
'| EDIT', /* begin edit */
'COPY *', /* copy complete message to EDIT output*/
'/SAMPLE DATA/' 1, /* start value one: variable value */
'NAMEBIND /USERDATA/', /* create output line for the new slot */
'| COREVENT SAMPEVENT'/* transfer event to correlation */

338 Automation Guide

|

Before using the COREVENT stage, verify that the DSICORSV task is active. Error
messages are written to the secondary stream if communications with DSICORSV
fail.

You can also use the CNMCRMSG command list to construct a COREVENT pipe
stage. You can use the CNMCRMSG command list to add data. The first parameter
identifies the eventType. Subsequent parameters must be in pairs. The first is the
name and the second is the value. This command is equivalent to the pipe shown
in the example on page 338:
CNMCRMSG SAMPEVENT USERDATA SAMPLE DATA

Notice that SAMPLE DATA is expressed as multiple tokens. Name/value pairs
must be separated by commas.

This example adds an additional slot of USER1 to the event:
CNMCRMSG SAMPEVENT USERDATA SAMPLE DATA,USER1 SOMEDATA

This example specifies a time-out value of 0 seconds:
CNMCRMSG 'SAMPEVENT 0' USERDATA SAMPLE DATA,USER1 SOMEDATA

Notice that the optional time interval with the event type parameter must be
enclosed in quotation marks.

This example uses mixed case values:
CNMCRMSG SAMPEVENT 'UserData' 'A Mixed Case Value'

You can use REXX functions as parameters. For example, to include a user slot of
EPNET that contains the entry point network for an MSU, enter:
CNMCRMSG SAMPEVENT EPNET HMEPNET()

Message and MSU to Event Mapping
Messages and MSUs are converted to correlation engine events prior to being sent
to the correlation engine. Most of the event name and value pairs are the same as
the default mappings used for converting messages and alerts into Tivoli
Enterprise Console events. For Tivoli Enterprise Console event mappings, refer to
IBM Tivoli NetView for z/OS Customization Guide.

Table 13 lists the default set of attributes for messages.

Table 13. Default message attributes

Attribute Name Description

HOSTNAME TCP name of the host where the correlation engine is
running

ADAPTER_HOST_SNANODE NetView NETID and NAU name

ORIGIN NetView domain that originated the message

DATE Date of the message

MSGID Message ID

MSG First text line of the message

JOBNAME Job name of the message, if available

SUB_ORIGIN Job number of the message, if available

Chapter 22. Automating Messages and Management Services Units (MSUs) 339

Table 13. Default message attributes (continued)

Attribute Name Description

SEVERITY Maps the message to a severity of CRITICAL, FATAL or
WARNING. The same mapping is used as when a
message is converted to a Tivoli Enterprise Console event.

TEXT_LINES Number of text lines in the message. For MLWTO
messages, this field contains the total number of lines in
the message. For non-MLWTO messages, this attribute has
a value of 1.

MLWTO2..MLWTOn In the case of an MLWTO, the second and succeeding lines
of the message. The second line is in MLWTO2, the third
in MLWTO3, and so on. The total number of lines in the
message can be found in the TEXT_LINES attribute.

NV_OBJECT The value ″MSG″.

EVENTTYPE User supplied name for the eventType attribute

Table 14 lists the default set of attributes for MSUs.

Table 14. Default MSU attributes

Attribute Name Description

HOSTNAME TCP name of the host where the correlation engine is
running

ORIGIN A character string with the name/type hierarchy pairs
from the Hierarchy Name List or Hierarchy/Resource List
subvectors. The character string contains the hierarchy in
this format:

resnam1/typ1,resnam2/typ2,resnam/typ3,
resnam4/typ4,resnam5/typ5

Only the number of pairs in the subvector are used.

ADAPTER_HOST_SNANODE NetView NETID and NAU name

DATE Date when the alert was received by the NetView alert
adapter in the format:

MMM HH:MM:SS

For example, OCT 10 12:08:30.

MSG Long error description: long probable cause message that
describes the problem. This message is similar to the
ALERT DESCRIPTION:PROBABLE CAUSE message
displayed on the hardware monitor ALERTS-DYNAMIC
panel.

EVENT_TYPE The event type displayed on the hardware monitor
EVENT DETAIL panel (for example, PERMANENT or
TEMPORARY). For generic alerts, this is the alert type
byte of the generic alert data subvector.

SUB_ORIGIN A character string with the last pair in the name/type
hierarchy pair list from the Hierarchy Name List or
Hierarchy/Resource List subvectors. The string is in the
form:

resnam_x/typ_x

where x is the number of the last pair in the list.

340 Automation Guide

Table 14. Default MSU attributes (continued)

Attribute Name Description

ARCH_TYPE
GENERIC_ALERT NMVT alert major

vectors containing a
generic alert data
subvector

GENERIC_RESOLUTION NMVT resolution
major vector

NONGENERIC_ALERT All other alerts

SEVERITY Alert type field from the Generic Alert Data subvector or
the event type that is used to determine the severity (for
example FATAL or CRITICAL). For more information,
refer to the IBM Tivoli NetView for z/OS Customization
Guide.

EVENT_CORREL Correlators extracted from MSU correlation subvector 47.
These correlators correlate alerts to other alerts. For
example, you can have two or more alerts that pertain to
the same underlying problem and those alerts are
correlated by subvector 47.

INCIDENT_CORREL Correlators extracted from Incident Identification
subvectors. These correlators correlate alerts to resolutions.

SELF_DEF_MSG Text extracted from self-defining text message subvector 31

BLOCK_ID For non-generic alerts, the code used to identify the IBM
hardware or software associated with the alert.

ACTION_CODE For non-generic alerts, code that provides an index to
predefined screens. The combination of the block identifier
and action code that uniquely identifies the sending
product.

PRODUCT_ID The hardware or software product set identifier (PSID) of
the alert or event sender. This can be 4, 5, 7, or 9
characters. This pertains to all generic alerts and some
non-generic alerts.

ALERT_CDPT A 2-byte hexadecimal value from the alert description code
field of the generic alert data subvector, or the resolution
description code field of the resolution data subvector.

ALERT_ID For non-generic alerts (including resolutions), an
8-character hexadecimal value assigned by the sender to
designate an individual alert condition. The value is
00000000 for resolution alerts.

MSU The alert converted into character format. (This attribute is
intended for internal use by NetView.)

DOMID The NetView domain that first processed the alert. (This
attribute is intended for internal use by NetView.)

Filtering with State Correlation
State correlation monitors information from incoming events and associates this
information with user-defined patterns. State correlation analyzes the incoming
events for user-defined states to suppress duplicate events, identify event
thresholds, and collect or group similar events.

Chapter 22. Automating Messages and Management Services Units (MSUs) 341

State correlation helps minimize event traffic by identifying similar events and
consolidating their information into summary events where possible. Those events
that cannot be included in a summary are single events. The event server then
receives these summary events, as well as the single events. The event server does
not receive the redundant, individual events for each summary.

Creating Rules
Correlation is achieved with state-based and stateless rules. You specify these rules
by using XML syntax, defined by the supplied DTD file, rule.dtd. The default XML
file is located in:
/var/netview/v5r4/rulefiles/znvrules.xml

You can use the CORRSERV REFRESH to override the default file.

Table 15 contains a summary of the XML statements.

Table 15. XML Statements

Type or Element Attribute Function

<rule>... </rule> Specifies the start and end of a rule

id=″identifier″ Associates an identifier for this rule. The
identifier can be used to delete, deactivate,
or activate this rule when the correlation
engine is active

<eventType>...
</eventType>

Controls the events that are processed by
the rule

event_identifier Specifies an event type or class of events

<correlation_type>...
</correlation_type>

Specifies one of these correlation types:

collector
Collects events that meet the
specified rule criteria within a
specified time interval. All events
are then sent off for processing.

duplicate
Suppresses duplicate events that
meet the criteria specified in the
rule.

match Checks that an event meets the
criteria specified in the rule.

passthrough
Checks for multiple events
meeting specified criteria.

ResetOnMatch
Checks for multiple events that do
not meet specified criteria.

threshold
Checks for the specified number of
occurrences of events meeting rule
criteria within a specified time
interval .

342 Automation Guide

|

Table 15. XML Statements (continued)

Type or Element Attribute Function

<correlation_type>
(continued)

randomOrder =
″true″ | ″false″

Used for correlation types passthru and
ResetOnMatch: specifies whether ordering
of events is significant. If this is set to false,
events in the rule have to be received in
the same order as expected by the
predicates to start the correlation process.

timeInterval =
miliseconds

Used for correlation types passthru and
ResetOnMatch: specifies the time interval
in miliseconds.

triggerMode =
which_events

Specifies which events are processed by the
action tag:

allEvents
All the events processed by the
rule.

firstEvent
The first event to start correlation
processing for the rule.

lastEvent
The last event to start correlation
processing for the rule.

forwardEvents
For Threshold processing only:
Causes the Threshold rule
processing to return all events and
continue to forward events until
the time limit expires.
Note: How this option is coded
can affect how you code the
automation table. A single rule
firing can result in multiple
messages or MSUs being sent
through the automation table with
the CORRELATED attribute set to
’1’.

<cloneable.../> Causes the correlation engine to separate
events according to the specified event
attributes and maintain separate correlation
processes for those events. This statement
cannot be used with match correlation.

attributeSet =
″event_attributes″

Specifies the event attributes.

<predicate>...
</predicate>

Specifies a Boolean test that evaluates to
TRUE or FALSE. Within the <predicate>
tag, comparison operations are available to
test event attributes.

Different types of correlation require
different numbers of predicates. Match,
Duplicate, Threshold and Collector
correlation require a single predicate.
Passthrough and ResetOnMatch correlation
require multiple predicates.

Chapter 22. Automating Messages and Management Services Units (MSUs) 343

Table 15. XML Statements (continued)

Type or Element Attribute Function

<action.../> Specifies what action to take when all the
predicates in a rule are TRUE.

function =
function_type

Identifies the name of a Java™ class that is
driven to handle the correlation function.
The NetView program provides a default
action of ReturnToNV. The ReturnToNV
action returns the event to the NetView
address space, where the original message
or MSU is retrieved from a queue and sent
to the automation table. If the original
message or MSU is not found on the queue
(because of a timeout condition), the
NetView program uses the returned event
to build a new message or MSU and sends
it to the automation table.

The NetView program provides a
superclass FLBCorAction that can be
subclassed to allow you to modify or
replace this default action. Writing your
own action is useful for adding or
modifying event attributes.

You define each rule in a state machine. The state machine gathers and summarizes
information about a particular set of related knowledge. It is composed of states,
transitions, summaries, and other characteristics, such as expiration timers and
control flags.

These are the state-based rules: collector, duplicate, and threshold. These are all
based on state machines. Each state machine looks for a trigger event to start it.
Additionally, there is the matching rule, which is a stateless rule.

State-based rules rely on a history of events, whereas the stateless rules operate on
a single, current event. These specify the rules::
v Predicates for matching events relevant to that rule
v Actions that run after the rule triggers
v Attributes, such as a threshold limit

For more information on predicates and functions for state correlation, refer to the
IBM Tivoli Enterprise Console Rule Developer’s Guide.

Predicates: A predicate in the predicate library consists of a Boolean operator and
zero or more arguments. Each argument can be a predicate returning these types:

Table 16. Predicate types and examples

Predicate Type Example

Boolean value Equality

Function returning a value Addition

Event attribute &hostname

Constant The string const01

344 Automation Guide

Actions: The default action for state correlation is the ReturnToNV action. This
action supports a common, optional Boolean attribute named singleInstance. If this
attribute is false, the action is not shared among different rules. One instance of the
action is created for every rule that triggers it. This is the default behavior. If the
attribute is true, a single instance of the action is created and shared with all rules
that trigger it.

Attributes common to all rules: These attributes are common to all rules:

id Specifies the identifier for each rule. It must be unique within the
correlation engine where it is registered. Periods are treated as directories.
For example, if you have the id test.threshold, you cannot have another
rule with test.threshold.1 as the identifier.

eventType
Specifies the set of event classes this rule applies to and optimizes
performance. When you omit this parameter, state correlation applies the
rule to all event classes.

Matching rules: Matching rules are stateless. They perform passive filtering on
the attribute values of an incoming event. A matching rule consists of a single
predicate; if the predicate evaluates to true, the trigger actions, which are specified
in the rule, run.

In the example that follows, the SAMPLE rule processes an event type of INVALID
that was sent by the automation table (see the example shown on page 337). The
SAMPLE rule checks the message identifier of the event submitted to correlation
and if the message identifier is DSI002I, the event is returned to NetView.
<rule id="SAMPLE">
<eventType>INVALID</eventType> �1�
<match> �2�
<predicate> �3�
<![CDATA[

&MSGID == "DSI002I"
]]>

</predicate>
</match>
<action function="ReturnToNV"/>
</rule>

The statement explanations for the XML example follow:

�1� The eventType is specified as a parameter on the sample CNMCRMSG
command list.

�2� Defines the type of correlation that the rule represents. In this example, the
rule is looking for events that match the specified criteria.

�3� The &MSGID attribute is checked for equality with the string DSI002I.
When all the predicates in a rule are TRUE, the rule performs the action
defined in the rule.

Duplicates rules: The duplicates rule blocks the forwarding of duplicate events
within a time interval. It requires these arguments:
v A time interval during which state correlation blocks duplicates of the trigger

event. You control the interval with the timeInterval attribute, specified in
milliseconds. The trigger event is the first event detected by the duplicates rule
and is the only one that is not actually discarded.

v A predicate that is used in detecting the trigger event.

Chapter 22. Automating Messages and Management Services Units (MSUs) 345

Figure 133 shows the state transitions for the duplicate rule:

In Figure 133, state one is the initial state. Transition 1 occurs when there is a
match on an incoming event. At that time, state correlation forwards the matching
event, and the timer starts. Transition 2 occurs when the time interval expires, and
the state machine resets. This is an example of the rule:
<!-- Show me only the first error number 10
for my hostname that happens each 10
seconds.
-->
<rule id="test.duplicate" >

<eventType>NV_Error</eventType>
<duplicate timeInterval="10000">

<predicate>

<![CDATA[
&msg == "internal error " &&
&hostname == "hostname1" &&
&errno = 10
]]

</predicate>
</duplicate>
<action function="ReturnToNV"/>

</rule>

Threshold rules: The threshold rule looks for n occurrences of an event within a
time interval. When the threshold is reached, it sends events to the defined actions.
The threshold rule requires these parameters:
v One of the sending modes specified by the triggerMode attribute:

firstEvent
Sends the first event.

lastEvent
Sends the last (nth) event.

allEvents
Sends all events 1 through n, the default mode.

forwardEvents
Sends all events after the nth until it resets.

v A time interval during which the threshold has to be reached. You control the
interval with the timeInterval attribute, specified in milliseconds.

v The time interval mode that indicates if the time interval is fixed. The attribute
timeIntervalMode=fixedWindow | slidingWindowinterval controls the mode.
The default value is fixedWindow.

v The number of events to match, specified by the thresholdCount attribute.
v A trigger predicate that is used in detecting 1 through n events.

Figure 134 on page 347 and Figure 135 on page 347 show the operation of the
threshold rule with timeIntervalMode=fixedWindow specified.

S1 S2

1

2

Figure 133. State transitions for the duplicate rule

346 Automation Guide

Figure 134 shows the state machine for the modes firstEvent, lastEvent, and
allEvents. Transition 1 occurs when state correlation detects the trigger event
(trigger predicate matches). Transition 2 takes place when an incoming event
matches the second predicate. When the time interval expires, transition 3 occurs
and the state machine resets. Transition 4 resets the state machine after the
threshold is reached. When the state SN is reached, either the first event, the last
event, or all n events are sent before resetting.

In forwardEvents mode (Figure 135), the threshold rule operates as in the previous
case. Except, it sends all events matching the second predicate after the threshold
is reached and until the time interval expires.

When the state machine has timeIntervalMode=slidingWindow specified, the
operation of the threshold rule is the same as the fixedWindow time interval.
Except that from each node K, there is a transition of 1, 2, .., K-1. This transition
accounts for events that are not in the sliding time window. This is an example of
the rule:
<!--
I'm only interested when at least 5 Node_Down
events for hostnames in my local subnet happen
within 1 minute.
-->
<rule id="test.threshold">

<eventType>Node_Down</eventType>
<threshold thresholdCount="5" timeInterval="60000"
timeIntervalMode="slidingWindow" triggerMode="allEvents">

S1 S2 S3 SNS

1

3

3

3

4

2 22
(N-1)

Figure 134. State transitions for the basic threshold rule

S1 S2 S3 SNS

1

3

3

3

3

2 22
(N-1)

2

Figure 135. State transitions for the threshold rule using forwardEvents

Chapter 22. Automating Messages and Management Services Units (MSUs) 347

<predicate>
<![CDATA[

(&msg == "node down") &&
(isMemberOf(&hostname, [192.168./16]))
]]

</predicate>
</threshold>
<action function="ReturnToNV"/>

</rule>

Threshold rules can also define complex aggregate values, instead of a simple
count of events. Use the aggregate configuration tag to define this rule. You can
construct an aggregate value similar to the definition of a predicate. Threshold
rules with aggregate values trigger only when the aggregate value is equal or
greater than the thresholdCount value. This is an example of the rule:
<!--
If I receive a slot value with a relative percentage between
0 and 1, but I want to check my threshold using the normal
percentage value of 100%, I can define an aggregate of the
slot relative_percentage, by multiplying it by 100 and counting
all percentages until it reaches 100%.
-->
<rule id="test.aggregate_threshold">

<eventType>Temperature_Variation</eventType>
<threshold

thresholdCount="100"
timeInterval="2000"
triggerMode="allEvents"
timeIntervalMode="fixedWindow" >

<aggregate>
<![CDATA[

&relative_percentage * 100
]]

</aggregate>
<predicate>true</predicate>

</threshold>
<action function="ReturnToNV"/>

</rule>

Collector rules: The collector rule gathers events that match the given predicate
for a specified period of time. The rule triggers when the timer expires and sends
all collected events to the defined actions. The collector rule requires these
arguments:
v A time interval during which matching events are collected. You control the

interval with the timeInterval attribute, specified in milliseconds.
v A predicate, which is part of filtering the relevant events to add to the collection.

Figure 136 shows the state transitions for the collector rule:

In Figure 136, S1 is the initial state. Transition 1 occurs when there is a match on
an incoming event; the initial event is not sent but collected. A timer is set to the
specified interval. Before the timer expires, all incoming and matching events are

S1 S2

1

3

2

Figure 136. State transitions for the collector rule

348 Automation Guide

collected (transition 2). Transition 3 occurs when the time interval expires, and the
state machine resets. At this time, all collected events are sent. This is an example
of the rule:
<!--
Collects 10 seconds of Server_Down
events for my database.
-->
<rule id="test.collector">

<eventType>Server_Down</eventType>
<collector timeInterval="10000" >

<predicate>
<![CDATA[

&servername == "my_database"
]]

</predicate>
</collector>
<action function="ReturnToNV"/>

</rule>

Passthru rules: The passthrough rule forwards the trigger event only if a specific
set of events arrives within a specified time interval. If the required events arrive
before the timer expires (optionally is a specific sequence), the trigger event is
forwarded; if they do not arrive, the timer resets and the trigger event is not
forwarded.

The passthrough rule requires these arguments:
v A Boolean value (randomOrder) indicating whether the required events can

arrive in any order or must arrive in the order specified. If randomOrder is
equal to yes, the events can arrive in any order.

v A time interval, after which the state machine resets.
v A trigger predicate, defining the trigger event. This is the event that initializes

the state machine and is forwarded if the required subsequent events arrive
within the time interval.

v One or more predicates specifying the required subsequent events.

Figure 137 shows the state transitions for the passthrough rule when the required
events must arrive in sequence (randomOrder=no).

In Figure 137, S1 is the initial state. Transition 1 occurs when the trigger event is
detected; the transition stores the event and starts the timer. Transition 2 occurs
when an incoming event matches the first predicate in the required sequence;
similarly, transition 3 takes place when an incoming event matches the second
predicate in the sequence. When state S4 is reached, the rule forwards the trigger

S1
1

S4

2

3
4

4

S2 S3

5

Figure 137. State transitions for the passthrough rule (randomOrder=no)

Chapter 22. Automating Messages and Management Services Units (MSUs) 349

event and resets to the initial state S1 (transition 5). Transition 4 occurs when the
time interval expires, resetting the rule to the initial state without forwarding the
trigger event.

Figure 138 shows the state transitions for the passthrough rule when the required
events can arrive in any order (randomOrder=yes).

In Figure 138, the transitions are the same as in Figure 137 on page 349. In this
case, however, the final state is S5, after which the state machine resets.

The Passthrough correlation function ties different events together. In the example
that follows, an automation action occurs when two different messages (MSG001
and MSG002) are received within a 30-second timeframe:
<rule id="SAMPLE001">
<eventType>DUMMYMSGS</eventType>
<passthrough randomOrder="true" �1� timeInterval="30000" �2�

triggerMode="allEvents" �3�>
<predicate>
<![CDATA[&MSGID == "MSG001"]]>
</predicate>
<predicate>
<![CDATA[&MSGID == "MSG002"]]>
</predicate>
</passthrough>
<action function="ReturnToNV"/> �4�

</rule>

The statement explanations for the XML example follow:

�1� The rule is looking for eventTypes of DUMMYMSGS with message
identifiers MSG001 and MSG002. The correlation engine starts keeping
track of the 30-second time limit when one of these messages are received.

S1

S8

1

5

S3

S7

S6S2

S5

S10

S4 S9

S11
2

3

2

3

3

1

1

3

3

2

2

2

1

1

Figure 138. State transitions for the passthrough rule (randomOrder=yes)

350 Automation Guide

If randomOrder was set to false, an event sequence of MSG002 then
MSG001 would not cause the rule to fire.

�2� 30000 miliseconds represents 30 seconds.

�3� When the rule triggers, all events are returned to the NetView program.

You can use triggerMode to specify that only the first or last event is
returned to the NetView program. If you specify triggerMode, also select
which automation table entries checks for the CORRELATED=’1’ condition.

�4� If the correlation type in this example was ResetOnMatch instead of
Passthrough, the ReturnToNV action is invoked if either MSG001 or
MSG002 is received, but not both.

Reset on match rules: The reset on match rule forwards the trigger event only if a
specific set of events does not arrive within a specified time interval. If the
required events arrive before the timer expires (optionally is a specific sequence),
the trigger event is not forwarded; if they do not arrive, the timer resets and the
trigger event is forwarded.

The reset on match rule requires these arguments:
v A Boolean value (randomOrder) indicating whether the required events can

arrive in any order or must arrive in the order specified. If randomOrder is
equal to yes, the events can arrive in any order.

v A time interval, after which the state machine resets.
v A trigger predicate, defining the trigger event. This is the event that initializes

the state machine and is forwarded if the required subsequent events arrive
within the time interval.

v One or more predicates specifying the subsequent events required to prevent
forwarding of the trigger event.

Figure 139 shows the state transitions for the reset on match rule when the
required events must arrive in sequence (randomOrder=no).

In Figure 139, S1 is the initial state. Transition 1 occurs when the trigger event is
detected; the transition stores the event and starts the timer. Transition 2 occurs
when an incoming event matches the first predicate in the required sequence;
similarly, transition 3 takes place when an incoming event matches the second
predicate in the sequence. When state S4 is reached, the rule resets to the initial
state S1 (transition 5). Transition 4 occurs when the time interval expires, causing
the rule to forward the trigger event and then reset to the initial state.

S1
1

S4

2

3
4

4

S2 S3

5

Figure 139. State transitions for the reset on match rule (randomOrder=no)

Chapter 22. Automating Messages and Management Services Units (MSUs) 351

Figure 140 shows the state transitions for the match rule when the required events
can arrive in any order (randomOrder=yes).

In Figure 140, the transitions are the same as in Figure 139 on page 351. In this
case, however, the final state is S5, after which the state machine resets without
forwarding the trigger event.

Cloning state machines
You can clone any state-based rule by using the clonable tag. If state correlation
clones a rule when the trigger event occurs, state correlation creates another
instance of the rule. This rule is useful for handling multiple event sequences
without the need to write many rules.

The cloneable tag causes the correlation engine to separate events according to the
specified event attributes and maintain separate correlation processes for those
events. For example, to verify that the NetView task initialization message DSI166I
is followed by the initialization complete message DSI530I within 10 seconds, you
might code a ResetOnMatch rule that fires if message DSI530I is not received. The
rule might be coded as follows:
<rule id="testcases.taskinitfailure">
<eventType>INITMSGS</eventType>
<resetOnMatch randomOrder="false" timeInterval="10000" triggerMode="firstEvent">
<cloneable attributeSet="TASKN"/> �1�
<predicate>
<![CDATA[&MSGID == "DSI166I"]]> �2�

</predicate>
<predicate>
<![CDATA[&MSGID == "DSI530I"]]>

S1

S8

1

5

S3

S7

S6S2

S5

S10

S4 S9

S11
2

3

2

3

3

1

1

3

3

2

2

2

1

1

Figure 140. State transitions for the reset on match rule (randomOrder=yes)

352 Automation Guide

</predicate>
</resetOnMatch>
<action function="ReturnToNV"/> �3�
</rule>

The statement explanations for the XML example follow:

�1� This rule assumes that all events of eventType INITMSGS have an attribute
named TASKN that contains the task name.

�2� As each DSI166I is received, a separate correlation process starts a
10-second timer to wait for the receipt of an INITMSGS event with the
same TASKN value and a MSGID value of DSI530I. An event with a
MSGID of DSI530I but a different TASKN value does not satisfy the
predicate.

�3� If both messages are not received within 10 seconds, the first event from
message DSI166I is returned to the NetView program.

The events can be built out of the automation table with this coding:
IF MSGID='DSI166I' & TEXT= 'DSI166I' TASKNAME 'IS ACTIVATED' . THEN

BEGIN;
IF CORRELATED='0' THEN
EXEC(CMD('CNMCRMSG INITMSGS TASKN ' TASKNAME))
DISPLAY(Y) SYSLOG(Y) NETLOG(Y) CONTINUE(N);
IF CORRELATED='1' THEN

EXEC(CMD('PIPE LIT /SAMP003 ' TASKNAME 'FAILED TO COMPLETE ITS
INITIALIZATION WITHIN SPECIFIED TIME PERIOD /|COLOR RED|CONS'))

DISPLAY(N) SYSLOG(N) NETLOG(N) CONTINUE(N);
END;

IF MSGID='DSI530I' & TEXT=. '''' TASKNAME ''' :' . THEN
BEGIN;
IF CORRELATED='0' THEN

EXEC(CMD('CNMCRMSG INITMSGS TASKN ' TASKNAME))
DISPLAY(Y) SYSLOG(Y) NETLOG(Y) CONTINUE(N);

END;

Writing custom actions
In addition to the standard actions, your rules can also use custom actions you
write using Java code. By writing custom actions, you can perform more
sophisticated event processing, including modification of event attributes.

Each action is implemented as a Java class. When the state correlation engine
starts, it creates instances of all of the action classes required by the rules, using
any parameters specified by the rules. If an action is declared as shared, only a
single instance of each action is created, and this same instance is used by all rules
that call that action. If an action is not shared, a separate instance is created for
each rule that uses a particular action class. (If you need to call an action using
different parameters in different rules, the action cannot be shared.)

Event objects: The state correlation engine works with Java objects that represent
events. When an event arrives, a Java object is created containing all of the
attribute data from the event. This object, an instance of class
com.tivoli.zce.engine.Event, is sent to the state correlation engine. If persistence is
enabled, the state correlation engine then writes a record of the event to a
persistent store. The persistent store is a recovery mechanism used to ensure that
no events are lost if the gateway shuts down while events are processed by the
state correlation engine. When the gateway is restarted, any unsent events recorded
in the persistent store are immediately sent to the gateway.

Chapter 22. Automating Messages and Management Services Units (MSUs) 353

As initially created, the Java Event object contains two copies of the event:
v A working copy, which can be directly accessed using the methods of the event

object. Actions can use this working copy to make changes to event attributes
during processing.

v An internal snapshot of the state of the event as it was received by the state
correlation engine. This field is initially equivalent to the record written to the
persistent store, and it is not dynamically updated to match changes to the
working copy.

The event object is then processed by the state correlation rules and any actions
called by those rules. This processing might include changing the event attribute
values or creating new events.

Action structure: An action is implemented as a Java class and must be included
in the com.tivoli.zce.actions.libs package to be found by the state correlation
engine. This class must implement the necessary interfaces to support event
handling within state correlation rules. An action class must extend the
com.tivoli.zce.actions.DefaultActionHandler class, which provides the necessary
interfaces and some default behavior. The FLBCorAction superclass that is
supplied with the NetView program does this and can be used as the superclass
for user-written actions. An action must implement these three methods:
v processEvent(). This method is called by a rule, or by the preceding action

within a rule, and takes as its parameter a single Event object. This method is
used in cases where the action is processing a single event.

v processEvents(). This method is similar to the processEvent() method, but
takes as its parameter a single EventList object, which contains an array of
multiple events. Both methods must be implemented, because an action can be
called with either a single event or an event list. The processEvents() method
can parse the list and then call the processEvent() method for each one.

v doParse(). This method is called by the state correlation engine during
initialization, after the action class is instantiated. The doParse() method parses
the parameters specified in the XML rule that calls the action; these parameters
govern the behavior of the action instance for all rules that use it. (Note that if
an action is not shared, multiple instances might be created with different
parameters.)

When an event is received by the action (through either the processEvent()
method or the processEvents() method), the action can call the methods of the
event object to retrieve or change the event attribute data. (See “Working with
events” on page 355 for more information.) Finally, assuming the event is not
discarded, the action must send the event to the next step in processing. This can
either be to another action, or if the current action is the last one within a rule,
back to the state correlation engine. The basic method for doing this is the
forward() method, but under some circumstances you might need to use a
different method.

Figure 141 on page 355 summarizes the general structure of an action class.

354 Automation Guide

|
|

Working with events: An event object (an instance of com.tivoli.zce.engine.Event)
contains the event attribute information as a set of name-value pairs stored in a
hash table. The Event class provides methods you can use to work with these
attributes. The methods include:

hasAttribute()
The hasAttribute() method takes a single string as a parameter and
returns a Boolean value indicating whether the event contains an attribute
with the specified name. For example, event.hasAttribute("HOSTNAME")
returns true if event has an attribute called HOSTNAME. (Note that
attribute names are case-sensitive.)

getString()
The getString() method takes a single string as a parameter and returns a
string containing the value of the attribute with the specified name. For
example, event.getString("SEVERITY") returns the current value of the
SEVERITY attribute of event.

putItem()
The putItem() method takes as its parameters a string key and a value.
This method sets the value of the attribute whose name is equal to the
specified key string. For example, event.putItem("ORIGIN","SCE") sets the
value of the ORIGIN attribute to the string ″SCE″. If the specified key does
not match an existing attribute, a new attribute is added. If the attribute
value contains spaces or special characters, enclose it within nested single
quotes to ensure correct parsing by the event server.

package com.tivoli.zce.action.libs;

import com.tivoli.zce.IRule;
import com.tivoli.zce.ParserException;
import com.tivoli.zce.CorrelatorException;
import com.tivoli.zce.engine.EventList;
import com.tivoli.zce.engine.Event;
import com.tivoli.zce.actions.DefaultActionHandler;

public class MyAction extends DefaultActionHandler implements ITecEventAttributes
{

public void processEvents(EventList eventList) throws Exception
{

// code to process multiple events
forward(eventList);

}

public void processEvent(Event event) throws Exception
{

// code to process single event
forward(event);

}

public Object doParse(IRule rule, String params) throws ParserException
{

// method to parse parameters after instantiation
}

}

Figure 141. Structure of an action

Chapter 22. Automating Messages and Management Services Units (MSUs) 355

356 Automation Guide

Chapter 23. Establishing Coordinated Automation

You can automate many operations that are more complex than scheduling
commands or responding to messages and MSUs. For example, you can automate
these operator tasks:
v Initializing the products in your system or network
v Monitoring the products
v Initiating recovery actions when necessary
v Shutting down products in an orderly way when you want them deactivated.

Advanced automation requires you to coordinate actions among many command
procedures and other automation facilities. For example, the automation table can
receive information in the form of messages and MSUs and pass the information to
monitoring command procedures. The monitoring procedures in turn can initiate
recovery whenever necessary. In addition, to ensure the availability of the
automation, have your automation applications monitor each other.

Because of the coordination required among your automation applications for
advanced automation, you must thoroughly design your automation project before
you begin implementation. See Chapter 4, “Designing an Automation Project,” on
page 51 for automation design guidelines.

You can achieve coordinated automation by using NetView global variables, the
Resource Object Data Manager (RODM), or both. This chapter explains establishing
coordinated automation with NetView global variables. See Chapter 28,
“Automation Using the Resource Object Data Manager,” on page 409 for a
discussion about establishing coordinated automation with RODM.

Before establishing coordinated automation using NetView global variables,
examine the advanced automation sample set that NetView provides. The sample
set automates initialization, monitoring, recovery, and shutdown for several MVS
products and components. The sample set also uses internal monitoring to ensure
that its own autotasks remain active and functioning. By examining the sample set,
you can see how global-variable naming conventions and other common protocols
ensure effective communication among command procedures.

The State-Variable Technique
One way to structure your coordinated automation is to build it on a system of
state variables. You can view the operation of a system or network as a process of
monitoring the state of each system or network resource. Resources change state
when a problem occurs or when you take action to resolve a problem. The
shutdown of an application program, the activation of a network resource, or the
logon of an operator all represent transitions between states.

To monitor the system or network, you watch for messages and MSUs that
indicate the state of each element. You also keep track of the desired state of the
element and attempt corrective action if the state does not match the desired state.

In the automated environment, your automation applications can keep track of
current and target states. For example, you can assign two global variables for each
component or resource that you want to automate. One can hold the current state,
and the other can hold the target state. When the automation table receives a

© Copyright IBM Corp. 1997, 2009 357

message or an MSU that indicates a change of state, you can update the
current-state variable accordingly. Target states can be based on conditions or
policy statements that you establish beforehand. An example is a policy that the
VTAM program must be active between 6:00 a.m. and midnight. You can also
provide operator interfaces that allow you to update the target-state variables
directly.

You can also track information. For example, you can use a variable to indicate the
automated action being taken for each resource. By keeping track of the action
being taken, you can avoid attempting corrective action a second time for a
problem before the first attempt is completed. The advanced automation sample
set records the action being taken in the action-state variable. If the sample set
attempts to restart TSO after a failure, for example, it updates the status of TSO
from DOWN to STARTING.

You might also use variables that store the number of users logged on to an
application or that store policy information, such as these:
v Product dependencies (for example, do not attempt to start TSO unless VTAM is

active)
v Timing information, such as when a product must be activated and when it

must be shut down again
v Whether automation is responsible for keeping a resource in its desired state or

just for monitoring the resource; you can then turn automation off easily if you
want to operate a resource manually

Figure 142 on page 359 illustrates a possible structure for coordinated automation
using state variables.

358 Automation Guide

Automating Initialization, Monitoring, Recovery, and Shutdown
Important operating tasks that you can perform with coordinated automation
include the initialization, monitoring, recovery, and shutdown of system and
network resources and components.

Initialization Starting or activating a product or component

Monitoring Watching the system to keep track of the state of each product or
component

Recovery Taking corrective action when monitoring reveals a problem or a
discrepancy between the actual and desired states

Shutdown Stopping a product or component in an orderly fashion

These sections describe how you can automate initialization, monitoring,
shutdown, and recovery. For an illustration of how you can automate these four
tasks, see the advanced automation sample set, which is described in “Using the
Advanced Automation Sample Set” on page 587.

Initialization
and
synchronization
command lists

Monitor and
action
initiation
command lists

State changing command lists

Set target state command lists

Other
automation
applications

Events
requiring
state changes

Current
state:

UP

DOWN

UP

Action
state:

(blank)

START

STOP

Target
state:

UP

UP

DOWN

(State vectors)

Figure 142. Coordinated Automation Using State Variables

Chapter 23. Establishing Coordinated Automation 359

Automating Initialization
To accomplish automated initialization of a product or component, you can usually
use a process modeled on the manual process that operators use. Operators issue
certain commands and await certain messages that indicate successful initialization.
If the messages are not received within the expected time, a problem is indicated
and operators can take recovery action.

To accomplish automated initialization of an entire system, you can begin by
activating the operating system manually. Alternatively, you can activate the
operating system remotely; see “Establishing Remote Operation” on page 16 for
information. The operating system can automatically activate NetView, and the
NetView program can automate the initialization of other products and
components. You can start NetView automatically by placing the start command
for NetView in the COMMNDxx member of SYS1.PARMLIB.

Use the NetView initial command list to call your automation procedures and
begin initializing all remaining products and components. Wait for the successful
initialization of one product before initializing another because of product
dependencies. For example, VTAM must be active before you can initialize TSO.

Automating Monitoring
Automation can use both passive monitoring and proactive monitoring, described
as follows:

Passive monitoring
Watching for certain messages and MSUs and acting when they are
received

Proactive monitoring
Issuing query commands to determine status

Passive Monitoring
In an automated environment, operators no longer need to monitor all messages
and MSUs that indicate the status of system and network components. The
automation table performs passive monitoring. Automated actions that can be
taken upon receipt of a message or an MSU include updating state variables so
that the NetView program has an accurate record of the state of each component.

Proactive Monitoring
Proactive monitoring involves issuing commands that query the system or network
to obtain status information. You can issue query commands at regular, timed
intervals so that you obtain updated information. NetView timer commands, such
as the EVERY command, can schedule your query commands for you.

The shorter the interval you use, the more up-to-date your status information is
and the faster you can respond to failures. However, you can place an unnecessary
burden on the system by issuing queries too frequently.

Also, use proactive monitoring to monitor the status of your automation
application. For example, you can monitor autotasks by sending test commands or
test messages to them at regular intervals. If the autotasks are set up to issue a
specific response to a test message with the help of the automation table, failure to
send the correct response can indicate an autotask failure. The advanced
automation sample set illustrates this technique.

360 Automation Guide

You can monitor the automation table by having an autotask periodically issue the
AUTOTBL STATUS command and wait for the results. In this way, you can ensure
that the correct automation table is running at all times.

As with passive monitoring, you can place the information you gather with
proactive monitoring in state variables. You can provide this information to your
entire automation application.

Combining Active and Passive Monitoring
Passive monitoring usually provides a speed advantage, because automation does
not wait until the next scheduled query command to detect a problem. However,
proactive monitoring might provide a reliability advantage, because a component
that changes state without issuing the messages you expect can still be accurately
observed with proactive monitoring. By combining active and passive monitoring,
you can gain the advantages of both methods.

Automating Recovery
When passive or proactive monitoring detects a problem, such as a mismatch
between an actual state and a desired state, you can initiate recovery. Automated
recovery is similar to an operator’s attempting to restart a product after receiving a
console abend message.

The recovery process for a failing component can be the same as the initialization
process for that component and can use the same command procedure. However,
automation might need to first answer a failure message, investigate the cause of a
problem, or ensure that a failing component is ready for reactivation before
restarting the component.

Automating Shutdown
As with automatic initialization, automatic shutdown typically follows a process
similar to the manual process. To shut down a specific product, issue the
shutdown command for the product and await messages indicating successful
completion.

When shutting down an entire system, you can generally shut down the products
in the reverse of the order in which you initialized them. Do not shut down a
product until all other products that depend on it have first completed their
shutdowns.

Chapter 23. Establishing Coordinated Automation 361

362 Automation Guide

Chapter 24. Enhancing the Operator Interface

An important part of implementing your automation plan is to create an operator
interface that is appropriate to your evolving environment. A good operator
interface presents operators with the information they need to monitor the
environment, examine the state of each resource, and verify that automation is
functioning correctly.

In addition, you must provide for exception notification, which is the process of
informing operators when automation routines encounter problems or events that
you have not yet automated. With exception notification, you focus operator
attention on any problems that still require manual intervention.

In an automated environment, you can present information to operators in these
forms:
v As messages with the command facility
v As status information with the status monitor and, the NetView management

console (NMC)
v As alerts with the hardware monitor or NMC
v As full-screen displays with VIEW and help panels
v As e-mail or alphanumeric pages

Displaying Messages
You can display information to operators in the form of messages on the NetView
command facility. NetView messages and network messages can continue to be
displayed on the command facility, just as in an unautomated environment. In
addition, if you have consolidated your consoles, you can display system messages
from the operating system, subsystems, and applications.

Automation must reduce the number of messages displayed. Chapter 19,
“Suppressing Messages and Filtering Alerts,” on page 301 and Chapter 22,
“Automating Messages and Management Services Units (MSUs),” on page 319
describe ways to reduce the flow of messages.

However, messages are still useful in the automated environment, and you can
have your automation procedures issue messages to the command facility. When
testing automation, for example, you can have automation procedures issue
messages that inform operators of the actions being taken. After testing is complete
and your automation is working smoothly, you can reduce your use of this type of
message. Another use of messages is to inform an operator when automation
procedures encounter problems that require manual intervention.

Command lists can issue messages with the MSG command. Refer to the NetView
online help for a description of the MSG command.

Displaying Status Information
NetView provides two ways to display the status information of a network:
v The status monitor (text form)
v The NetView management console (graphical display)

© Copyright IBM Corp. 1997, 2009 363

These facilities track the states of network resources and display them to your
operators in an organized, hierarchical fashion. They use color changes to draw
attention to network problems.

You can use status displays to complement your automation. While automation is
handling individual messages, alerts, and MSUs, an operator can quickly view the
status of the network and confirm that automation is keeping each resource in its
correct state.

Tracking Status with the Status Monitor
The status monitor displays status information in text format.

Besides displaying information to operators, the status monitor can automatically
reactivate failing resources, except for applications and cross-domain resources. The
status monitor intercepts status information from the VTAM program that indicates
an inactive resource and starts attempting reactivation at 1-minute intervals until
the resource returns to active status. To enable this function, you must have an O
MONIT statement in DSICNM. You can turn automatic reactivation on and off for
a specific resource or for all resources with the MONON and MONOFF
commands. You can also use STATOPT statements in VTAMLST members to
choose which resources the status monitor attempts to reactivate.

For information about O MONIT and STATOPT statements, refer to the IBM Tivoli
NetView for z/OS Administration Reference.

Tracking Status with the NetView Management Console
Display

The NetView management console displays status information in graphical format,
drawing pictures of your network on the screen. You can customize the pictures to
display the information your operators require. Several operators can monitor parts
of the network, each from a different workstation, or a single operator can monitor
your entire enterprise.

NetView graphical displays show information to operators through a workstation
connected to an MVS system. You can graphically monitor status information
about the operating systems by first forwarding the information to an MVS system.
See Chapter 26, “Centralized Operations,” on page 375 for a discussion of
forwarding.

For more information about graphical status displays, see the IBM Tivoli NetView
for z/OS User’s Guide: NetView Management Console.

Monitoring Alerts with the Hardware Monitor
You can also use the hardware monitor to monitor your system and network. In an
automated environment, you can use the hardware monitor for both hardware and
software. The hardware monitor can perform exception notification for you by
displaying alerts to operators when a problem occurs that automation alone cannot
handle.

The hardware monitor allows you to display more information about a problem
than a message gives. This additional information can include a problem
description, a list of probable causes of the problem, and a list of recommended
actions. The hardware monitor also provides:

364 Automation Guide

v A history of reported problems
v Filtering capabilities
v A problem management interface to the Information/Management program
v Recording capabilities for the system management facilities (SMF) or another

external log

Therefore, you might want to convert messages that require operator intervention
into alerts and display them on the hardware monitor. But do not convert a
message into an alert if you can suppress or automatically respond to that message
instead. The aim of automation is to reduce the number of event notifications that
operators must view.

You can use these facilities to send alerts to the hardware monitor:
v The program-to-program interface
v The GENALERT command
v The MS transport

To avoid issuing alerts too quickly and depleting storage, ensure that any
automation that creates alerts does not run at a higher priority than the DSICRTR,
BNJDSERV, and LUC (domain ID followed by LUC) tasks.

Note: Alerts sent to the hardware monitor through the program-to-program
interface or over the MS transport go through the NetView automation
table, as do alerts created by GENALERT. If you use an alert to initiate
automation and automation can create another alert, be careful to avoid an
endless loop. See “NetView Hardware-Monitor Data and MSU Routing” on
page 100 for complete routing information.

Sending Alerts with the Program-to-Program Interface
To send alerts to NetView from another application program running in the same
system, use the program-to-program interface. The program-to-program interface is
also an option for generating alerts from within NetView.

With the program-to-program interface, application programs can send generic
alerts to each other and to the hardware monitor in NMVT or CP-MSU format.
When an application program detects a problem, it can send an alert to the
NetView program. You create the alert by calling the CNMCNETV module in the
NetView subsystem and passing the alert information to NetView. NetView treats
the alert as an unsolicited record. If the alert passes the appropriate hardware
monitor filters, it becomes a hardware monitor alert and can be displayed to
operators.

You can also create an alert in a REXX command and use the PPI PIPE stage to
send it to the hardware monitor.

For information about creating software alerts with the program-to-program
interface, refer to the IBM Tivoli NetView for z/OS Application Programmer’s Guide.

Sending Alerts with the GENALERT Command
You can use the GENALERT command if you want to create alerts from within
NetView. For example, the automation table can issue the GENALERT command
when it receives a message that requires operator attention. Also, a command
procedure can issue the GENALERT command if it encounters a problem that
requires operator attention.

Chapter 24. Enhancing the Operator Interface 365

|

See the NetView online help for more information about the GENALERT
command. For more information about the code points and code point formats that
can be used by the GENALERT command, see the generic alert code points
appendix in the IBM Tivoli NetView for z/OS Messages and Codes Volume 2
(DUI-IHS).

Sending Alerts with the MS Transport
You can use the MS transport to send alerts to the hardware monitor:
v From within NetView
v From another application on the system
v From another system

Send your alerts to NetView’s ALERT-NETOP MS application in MDS-MUs. Each
MDS-MU must contain a CP-MSU with one or more alert major vectors.

Monitoring Alerts with the NMC
Operators using the NMC can request alert history to view alerts generated by
AON. AON sets the Automation in Progress status so that operators can see that
automation is attempting to recover the failed resource. Failed resources that
cannot be recovered appear in the Operator Intervention view (OIV).

For more information, refer to the IBM Tivoli NetView for z/OS User’s Guide:
NetView Management Console.

Creating Full-Screen Panels
NetView lets you create your own full-screen panels with extensive color and
highlighting options. You can create full-screen panels to complement other
operator interfaces or to replace them, both for displaying the states of network
resources and for exception notification.

You can create full-screen panels with a standard editor such as ISPF. You display
the panels from a command procedure by issuing the NetView VIEW command.

You can update panels dynamically, so that operators can monitor changing
information. You can specify locations on the panel for accepting operator input.
The input is sent back to the calling command procedure, enabling the automation
command procedure to interact with the operator through a full-screen interface.
Panels can display the values of NetView global variables and can enable an
operator to change the values of the variables. A calling command procedure can
also be informed if an operator presses a special key, such as ENTER or a PF key.
You can establish chains of panels, enabling operators to press a key to move from
one panel to another.

The advanced automation sample set demonstrates how you can use the VIEW
command with automation. The sample set uses full-screen panels to display the
current status of each program or component that NetView is automating. The
sample set stores each status in a global variable and displays it to operators in an
appropriate color. For example, the line on the panel for CICS turns bright red if
CICS fails. When the status changes, the sample set automatically updates the
screen of any operator who is viewing the status panel, showing the latest status
and the time of the change.

Operators can access additional panels for more information about a specific
program or component that you are automating. For more information about the

366 Automation Guide

|
|
|
|
|

operator interface in the sample set, refer to “Automation Display Panels” on page
600. For additional examples of the use of the VIEW command, see the NetView
command lists BROWSE, TUTOR, and DISG in the NetView online help.

The HELP command also uses the VIEW command, enabling you to create help
panels of your own or to modify existing help panels. NetView offers an extensive
set of online help panels and online message help for network management. By
modifying these panels for your automated environment, you can give operators
the help they need to solve problems and to perform standardized procedures. You
can also introduce new help panels to assist operators in using your automation
command lists, command processors, and operator interfaces.

For more information about using full-screen panels, including help panels, see the
IBM Tivoli NetView for z/OS Customization Guide.

Sending E-mail or Alphanumeric Pages
You can define which personnel must be contacted for a problem, when they must
be contacted, and how they must be contacted by using the INFORM policy
member. By default the INFORM policy provides support for mail and
alphanumeric pagers. For more information about the inform policy, refer to the
IBM Tivoli NetView for z/OS Administration Reference.

Chapter 24. Enhancing the Operator Interface 367

368 Automation Guide

Part 6. MultiSystem Automation
Chapter 25. Propagating Automation to Other NetView Systems 371
Automating Close to the Source . 371
Distinguishing between Automation Procedures . 371
Defining Responsibilities . 371
Defining Autotasks Consistently . 371
Developing Generic Automation Command Procedures . 372
Developing a Portable Automation Table . 372
Including Forwarding . 372
Installing and Testing Before Distribution . 373
Logging Intrasystem Automation . 373

Chapter 26. Centralized Operations . 375
Data Transports . 375

LU 6.2 Transports . 375
LUC . 377
OST-NNT . 377

NetView Architected Focal Point Support . 377
The MS-CAPS Application . 378

MS-CAPS in the Advanced Peer-to-Peer Networking Environment 379
Failure Processing . 380
Focal Point Nesting . 380

Sphere-of-Control with Architected Focal Points . 380
Sphere-of-Control Functions at the Focal Point . 381

MS-CAPS Management of the Sphere-of-Control 381
Operator Management of the Sphere-of-Control . 381

Sphere-of-Control Types . 381
Sphere-of-Control States . 382
Setting Up the Sphere-of-Control Environment . 383

Updating or Changing the Sphere-of-Control Environment 383
Restoring the Sphere-of-Control Environment . 383

How to Define an Architected Focal Point (DEFFOCPT) 384
The ALERT-NETOP Application . 384

Displaying Alerts Forwarded with LU 6.2 . 385
Specifying Architected Alert Forwarding with LU 6.2 385
Forwarding Alerts to a Non-NetView Focal Point . 385

Non-NetView Focal Points and Architected Alerts 386
Non-NetView Focal Points and Unarchitected Alerts 386

Forwarding Alerts from User-Defined Applications . 386
Defining a NetView Intermediate Node Focal Point 387
Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts 388
Queueing Alerts When the Focal Point Is Unavailable 389
Distributed Database Retrieval for SNA-MDS/LU 6.2 Forwarded Alerts 390
Secondary Recording for SNA-MDS/LU 6.2 Forwarded Alerts 390
XITCI Exits and SNA-MDS/LU 6.2 Forwarded Alerts 390
Services Provided by MS-CAPS and FOCALPT Command 390

The LINK-SERVICES-NETOP Application . 390
The OPS-MGMT-NETOP and EP-OPS-MGMT Applications 390
User-Defined Categories and User-Defined Applications 391

NetView-Unique Focal Point Support . 392
Alert Forwarding with LUC . 392
Command and Message Forwarding . 392

Forwarding with the RMTCMD Command . 392
Flexibility in Communication . 393
Nesting RMTCMD Commands . 393

Forwarding with OST-NNT Sessions . 394
Using an Intermediate Focal Point for Message Forwarding 394

© Copyright IBM Corp. 1997, 2009 369

Message/Alert Forwarding with OST-NNT . 395
Full-Screen Functions and the Terminal Access Facility . 395

Using the SDOMAIN Command While Monitoring. 395
Using a TAF Session to Shift Domains . 395
Logging on to a Distributed System Directly . 395
Limitations . 395

Choosing a Forwarding Method . 395
Choosing a Configuration . 397

Leased and Switched Lines . 397
Persistent and Nonpersistent Sessions . 398
Using More Than One Focal Point . 399

Changing, Dropping, and Listing Focal Points . 399

370 Automation Guide

Chapter 25. Propagating Automation to Other NetView
Systems

The first step toward automating your entire data-processing enterprise is to
ensure that you are doing as much local automation as possible on each NetView
system. Therefore, if you have begun with single-system automation on one system
or on a few test systems, propagate that automation onto all of your NetView
systems. Copy your automation routines and tailor the routines to the new
systems. In this process, it is important to automate all of your systems
consistently to keep maintenance as simple as possible.

Propagation also involves preparing for exception forwarding and the use of focal
points. When you connect your systems and forward exceptions, the automation of
one system can affect the automation of others. Therefore, it is important to
synchronize your automation and to determine the relationship that each system
has with its focal point. This chapter describes guidelines for effectively
propagating automation.

Automating Close to the Source
In a multisystem environment, automate as many tasks as possible on the
distributed systems and forward only those things that cannot be handled at the
distributed systems to the focal point. At the distributed system, if the function of
the operating system facility (the message processing facility (MPF)) enables you to
accomplish what you want without using the automation table, use the
appropriate operating system function; otherwise, use NetView.

Distinguishing between Automation Procedures
Categorize automation procedures into focal point control procedures and single
system automation procedures. Focal point control procedures are those performed
by the focal point system, or those performed by distributed systems on behalf of
the focal point, such as those that periodically send updated information to the
focal point. Single-system automation procedures are the intrasystem automation
procedures used on the individual systems that do not require communication
with the system designated as the focal point.

Defining Responsibilities
Establish clear boundaries between responsibilities of the focal point and those of
the distributed systems to avoid duplication of work. For example, if each
distributed system has an autotask that periodically checks the status of the
automation table with AUTOTBL STATUS, it is not necessary for the focal point to
monitor the automation tables of the distributed systems.

Defining Autotasks Consistently
Use consistent operator definitions for autotasks, profiles, and operator passwords
or password phrases across systems. Consistent definitions reduce the effort
required to make changes among systems. For more information, refer to IBM
Tivoli NetView for z/OS Security Reference.

© Copyright IBM Corp. 1997, 2009 371

|
|
|
|

If you have multiple NetView programs in a single MVS system, or if you are
using a sysplex configuration, the extended multiple console support (EMCS)
consoles obtained for operators (and autotasks) must have unique console names.
Use the NetView GETCONID or SETCONID command in the initial command list
for each operator to resolve any conflicts. Refer to the NetView online help for a
description of the GETCONID or SETCONID command.

Developing Generic Automation Command Procedures
To minimize the work required for development, maintenance, and
synchronization of automation procedures for multiple systems, write generic
procedures to function equivalently in all applicable systems. These procedures
should also function on the focal point system when the system is not performing
focal point functions.

To simplify migration, use global variables for system and resource names rather
than hard-coding them into command procedures. By keeping the definition setup
for the global variable in only a few procedures, you can migrate the same set of
automated procedures to multiple systems and customize only a few procedures
on each system. This technique is used in the advanced automation sample set (see
“Using the Advanced Automation Sample Set” on page 587).

Developing a Portable Automation Table
From a maintenance perspective, it is best to have one automation table common
to several systems. However, an automation table must be tailored to different
needs; therefore, the table might be large. Also, a certain message can be used in
different ways in different environments. Thus, you might need a separate
automation table for each system. If you have multiple automation tables, ensure
that updates in the systems are coordinated.

The %INCLUDE statement enables you to keep sections of an automation table in
separate data set members. For example, you could keep the portion of your
automation table that is common to all systems in one data set member and the
portion that is specific to each system in a second.

You can also use multiple automation table members and only enable the
appropriate members on a system by system basis. This has the advantage of
allowing you to enable and disable portions of your automation logic to reflect
workload movement from one system to another.

The SYN statement also facilitates maintenance by enabling you to define
synonyms for those parts of the automation table that must vary from system to
system. You can then adapt the table to a new system by changing the values of
your synonyms.

Including Forwarding
Message, alert, and command routing are key to managing the delegation of
automation responsibilities across multiple focal point and distributed systems. Use
routing to direct where messages and alerts are to be processed and where
commands are to be run. As with autotask IDs and command procedures,
consistency in your approach simplifies automation maintenance. See “NetView
Message Routing” on page 87 and Chapter 26, “Centralized Operations,” on page
375 for more information.

372 Automation Guide

Installing and Testing Before Distribution
When you are developing generic intrasystem automation procedures, it is a good
idea to install the procedures and test them on one system before distributing the
function to all systems. In this way, you can work out any generic problems in an
isolated environment. When you are satisfied that the procedures work in one
environment, you can distribute the procedures, customizing global variables or
control files on each system as appropriate, and test again throughout the
enterprise. By testing first on one isolated system, you can reduce the number of
corrections that must be made when testing throughout the enterprise.

Logging Intrasystem Automation
Intrasystem automation that occurs in each system should be logged in the local
network log. Messages and alerts that are forwarded to a focal point should be
logged at both the distributed system and the focal point for two reasons:
v When an alert or message is forwarded to a focal point, all of the pertinent

information might not get forwarded. An operator at the focal point might have
to go to the distributed system for additional information.

v If a line failure occurs while a message or alert is in transit, the information is
lost. In that case, the focal point operator must browse the distributed system’s
log to gather information.

It is a good idea to have all procedures driven by automation identified in some
way within the log. The sample set for automation has each command list write a
message to the log that is preceded by a less-than sign (<). A quick glance at the
log lets you know whether automation has played an active role in activities
occurring within NetView. These indicators provide an audit trail for automation,
which provides a basis for measurement against the quantified objectives that you
developed as part of your automation plan (see Chapter 3, “Defining an
Automation Project,” on page 41). It also can assist in problem determination in
the event of an automation failure.

See Chapter 35, “Logging,” on page 489 for more information about logging.

Chapter 25. Propagating Automation to Other NetView Systems 373

374 Automation Guide

Chapter 26. Centralized Operations

With automation, you can centralize operations so that you manage all systems,
networks, and data centers from a single system or a few centralized systems.
Often, you can run many of your systems unattended and consolidate your
operation staff at a single location. This process has some of the same objectives as
single-system console consolidation and can further reduce the number of consoles
you monitor.

Before centralizing operations, use local automation on each system to perform as
many operation tasks as possible. Part 5, “Single-System Automation,” on page 289
describes the techniques for local automation on each system. Do not forward
problem notifications for a problem that you can solve locally. However, you must
forward the following types of information to the central system:
v Forward information about the state of each local system, including the system

portion of the network, so that operators and automation on the central system
have an accurate, up-to-date description of every resource and application.

v Forward notifications about exceptions or problems that local automation alone
cannot solve. These problems can be solved by automation on the central system
or by operators logged on to that system.

A central system that receives information from distributed systems is called a focal
point. For design guidelines about choosing a suitable focal point, refer to
Chapter 4, “Designing an Automation Project,” on page 51.

This chapter describes how to transmit information between a distributed NetView
system and a focal-point NetView system.

Data Transports
To help you centralize operations, NetView provides different data transport
methods. The transport methods are: LU 6.2, LUC, and OST-NNT. These transports
are used to transfer data between NetView programs that reside in different nodes.
LU 6.2 transports are also used to transfer data between NetView and
non-NetView products, such as the AS/400®. When you centralize operations
between NetView nodes, one or more of these transports are used to move data
between the nodes.

LU 6.2 Transports
NetView supports two LU 6.2 transports, which use different versions of the SNA
LU 6.2 protocols:
v The management services (MS) transport is for low-volume transmissions that

require high reliability, such as sending alerts.
v The high-performance option of the MS transport is for large-volume

transmissions that require better performance.

The NetView LU 6.2 transports are based on the MULTIPLE_DOMAIN_SUPPORT
Function Set described in SNA Management Services Reference. The LU 6.2 transports
are used by Management Services (MS) applications to send and receive data.

© Copyright IBM Corp. 1997, 2009 375

MS applications can be architectural applications, such as the applications that are
provided with the NetView program or user-defined applications. An application is
created when it registers with the LU 6.2 transports. After registering, an
application can send data to other registered applications and receive data from
them. For example, you can create a user-defined application that can send alerts
to the NetView ALERT-NETOP application. You can display the applications
known to the NetView program (both the applications that are provided with the
NetView program and user-defined applications) by using the REGISTER QUERY
command, shown in Figure 143:

Many of the applications shown in Figure 143 are described in later sections. You
can think of these applications as sitting on top of the LU 6.2 transports. The
DSI6DST task must be active to use the LU 6.2 transports.

Ensure that the names in the DSI6SCF sphere of control member and the DSI6INIT
LU 6.2 transport initialization member match the node configuration. For example,
if the VTAMCP USE option of a focal point is set to yes (VTAMCP USE=YES), then the
focal point is referenced in DSIDMN and must be referenced by the VTAM
CPName using the DSI6INIT member of the entry point. If the USE option of a
focal point is set to no (USE=NO), then the focal point must be referenced by the
domain name of the NetView program on which it is running.

The VTAMCP statement specifies if the NetView MS transport running on that
NetView program can receive MDS-MUs with the VTAM CPName as the
destination. Therefore, when coding DSI6SCF and DSI6INIT statements, be aware
of the VTAMCP statements in your DSIDMN members.

The SNA protocols used for the MS transport are not limited to NetView. You can
use the MS transport to communicate with MS applications on any system or
device that supports these protocols, for example, an AS/400.

To use the LU 6.2 transports, first define NetView to VTAM as an LU 6.2
application. The NetView domain ID serves as the VTAM LU 6.2 application name.

Figure 144 shows how to define NetView as a VTAM LU 6.2 application:

* CNM02 REGISTER QUERY
' CNM02
DWO468I TYPE APPL COMMAND TASK FPCAT FOCALPT LOGMODE NOTIFY
DWO469I MS HMON_DST BNJ62DST BNJDSERV --NONE-- NO SNASVCMG NONE
DWO469I MS HMON_OST BNJ62OST BNJDSERV --NONE-- NO SNASVCMG NONE
DWO469I MS LINKSERV BNJNETOP BNJDSERV --NONE-- YES SNASVCMG NONE
DWO469I MS ALERT BNJNETOP BNJDSERV ALERT YES SNASVCMG NONE
DWO469I MS OPS_MGMT DSIOURCP DSI6DST --NONE-- YES SNASVCMG NONE
DWO469I MS EP_OPS DSIOURCP DSI6DST OPS_MGMT NO SNASVCMG ALL
DWO469I MS SPCS DSIYPIF DSIGDS --NONE-- YES SNASVCMG NONE
DWO469I MS MS_CAPS DSIFPRCV DSI6DST --NONE-- NO SNASVCMG ERROR
DWO469I HP RMTCMD_S DSIUDST DSIUDST N/A N/A PARALLEL NONE
DWO469I HP RMTCMD_R DSIUDST DSIUDST N/A N/A PARALLEL NONE
DSI633I REGISTER COMMAND SUCCESSFULLY COMPLETED

Figure 143. Sample Output From the REGISTER QUERY Command

CNM01 APPL AUTH=(NVPACE,ACQ,PASS),PRTCT=CNM01,EAS=6, X
MODETAB=AMODETAB,DLOGMOD=DSILGMOD,APPC=YES

Figure 144. VTAM APPL Statement

376 Automation Guide

|
|

|
|

For detailed information about writing applications that use the LU 6.2 transports,
refer to the IBM Tivoli NetView for z/OS Application Programmer’s Guide.

LUC
Unlike the LU 6.2 transports, the LUC transport supports communication only
between NetView programs. The LUC tasks (for example, CNM01LUC) must be
active to use the LUC transport. For NV-UNIQ/LUC alert forwarding, the
DSICRTR task must also be active.

OST-NNT
Like the LUC transport, the OST-NNT transport supports communication only
between NetView programs. To establish an OST-NNT session, issue a START
DOMAIN command from a central system to start a session with a target system
NNT. For additional information on OST-NNT sessions, see “Forwarding with
OST-NNT Sessions” on page 394.

NetView Architected Focal Point Support
A focal point application resides in a central network node and receives information
from entry point applications that reside in distributed network nodes. The
information, which is sent from the entry point applications to the focal point
application, belongs to a specific category of data, for example, the alert category.
This section describes how NetView uses methods defined by SNA to keep track of
focal points for operations management, alert, and user-defined categories of MS
data.

NetView uses a subset of the SNA management services focal point architecture
described in the SNA Management Services Reference. The way in which NetView
handles LU 6.2 focal point support is based on the architecture described in this
book.

In contrast to forwarding alerts and status information over LUC sessions, which
are unique to NetView, the architectural method can encompass non-NetView
entry points and non-NetView focal points. NetView can be an architectural focal
point or entry point for any application or device that implements the required
subset of functions in the SNA management services focal point architecture.
NetView can act as an architectural entry point and as an architectural focal point
for alert, operations management, and user-defined categories of information.

When an entry point application sends (forwards) data to its focal point, the entry
point sends the data to the focal point over one of the NetView LU 6.2 transports.
Data flows over LU 6.2 sessions in the form of MDS-MUs.

The architecture uses the concepts of local and remote focal points.
v A local focal point is an MS application acting as a focal point in a node.

From the perspective of the node which contains the focal point application, the
focal point is a local focal point application (it is local to, or resides within, that
node).

v A remote focal point resides in another node.
From the perspective of an entry point whose focal point resides in another
node, the focal point is a remote focal point.

For example, if an operations management focal point application
(OPS-MANAGEMENT-NETOP) resides in node A, then node A is said to contain a

Chapter 26. Centralized Operations 377

local focal point for the operations management category. Suppose a second node,
node B, contains an operations management entry point (EP-OPS-
MANAGEMENT). If the node B focal point for operations management is node A,
node B has a remote focal point for operations management.

A remote focal point can be further classified as a primary or a backup focal point.
The current focal point for a node is the active remote focal point to which entry
point applications forward data. The current focal point can never be the primary
and the backup at the same time.
v If the primary focal point is available, it is the current focal point.
v If the primary focal point is not available, a defined backup focal point is the

current focal point.

Architectural focal points can forward the information they receive from their entry
points on to their focal points. This is called focal point nesting.

The following sections describe the focal point-related MS applications provided by
the NetView program.

Refer to the ″Focal Point™ Concepts″ section of SNA Management Services Reference
for information from an architectural point of view.

The MS-CAPS Application
The term MS-CAPS is sometimes used as shorthand for MS capabilities, the name
of the architected focal point function set. In this book, however, MS-CAPS refers
to the MS application that establishes, ends, and communicates
focal-point-to-entry-point relationships.

The MS-CAPS application communicates with MS-CAPS applications in other
nodes and with other applications by sending major vector X'80F0' over the MS
transport. If you want to write applications that interact with MS-CAPS, familiarity
with the following subvectors within the X'80F0' major vector is required:
v Focal Point Authorization Request (X'61'). A focal point sends this subvector to

an entry point to request that the entry point enter the focal point’s
sphere-of-control.

v Focal Point Authorization Reply (X'62'). An entry point sends this subvector back
to the focal point to accept or reject an authorization request. When a focal point
receives an X'62' accept subvector from an entry point, the entry point is added
to the focal point’s sphere-of-control.
An entry point can also send this subvector to the focal point to revoke an
established relationship. When a focal point receives an X'62' revoke subvector,
the entry point is dropped from the focal point’s sphere-of-control.

v Entry Point Authorization Request (X'63'). An entry point sends this subvector to
the focal point to request inclusion in the focal point’s sphere-of-control.

v Entry Point Authorization Reply (X'64'). A focal point sends this subvector back
to the entry point to accept or reject an authorization request. If the focal point
sends an X'64' accept subvector to the entry point, the entry point is added to
the focal point’s sphere-of-control.

v Focal Point Notification (X'E1'). When a focal point category changes, MS-CAPS
sends the X'E1' subvector to all MS applications that have registered with
interest in the category. When a network node changes its focal point, MS-CAPS
on the network node sends the X'E1' subvector to MS-CAPS on all served end

378 Automation Guide

nodes, notifying them of the change. For example, a change of focal point can
result from an operator entering a NetView FOCALPT CHANGE command or
from a session failure.

It is the responsibility of the MS-CAPS Application to keep track of the current
focal point for all categories. NetView MS-CAPS support is based on the MS_CAPS
Function Set architecture presented in SNA Management Services Reference.

MS-CAPS saves current focal point information in the VSAM Save/Restore
database. MS-CAPS saves the identities of the focal points defined by the
DEFFOCPT statement and focal point changes because of a FOCALPT command
or a session loss. The DSISVRT task must be active before you can save this
information. If you stop and restart NetView, MS-CAPS can use the information to
reacquire the most recent primary and backup focal points upon DSI6DST
initialization.

At DSI6DST initialization, MS-CAPS reads the DEFFOCPT statements contained in
the DSI6INIT member. In the DEFFOCPT statements, you can specify a primary
focal point and up to eight backup focal points. When all DEFFOCPT statements
have been read, MS-CAPS compares the focal points defined to the focal point
details returned from the Save/Restore task. If the DEFFOCPT statements have not
been modified since the last time the DSI6DST task was initialized and the
OVERRIDE keyword has not been specified, MS-CAPS uses the focal point names
returned by the Save/Restore task; that is, MS-CAPS tries to acquire these focal
points for their respective categories. In all other cases, MS-CAPS uses the focal
point names defined by the DEFFOCPT statements; that is, MS-CAPS first tries to
acquire the primary focal point, and if it is unavailable, tries to acquire one of the
backup focal points. The backups are processed in the order specified by the
DEFFOCPT statements until a backup focal point is acquired.

If a backup is unavailable and the MS-CAPS application is running in an end
node, MS-CAPS informs its local applications to send data to the domain focal
point (see “MS-CAPS in the Advanced Peer-to-Peer Networking Environment” for
additional information). When the primary focal point is unavailable, MS-CAPS
sets a timer, and when the timer expires MS-CAPS again tries to acquire the
primary. If a focal point (primary or backup) is acquired, MS-CAPS informs its
local applications to send data to the acquired focal point.

When MS-CAPS detects a conflict between the focal points defined for a category,
MS-CAPS issues a message to the task initiator and the authorized receiver,
indicating what action MS-CAPS has taken because of the discrepancy.

MS-CAPS in the Advanced Peer-to-Peer Networking Environment
In an Advanced Peer-to-Peer Networking environment, network nodes provide
services for end nodes. One of these services is to inform all end nodes, except
migration nodes, of the name and status of the domain focal point.

An end node can also use DEFFOCPT statements or the FOCALPT command to
establish implicit or explicit focal points. In this case, the end node forwards data
to the domain focal point only if it is unable to send data to its primary or backup
focal point. An end node cannot control the domain focal point and cannot drop
the domain focal point.

Chapter 26. Centralized Operations 379

Failure Processing
If the MS-CAPS application at an entry point receives notification of an error in
communication with a primary focal point for an architectural category, MS-CAPS
does the following:
v Sends notification of the failure to all applications that registered interest in the

category.
v Sets a timer for an attempt to reacquire the primary focal point. The attempt

takes place after a period specified by the REACQPRI option on the DEFAULTS
command. Refer to NetView online help for a complete description of
DEFAULTS REACQPRI.

v Attempts to acquire the backup focal point if one exists. If the system is unable
to establish a session with the backup focal point, it attempts a session with the
next backup focal point (if you defined more than one) and so on, until a session
is established. When MS-CAPS successfully acquires a backup, it sends
notification to local entry-point applications for the category, informing them of
their new focal point.

v Attempts to reacquire the primary focal point when the timer expires. If the
attempt succeeds, MS-CAPS sends notification to local entry-point applications
and sends a revocation notice to the backup. If the attempt fails, MS-CAPS resets
the timer and continues to try to regain the primary focal point.

If a backup focal point is the current focal point and MS-CAPS receives notification
of a failure in communicating with the backup focal point, MS-CAPS sends
notification to all applications that registered interest in the category.

Focal Point Nesting
MS-CAPS provides support for focal point nesting, which permits a NetView node
to have both local and remote focal points at the same time. A local focal point
receives information from local applications that act as entry points, and the local
focal point can then act as an entry point itself by forwarding this information to
the remote focal point. If the focal point nesting is incorrectly set up, data can be
forwarded in an infinite loop. MS-CAPS detects and breaks such loops. When a
loop is detected, the node that detects the loop drops its focal point for the
specified category, breaking the loop.

When a FOCALPT command is entered, MS-CAPS performs the function requested
by the FOCALPT command. For example, for a FOCALPT ACQUIRE, MS-CAPS
acquires a new focal point and revokes (drops) the previous focal point. The
FOCALPT command can change or drop the primary and backup focal points.

In the REGISTER QUERY output in Figure 143 on page 376 the MS-CAPS
application is identified as MS_CAPS in the APPL column.

Sphere-of-Control with Architected Focal Points
While architected focal points and the entry points they serve make it possible to
establish, end, and communicate focal-point-to-entry-point relationships, you still
need to manage those relationships. For example, to control and maintain
focal-point-to-entry-point relationships, view those relationships from a centralized
point. If a focal-point-to-entry-point relationship fails, a centralized manager is
needed to recover that relationship.

NetView provides an architectural function set at the focal point called the
sphere-of-control manager (SOC-MGR) that acts as a centralized manager for
focal-point-to-entry-point relationships. The SOC-MGR manages all entry points in

380 Automation Guide

its sphere-of-control. A sphere-of-control is defined as all of the entry points that
have or must have an established relationship with a registered focal point.

Sphere-of-Control Functions at the Focal Point
When an application registers as a focal point, it specifies a category of
management services data for which it is to be a focal point. A
focal-point-to-entry-point relationship can then be established for that particular
category. The MS-CAPS application within the focal point and entry point is
responsible for establishing the relationships between the focal point and the entry
point. The SOC-MGR, which is part of the MS-CAPS application at the focal point,
enables MS-CAPS to provide automated management of the sphere-of-control. The
SOC-MGR also enables an operator at the focal point to manage all entry points in
the focal point’s sphere-of-control.

MS-CAPS Management of the Sphere-of-Control: To provide automated
management services for sphere-of-control, MS-CAPS must:
v Maintain a list of entry points that are within a focal point’s sphere of control.
v Maintain the state of each entry point within the focal point’s sphere of control.
v Attempt to reestablish a relationship with an entry point when the relationship

between the entry point and the focal point is lost. This attempt depends on the
type and state of the entry point.

v Read information from the sphere-of-control configuration file (DSI6SCF) during
NetView initialization and use this information to set up the sphere-of-control
environment.

v Restore the sphere-of-control environment during NetView recovery.

Operator Management of the Sphere-of-Control: The SOC-MGR makes it
possible for an operator at the focal point to perform the following management
functions for the sphere-of-control environment:
v Delete entry points from the sphere-of-control using the FOCALPT DELETE

command.
v Display the names and states of entry points in the sphere-of-control using the

FOCALPT DISPSOC command.
v Initialize the sphere-of-control environment using the FOCALPT REFRESH

command.
v Add entry points to the sphere-of-control configuration file after the SOC-MGR

has been initialized, and then dynamically read the changes into the SOC-MGR
using the FOCALPT REFRESH command.

Sphere-of-Control Types
The sphere-of-control type is maintained for each entry point by the SOC-MGR at
the focal point. The sphere-of-control type defines how the entry point is obtained
into the sphere-of-control. Use the FOCALPT DISPSOC command to display the
sphere-of-control type for entry points. The sphere-of-control types are:

EXPLICIT
The focal point has initiated a relationship with an entry point because of
an operator command or because the entry point was defined in the
sphere-of-control configuration file. The focal point attempts to establish a
relationship with the entry point until it is successful. When the
relationship is established, the entry point is responsible for reestablishing
the relationship if it is lost.

Chapter 26. Centralized Operations 381

IMPLICIT
The entry point has initiated a relationship with the focal point. If the
relationship is lost, the entry point is responsible for reestablishing the
relationship.

An EXPLICIT sphere-of-control type has a higher priority than an IMPLICIT
sphere-of-control type when focal-point-to-entry-point relationships are established.
For example, when a focal point initiates a relationship with an entry point, the
entry point is considered to be explicitly obtained into the focal point’s
sphere-of-control. This entry point is then considered to have an EXPLICIT
sphere-of-control type in the information maintained by the SOC-MGR.

The entry point that was explicitly obtained into the focal point’s sphere of control
can then initiate a relationship with the same focal point. The entry point request
to initiate a relationship with the focal point is completed successfully. However,
because a sphere-of-control type of EXPLICIT has a higher priority than a
sphere-of-control type of IMPLICIT, the SOC-MGR continues to list this entry point
with an EXPLICIT sphere-of-control type.

Sphere-of-Control States
The SOC-MGR at the focal point maintains information about the state of an entry
point in the sphere-of-control. The state of an entry point is determined by:
v The entry point sphere-of-control type
v The previous state of the entry point
v The event that affected the entry point

Use the FOCALPT DISPSOC command to display the sphere-of-control state for
entry points. The entry point states are:

ADD PENDING
The focal point has attempted to acquire the entry point into its sphere of
control, but the focal point has not yet received the reply from the entry point.
The entry point enters the ACTIVE state when the focal point receives a reply
indicating that its request has been accepted by the entry point.

ACTIVE
The focal point is actively providing services for the entry point. A
focal-point-to-entry-point relationship is established, and the entry point is
considered to be in the focal point’s sphere-of-control.

DELETE ADD PENDING
While the entry point was in the ADD PENDING state, the operator at the
focal point issued a FOCALPT DELETE command. The entry point remains in
the focal point’s sphere-of-control and continues receiving services from the
focal point until another focal point takes over services for the entry point, or
until the session between the focal point and the entry point is lost.

DELETE PENDING
While the entry point was in the ACTIVE state, the operator at the focal point
issued a FOCALPT DELETE command. The entry point remains in the focal
point’s sphere-of-control and continues receiving services from the focal point
until another focal point takes over services for the entry point, or until the
session between the focal point and the entry point is lost.

INACTIVE
While the entry point was in the ACTIVE state, the focal-point-to-entry-point
relationship was lost. The entry point remains in the INACTIVE state until the
relationship is reestablished, or until the entry point issues a request to drop
the focal point.

382 Automation Guide

INACTIVE RETRY
The focal-point-to-entry-point relationship was lost while the entry point was
in the ADD PENDING state. The focal point attempts to reestablish the
focal-point-to-entry-point relationship.

UNKNOWN
This state is applicable only to entry points with an IMPLICIT
sphere-of-control type or to EXPLICIT entry points with a state of DELETE
PENDING or DELETE ADD PENDING. An entry point enters an UNKNOWN
state after NetView at the focal point performs a recovery operation. Because it
is the responsibility of the entry point to reestablish the focal-point-to-entry-
point relationship during recovery, the focal point does not know whether the
entry point is aware of the loss of that relationship. If the entry point is aware
of the loss, it can establish a relationship with another focal point. If the entry
point is not aware of the loss, it continues to maintain a relationship with the
focal point. If the entry point does reestablish a relationship with the focal
point, the entry point state changes to ACTIVE.

Setting Up the Sphere-of-Control Environment
The sphere-of-control configuration file, DSI6SCF, defines which entry points are
explicitly obtained into a focal point’s sphere-of-control. This file is read during
NetView initialization to set up the focal-point-to-entry-point sphere-of-control
environment. The sphere-of-control configuration file can also be updated anytime
after NetView initialization to refresh or change focal-point-to-entry-point
relationships. The sphere-of-control configuration file contains:
v The entry point name
v The name of the primary focal point category
v The primary focal point name
v The backup focal point name (optional)

Refer to IBM Tivoli NetView for z/OS Installation: Getting Started for more
information about defining the sphere-of-control configuration file.

Updating or Changing the Sphere-of-Control Environment: The FOCALPT
REFRESH command enables you to dynamically refresh or change
focal-point-to-entry-point relationships after NetView has been started. When you
issue the FOCALPT REFRESH command, the MS-CAPS application at the focal
point reads the sphere-of-control configuration file and updates the current
sphere-of-control environment. Focal-point-to-entry-point relationships defined in
the sphere-of-control configuration file take precedence over relationships in the
current sphere-of-control environment. For example, because the sphere-of-control
configuration file defines EXPLICIT entry points, any entry point with an
IMPLICIT sphere-of-control type in the current sphere-of-control environment is
changed to an EXPLICIT sphere-of-control type when the FOCALPT REFRESH
command is issued.

Additionally, if an EXPLICIT entry point exists in a focal point’s sphere of control
in the current environment, but is not defined in the configuration file when the
FOCALPT REFRESH command is issued, the entry point is deleted from the focal
point’s sphere-of-control.

Restoring the Sphere-of-Control Environment
The MS-CAPS application at the focal point saves information about the entry
points in its sphere-of-control in a VSAM Save/Restore database. When an entry
point leaves a sphere-of-control, information about the entry point is deleted from
the VSAM Save/Restore database.

Chapter 26. Centralized Operations 383

When NetView or the DSI6DST task ends and then recovers, MS-CAPS checks the
VSAM Save/Restore database. If Save/Restore information exists, MS-CAPS uses
the information to restore the most current focal-point-to-entry-point environment.

If an entry point has an IMPLICIT sphere-of-control type, or an EXPLICIT entry
point with a state of DELETE PENDING or DELETE ADD PENDING, the entry
point is restored with an UNKNOWN sphere-of-control state prior to ending. It is
then the responsibility of the entry point to reestablish a relationship with the focal
point. If the entry point is aware that the relationship with the focal point is lost, it
reestablishes the relationship, and the entry point sphere-of-control state changes to
ACTIVE. If the entry point was not aware of the loss, the entry point does not
reestablish a relationship with the focal point, and the entry point sphere-of-control
state remains UNKNOWN.

How to Define an Architected Focal Point (DEFFOCPT)
Figure 145 illustrates typical focal point definitions for the alert, operations
management, and user-defined categories in DSI6INIT (CNMS1040). It also
illustrates a typical operations management entry point definition. Refer to the IBM
Tivoli NetView for z/OS Administration Reference for more information about
DEFFOCPT and DEFENTPT. Note that DEFENTPT only applies to the operations
management category.

The DEFFOCPT and DEFENTPT statements are processed by MS-CAPS at
DSI6DST task initialization.

The ALERT-NETOP Application
When the hardware monitor BNJDSERV task is initialized, it registers the hardware
monitor as ALERT-NETOP, an architected alert focal point. NetView accomplishes
the registration automatically; no definitions are required. NetView ALERT-NETOP
support is based upon the ALERT_NETOP Function Set and EP_ALERT Function
Set architecture. For more information, refer to the SNA Management Services
Reference.

NetView’s ALERT-NETOP implementation can receive alerts from other
applications over the MS transport in the form of CP-MSUs within MDS-MUs.
Such applications act as an EP-ALERT application, and they may reside in a
NetView node or a non-NetView node. For example, the IBM SAA Networking
Services/2 program for OS/2 acts as an EP-ALERT application and can send alerts
to ALERT-NETOP.

The NetView ALERT-NETOP can act as an EP-ALERT application, and can forward
alerts to other ALERT-NETOP applications (NetView or non-NetView) over the MS
transport in the form of CP-MSUs within MDS-MUs. Therefore, ALERT-NETOP

DSTINIT FUNCT=OTHER,XITDI=DSI6IDM
DEFFOCPT TYPE=ALERT,PRIMARY=NETA.CNM02
DEFFOCPT TYPE=OPS_MGMT,PRIMARY=NETA.CNM02,BACKUP=NETB.CNM99
DEFFOCPT TYPE=OPS_MGMT,BACKUP=CNM03
DEFFOCPT TYPE=USERCAT,BACKUP=NETB.CNM99
DEFFOCPT TYPE=USERCAT,PRIMARY=NETA.CNM02,OVERRIDE
DEFFOCPT TYPE=USERCAT,BACKUP=*.CNM05
DEFFOCPT TYPE=USERCAT,BACKUP=CNM03
DEFENTPT EPONLY=YES

END

Figure 145. Typical Focal Point and Entry Point Definition Statements in DSI6INIT

384 Automation Guide

receives and forwards alerts over the MS transport. This includes the ability to send
and receive alerts over CP-CP sessions through the MS transport.

ALERT-NETOP can also receive alerts from the NetView program-to-program
interface in the form of CP-MSUs. The CP-MSUs can contain one or more alert
major vectors. The hardware monitor splits up the alert major vectors and
processes each one individually. See “NetView Hardware-Monitor Data and MSU
Routing” on page 100 for information about how the hardware monitor processes
major vectors.

ALERT-NETOP is displayed as ALERT in the APPL column of the REGISTER QUERY
command output. (See Figure 143 on page 376.) The ALERT is short for
ALERT-NETOP, the architected name for an alert focal point application. Notice
that NetView does not register an EP-ALERT application. ALERT-NETOP acts as
an EP-ALERT application; therefore, it is not necessary for NetView to register an
explicit EP-ALERT application.

Displaying Alerts Forwarded with LU 6.2
The hardware monitor Alerts Dynamic, Alerts Static, and Alerts History panels
display an @ indicator beside alerts that were forwarded to ALERT-NETOP from
remote node applications over LU 6.2. Applications that reside in NetView’s node
are considered local applications, and with few exceptions alerts sent from local
applications do not have an @ indicator. Refer to IBM Tivoli NetView for z/OS User’s
Guide: NetView for additional information.

Specifying Architected Alert Forwarding with LU 6.2
NetView supports, through the ALERT-NETOP application, receiving alerts sent
over the LU 6.2 transport. NetView ALERT-NETOP acts as an architectural
ALERT-NETOP application to receive alerts sent from applications that act as an
EP-ALERT.

To forward alerts over LU 6.2 using the NetView ALERT-NETOP application,
specify the SNA-MDS option on the ALERTFWD statement in the CNMSTYLE
member. The ALERTFWD statement enables you to choose how NetView forwards
alerts: through SNA-MDS/LU 6.2 (for ALERTFWD SNA-MDS) or NV-UNIQ/LUC
(for ALERTFWD NV-UNIQ). Refer to the IBM Tivoli NetView for
z/OS Administration Reference for more information about the ALERTFWD
statement.

If you choose NV-UNIQ, ALERT-NETOP can receive alerts over LU 6.2, but it
cannot forward alerts over LU 6.2; it can forward alerts only over LUC, as
described in “Alert Forwarding with LUC” on page 392. If you choose SNA-MDS,
then ALERT-NETOP acts as an architectural ALERT-NETOP and EP-ALERT. As
such, it can forward alerts over LU 6.2 to its focal point. The following sections
describe SNA-MDS alert forwarding (also called architectural alert forwarding, LU 6.2
alert forwarding, or forwarding alerts over LU 6.2).

Forwarding Alerts to a Non-NetView Focal Point
You can choose a non-NetView product, such as an AS/400, as the NetView alert
focal point. From the perspective of a non-NetView product, the alerts it receives
from an entry point NetView are in the following categories:
v Alerts that conform to the architecture

For example, Generic Alert major vector X'0000' with subvector X'92'.
v Alerts that do not conform to the architecture

For example, OSI Alarms in a X'1330'/X'132F' double major vector.

Chapter 26. Centralized Operations 385

|
|

Also falling into this category are alerts which conform to the architecture but
which the receiving non-NetView product does not support. For example, the
architecture permits Alert Resolution major vector X'0002's to be forwarded to an
ALERT-NETOP, however some non-NetView products might not support
receiving them because these products have not implemented that subset of the
architecture.

Non-NetView Focal Points and Architected Alerts: These are properly processed
by the non-NetView product. A non-major vector alert, such as a RECFMS, might
be displayed with a probable cause of UNDETERMINED. Consult the product
documentation for more information.

Non-NetView Focal Points and Unarchitected Alerts: Because the focal point is a
non-NetView product, the focal point may not know how to process
non-architected records; it depends on the focal point product. For example,
nongeneric Alert major vector X'0000's (which do not contain subvector X'92') are
not architected to be sent to a focal point, however the AS/400 product supports
receiving them. Most likely, if the non-NetView product receives an unarchitected
record it does one or more of the following, depending on the product:
v Issue an error message.
v Send an MDS Error Message (a X'1532' major vector within an MDS-MU) or an

Application Error Message (a X'1532' major vector within a CP-MSU) back to the
entry point NetView.
When the entry point NetView receives the MDS Error Message or Application
Error Message, the entry point issues the BNH094I or BNH095I message in
accordance with the option specified on the ALERTFWD statement in the
CNMSTYLE member.
Refer to the IBM Tivoli NetView for z/OS Administration Reference for information
about ALERTFWD and refer to the IBM Tivoli NetView for z/OS Installation:
Getting Started for information about the CNMSTYLE member.

v Ignore (discard) the unarchitected alert.

Non-architected alerts may not be properly processed by non-NetView focal points;
consult the product’s documentation for more information.

Note: If all alerts forwarded from an entry point NetView are to be properly
processed by the focal point, the focal point must be a NetView Version 3 or
later.

Forwarding Alerts from User-Defined Applications
As described in “User-Defined Categories and User-Defined Applications” on page
391, you can create user-defined applications. User-defined applications can send
alerts to ALERT-NETOP. To do so, when your user-defined application registers
with the MS transport, it must register with interest in category ALERT.

Once registered, MS-CAPS sends the application a notification (an MDS-MU with
major vector X'80F0' and subvector X'E1') which contains the current alert focal
point’s fully-qualified name: its netid name, nau name, and application name. (The
current alert focal point is normally the NetView ALERT-NETOP.) After your
application has received the notification, it can send alerts to the alert focal point,
and by doing so, it is acting as an architected EP-ALERT. The alerts must be
encapsulated within a CP-MSU, and the CP-MSU must be encapsulated within an
MDS-MU. All alerts sent must conform to the architecture defined in the Systems
Network Architecture library.

386 Automation Guide

|
|

|
|

When ALERT-NETOP receives alerts that were sent over LU 6.2 from local
applications, these alerts are processed as normal local alerts. For example, the @
indicator is not present on the Alerts Dynamic panel for such alerts, because they
were not forwarded from a remote node.

Defining a NetView Intermediate Node Focal Point
If NetView has an alert focal point, and NetView receives alerts forwarded with
LU 6.2, such alerts are forwarded again by ALERT-NETOP to the NetView focal
point. In this case, NetView is an intermediate node focal point, also known as a
nested focal point, because entry points forward alerts to it and it forwards these
alerts again to its focal point. You can have zero, one, or more intermediate node
focal points, and if you do accidentally construct a loop the MS-CAPS application
detects and breaks the loop. To understand how intermediate node focal points
forward alerts using LU 6.2, see Figure 146.

Only alerts forwarded over LU 6.2 can be forwarded again by an intermediate
node focal point. The intermediate node focal point, which receives such alerts,
may forward them again, using either the SNA-MDS/LU 6.2 or NV-UNIQ/LUC
alert forwarding method. Alerts forwarded over LUC are not forwarded again,
they are forwarded only once from the entry point to the focal point. The receiving
focal point is not permitted to forward them again. You can think of LUC alert
forwarding as a one hop alert forwarding method.

If you do not want an intermediate node NetView to record data to the hardware
monitor database, but to simply pass through an intermediate node, specify the
ALRTINFP NORECORD statement in BNJMBDST. The ALRTINFP setting only
applies to alerts forwarded with LU 6.2 from remote nodes; all other alerts are
unaffected. Refer to ALRTINFP in the IBM Tivoli NetView for z/OS Administration
Reference for more information.

NetView Focal Point
or

Non-NetView Focal Point
(such as AS/400)

NetView Intermediate Node Focal Point

Alerts, forwarded
by SNA-MDS

Alerts, forwarded
by SNA-MDS

Alerts, forwarded
by SNA-MDS

NetView EP Non-NetView EP

Figure 146. NetView Intermediate Node Focal Point Forwards Alerts with LU 6.2

Chapter 26. Centralized Operations 387

At the ultimate (topmost in the diagram) NetView focal point, the domain name
that the entry point alert is recorded against in the hardware monitor database is
obtained as follows:

Note: This is the domain name displayed under the DOMAIN column on the
Alerts Dynamic, Alerts Static, and Alerts History panels, and is displayed in
the pictorial hierarchy at the top of several other hardware monitor panels.

v If the entry point is a Version 3 or later NetView and the ultimate focal point is
a Version 3 or later NetView, when the alert appears on the Alerts Dynamic
panel at the ultimate focal point, the domain name present under the DOMAIN
heading is the entry point domain name.
The alert is recorded in the focal point database against the entry point NetView
domain name. Only a single alert record is recorded in the database, the
complete set of data is present at the entry point database. Recording a single
alert record to the database saves database storage and processor time.
An operator at the ultimate Version 3 or later focal point can retrieve hardware
monitor data from the entry point database through the Distributed Data Base
Retrieval function by entering SEL# M from the Alerts Static panel, and through
the SDOMAIN command. For additional information, refer to the IBM Tivoli
NetView for z/OS User’s Guide: NetView and the NetView online help.
The presence of zero, one, or more intermediate nodes does not matter, so long
as an LU 6.2 session can be established between the ultimate focal point and the
entry point. If an LU 6.2 session cannot be established between the ultimate
focal point and the entry point, the Distributed Database Retrieval function fails.
However, the SDOMAIN command might complete successfully because it
attempts to establish an LUC session or an OST-NNT session after it determines
that it cannot establish an LU 6.2 session.

v If the entry point is a non-NetView and the ultimate focal point is a NetView,
then when the alert appears on the Alerts Dynamic panel at the ultimate focal
point, the domain name present under the DOMAIN heading is the ultimate
focal point domain name.
This is true regardless of the version and release level of the ultimate focal point.
The alert is recorded in the focal point database as if it were a local alert.

v If the entry point is a Version 3 or later NetView and the ultimate focal point is
a pre-V3R1 NetView, then when the alert appears on the Alerts Dynamic panel
at the ultimate focal point, the domain name present under the DOMAIN
heading is the ultimate focal point domain name.
This is because pre-V3R1 NetViews treat all LU 6.2 forwarded alerts they receive
as if they were forwarded from a non-NetView. The alert is recorded in the focal
point database as if it were a local alert.

Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts
Alerts forwarded with LU 6.2 from non-NetView entry points or from local
applications have the hardware monitor recording filters applied to them as if they
were local alerts. If these alerts pass the recording filters, a complete set of data is
recorded to the hardware monitor database. This data consists of zero, one, or
more event records, statistics records, and alert records, among others.

Alerts forwarded with LU 6.2 from remote-node NetView entry points also have
the hardware monitor recording filters applied to them as if they were local alerts;
however, the AREC and ESREC recording filters are always forced to PASS. Each
of these alerts is recorded in the hardware monitor database as a single alert
record, and the complete set of data is available only at the entry point. This

388 Automation Guide

process is known as alert-only recording, and alerts forwarded with LUC are also
recorded as alert-only. The focal point does not quickly fill up the database and
uses less processor time.

You can use the hardware monitor ROUTE recording filter to designate the alerts
NetView must forward. However, an alert must pass the ESREC and AREC filters
before it goes to the ROUTE filter, and alerts already forwarded once by LUC are
never forwarded again. You can use the SRFILTER command to specify filter
settings from the hardware monitor, or you can use the SRF action to specify them
from the automation table. The automation table SRF action can override the
recording filters for all alerts except alerts forwarded with LUC. For example, you
can use the SRF action to record non-NetView entry point alerts as alert-only, or
record entry point NetView alerts with the complete set of data (not alert-only).

See “Filtering Alerts” on page 301 for more information about the SRFILTER
command and “Actions” on page 211 for more information about the SRF action.

Queueing Alerts When the Focal Point Is Unavailable
Alerts received by a NetView entry point during the time that its focal point is
unavailable are marked as held in the alert cache. Refer to ALCACHE in the IBM
Tivoli NetView for z/OS Administration Reference for more information about defining
an alert cache. If MS-CAPS later successfully reacquires the focal point, MS-CAPS
notifies ALERT-NETOP that the focal point has been reacquired, and
ALERT-NETOP loops through the alert cache and processes each of these held
alerts. This processing involves first reapplying the ROUTE recording filters to this
now-held alert, because when the ROUTE recording filter was initially applied to
the alert, the alert was not marked as held. If the ROUTE recording filters are
passed, the alert is forwarded to the focal point.

An alert cache might not be defined, or held alerts may roll off the alert cache
before a new focal point is acquired. Such alerts are not forwarded to the focal
point, however a count is kept of the number of these alerts. (This count wraps at
10000.) If the focal point is later reacquired, the DSI382I message is issued and it
displays this count.

A focal point can be flooded with held alerts forwarded from one or more NetView
entry points. If you want to prevent flooding, you can set the ROUTE recording
filter at the NetView entry point so that held alerts are blocked and not forwarded
to the focal point when the focal point is reacquired; use the NPDA SRFILTER
ROUTE BLOCK E HELD command. This command is commented out in the
CNMSTYLE member (see the NPDA.PDFILTER statement). You can uncomment it
so that such held alerts are not forwarded to the focal point. Held alerts from
NetView entry points must be blocked at the entry point and not at the focal point,
whereas held alerts from non-NetView entry points must be blocked at a NetView
focal point. See “Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts” on
page 388 and refer to the SRFILTER command in NetView online help for more
information.

If a focal point NetView is flooded with held alerts from non-NetView entry
points, the focal point AREC recording filters can be set to filter out such held
alerts. For example, the NPDA SRFILTER AREC BLOCK E HELD command blocks
incoming alerts which contain a subvector 92 with its held bit set. The hardware
monitor default AREC recording filters block many, but not all, held alerts, and
you can see these by issuing the NPDA DF AREC command.

Chapter 26. Centralized Operations 389

|
|

Distributed Database Retrieval for SNA-MDS/LU 6.2 Forwarded
Alerts
At a NetView focal point, when Distributed Database Retrieval occurs for a
selected alert, either the MS transport or the LUC transport is used to retrieve the
data from the entry point hardware monitor database. The transport used in
Distributed Database Retrieval is the same transport over which the focal point
received the alert. For example, if the focal point received an alert over LU 6.2,
then whenever Distributed Database Retrieval occurs for this alert it also uses LU
6.2.

Refer to the IBM Tivoli NetView for z/OS User’s Guide: NetView for more information
about Distributed Database Retrieval. Distributed Database Retrieval can fail when
intermediate nodes are involved, as described in “Defining a NetView Intermediate
Node Focal Point” on page 387 and “Alert Forwarding with LUC” on page 392.

Secondary Recording for SNA-MDS/LU 6.2 Forwarded Alerts
With LUC alert forwarding, hardware monitor secondary recording is prevented
from occurring at the focal point. With SNA-MDS/LU 6.2 alert forwarding,
secondary recording is enabled. Refer to the IBM Tivoli NetView for z/OS User’s
Guide: NetView for more information concerning secondary recording.

XITCI Exits and SNA-MDS/LU 6.2 Forwarded Alerts
Refer to IBM Tivoli NetView for z/OS Programming: Assembler for information
concerning XITCI exits and SNA-MDS/LU 6.2 forwarded alerts.

Services Provided by MS-CAPS and FOCALPT Command
Because ALERT-NETOP acts as an architectural EP-ALERT, the services provided
by MS-CAPS and the FOCALPT command are available to ALERT-NETOP. See
“The MS-CAPS Application” on page 378 for more information concerning the
functions provided by MS-CAPS. Also, see “Changing, Dropping, and Listing Focal
Points” on page 399.

The LINK-SERVICES-NETOP Application
When the hardware monitor BNJDSERV task initializes, the hardware monitor is
registered as LINK-SERVICES-NETOP, an architectural link event (major vector
X'0001') focal point. NetView accomplishes the registration automatically; no
definitions are required. The NetView LINK-SERVICES-NETOP support is based
on the LINK_SERVICES_NETOP function set architecture described in SNA
Management Services Reference.

The NetView LINK-SERVICES-NETOP function can receive link events from other
local applications over the MS transport in the form of CP-MSUs within
MDS-MUs. The sending applications must be local applications, which reside in
the same node as NetView.

LINK-SERVICES-NETOP is displayed as LINKSERV in the APPL column of the
REGISTER QUERY command output in Figure 143 on page 376. The LINKSERV is
short for LINK-SERVICES-NETOP, the architectural name for a link event focal
point application.

The OPS-MGMT-NETOP and EP-OPS-MGMT Applications
NetView also registers as an architectural focal point for the operations
management category (OPS-MANAGEMENT-NETOP), unless you add a
DEFFOCPT statement to specify another focal point or a DEFENTPT
EPONLY=YES statement in DSI6INIT (CNMS1040). The NetView

390 Automation Guide

OPS-MANAGEMENT-NETOP and EP-OPS-MANAGEMENT support is based on
the OPERATIONS_MGMT_NETOP Function Set and EP_OPERATIONS_MGMT
function set architecture described in SNA Management Services Reference.

Regardless of whether the operations management focal point is registered,
NetView automatically registers one of its facilities as an architectural
operation-management entry point (EP-OPS-MANAGEMENT). If the node is to
have an entry point but not a focal point (its focal point is remote), you can define
primary and backup focal points for operations management in DSI6INIT
(CNMS1040).

If the NetView OPS-MANAGEMENT-NETOP application is registered, a
REGISTER QUERY command shows it as OPS_MGMT. EP-OPS-MANAGEMENT
shows up as EP_OPS (see Figure 143 on page 376).

User-Defined Categories and User-Defined Applications
Your NetView MS applications can serve as both focal points and entry points for
user-defined categories of information. When one of your applications has
registered with the MS transport as either a focal point or an entry point in a
user-defined category, operators can use the NetView FOCALPT command to
control the node used as the category’s focal point.

To register an application as a focal point, use the REGISTER command, macro, or
service routine with the name of the category as your MS application name and a
FOCALPT=YES operand. Then, an operator or command procedure can establish a
focal-point to entry-point relationship for the category. For example, if you register
a focal point application with a name of USERDATA, you can issue a FOCALPT
command for the USERDATA category.

To establish a node as an entry point for a user-defined category, use the
REGISTER command, macro, or service routine with an FPCAT parameter that
specifies the category. Your application is registered as an entry point and receives
information from MS-CAPS about the current focal point. You can have more than
one entry point application for a category in each node.

Refer to the NetView online help for REGISTER command syntax, the IBM Tivoli
NetView for z/OS Programming: Assembler for DSI6REGS macro syntax, and to IBM
Tivoli NetView for z/OS Programming: PL/I and C for the syntax of the CNMRGS
service routine.

You can define multiple user-defined entry point and focal point applications and
categories. An advantage to registering user-defined applications with the MS
transport is that such applications use the services provided by the MS-CAPS
application (including the SOC-MGR function set) and the FOCALPT command.
For example, if you have one or more user-defined entry point applications for a
user-defined category, MS-CAPS notifies all such applications when the current
focal point for that category changes. NetView operators and automation can use
the FOCALPT command to control which systems act as the focal point in each
category. MS-CAPS and FOCALPT functions also apply to communication with
non-NetView applications. For example, a user-defined application registered with
the NetView MS transport can serve as a focal point for non-NetView systems in a
given user-defined category, and likewise, can serve as an entry point and accept
non-NetView focal points.

Chapter 26. Centralized Operations 391

NetView-Unique Focal Point Support
As explained in the previous section, the NetView architectural focal point support
allows NetView to act as an entry point and as a focal point for the alert,
operations management, and user-defined categories of information using the LU
6.2 transports. This support, based upon the SNA Management Services Reference
architecture, permits interoperability with NetView and non-NetView systems.

The NetView program also provides focal point support for the alert and status
categories, which is unique to NetView. With this NetView-unique focal point
support, the entry points and focal points must be NetView programs. The
NetView-unique focal point support provides less function than the architectural
focal point support, because the NetView-unique focal point support cannot use
the services that are provided with the architectural focal point support. For
example, focal points that are unique to the NetView program cannot use the
services provided by the MS-CAPS application (including the SOC-MGR support).

Alert Forwarding with LUC
You can use NetView to forward alerts to a focal point using LUC sessions
(NV-UNIQ/LUC method). You can forward alerts using the architectural
SNA-MDS/LU 6.2 forwarding method, except when the focal point is most often a
pre-V3R1 NetView. Unlike OST-NNT sessions, LUC sessions are established
automatically. If you have established appropriate system definitions, NetView
opens LUC sessions as necessary to forward alerts. Each NetView can have one
focal point for alerts. For more information, refer to Advanced Network and Systems
Management.

Command and Message Forwarding
To manage your distributed systems, operators and automation applications on the
central system often must issue commands to the distributed systems. You can
forward commands with the RMTCMD command. The RMTCMD command can
forward any command that NetView normally processes, except commands that
produce full-screen output. To issue commands for special tasks, such as
initialization and shutdown of a distributed system, you can use the System
Automation for z/OS licensed program. See “Establishing Remote Operation” on
page 16.

Message forwarding relates closely to command forwarding. You can forward
messages using distributed autotasks that RMTCMD sets up or using the same
OST-NNT sessions employed by the ROUTE command to link operator station
tasks (OSTs) and NetView-NetView tasks (NNTs).

Forwarding with the RMTCMD Command
With the RMTCMD command, you specify the command to forward and the target
NetView LU name. Unless you already have a session with a distributed autotask
on the target system, NetView sets up a session automatically before forwarding
the command. Any messages that the command generates return to you.

On the target system, you must have an operator ID that the RMTCMD command
can use. When you issue the RMTCMD command, you can specify the ID. If you
do not specify an ID, the RMTCMD command uses an ID equal to your ID on the
sending system. If the ID is not yet active, the RMTCMD command starts the ID as
a distributed autotask and processes the forwarded command on that autotask.
Thereafter, you have an association with the distributed autotask on the target
system.

392 Automation Guide

|

The target NetView forwards all messages received by the distributed autotask
back to the system from which you issued the RMTCMD command. The OST that
issued the RMTCMD command receives the forwarded messages. Forwarded
messages include any responses to your forwarded commands. Forwarded
messages also include any other miscellaneous messages that the target system
might send to the distributed autotask.

Flexibility in Communication: Distributed autotasks provide flexible
communication. Suppose you want to forward messages from a distributed system
to a central system for exception notification, to inform operators of problems that
local automation encounters. You can issue the RMTCMD command from the
central system to forward a command, possibly just a dummy command, to the
distributed system. This sets up a distributed autotask. After that, automation can
send messages to the distributed autotask any time it needs to forward information
to the central system.

After you issue the RMTCMD command, your distributed autotask remains active
until you issue the ENDTASK command or log off. By issuing the RMTCMD
command from an autotask that never logs off, you can establish a permanent
session for message forwarding.

Depending on your design, automation on a distributed system might need to
forward a message when no distributed autotask yet exists. In this case, the
distributed system itself might issue the RMTCMD command and forward a MSG
command to the central system to issue the message. This method gives you a new
DSI039I message on the central system with the text of your choice. However, it
does not allow you to forward an existing message, complete with associated
automation internal function request (AIFR) data.

Nesting RMTCMD Commands: To forward an existing message when you have
no distributed autotask, the distributed system can use nested RMTCMD
commands to have a RMTCMD command sent back from the central system. This
sets up a distributed autotask that you can use for message forwarding. A REXX
automation procedure can issue the command in Figure 147 at NETVDS to
establish message forwarding from NETVDS up to NETVCS.

Issuing this command sends an EXCMD command to AUTO1 on the central
system, which routes a second RMTCMD to AUTO2. AUTO2 then issues
RMTCMD to establish a session with AUTO3 on the distributed system, and
message forwarding can begin. It is assumed here that AUTO2 is already active; if
not, you can first issue an AUTOTASK command to start it.

Each RMTCMD distributed autotask can connect to only one master OST at a time.
However, a master OST can have as many distributed autotasks as you want. You
can use RMTCMD commands nested within each other to forward commands and
messages to their destinations through intermediate nodes. In this case, you can
use the EXP parameter to determine whether the commands and messages go
through the automation table on the intermediate nodes. Refer to NetView online
help for the syntax of the RMTCMD command.

'RMTCMD LU=NETVCS,OPERID=AUTO1 EXCMD AUTO2',
'RMTCMD LU=NETVDS,OPERID=AUTO3 MSG AUTO3,Dummy Message'

Figure 147. RMTCMD Example

Chapter 26. Centralized Operations 393

Forwarding with OST-NNT Sessions
A second way to forward commands and messages is with OST-NNT sessions. To
use these, you begin by issuing a START DOMAIN command from the central
system to start a session with a target system NNT.

An NNT can be any available operator ID that is not currently logged on. The
same operator ID can be used by an operator, a distributed autotask, a regular
autotask, or an NNT, depending on how you start the task. An OST can log on to
NNTs in several domains at the same time, but only to one NNT per domain. An
NNT cannot connect to more than one OST at a time.

Once you have established an OST-NNT session, you can use the ROUTE
command to send a command from the OST to the NNT on the second NetView.
Any messages received by the NNT, including responses to a forwarded command,
go back to the OST on the central NetView. Therefore, NNTs act in much the same
way as the RMTCMD command’s distributed autotasks, and you can use NNTs for
message forwarding.

All automation messages sent across OST-NNT sessions are rebuilt at the target
domain. All automation action flags except HOLD, BEEP, and DISPLAY are reset
during this message rebuilding process. Preservation of the HOLD, BEEP, and
DISPLAY actions enables cross-domain messages to be automated at the target
domain.

Attention: If you are using extended multiple console support (EMCS) consoles,
use the RMTCMD command and LU 6.2 sessions for all cross-domain sessions to
prevent loss of data. Otherwise, if the sessions are established between an OST and
an NNT, messages are sent without any appended message data block (MDB) data
structures. These data structures contain special information about a message, such
as the highlighting (including color) assigned to the message. These data structures
contain some DOM information that is associated with the message. Therefore,
such information in the MDB data structures is lost on the OST-NNT sessions.

The RMTCMD command is the method to use for command and message
forwarding. The RMTCMD command uses the LU 6.2 protocol for better
performance and does not require operators to manually start sessions before
forwarding commands. Refer to the NetView online help for the syntax of the
RMTCMD, START DOMAIN, and ROUTE commands.

Using an Intermediate Focal Point for Message Forwarding
An intermediate focal point can collect data from several distributed systems and
forward it to the focal point. The distributed systems assigned to an intermediate
focal point treat it as their focal point. They set up sessions with the intermediate
system and send messages to it just as they would to a focal point system.

You do not need operators at the intermediate system. The intermediate system
can use a NetView autotask, command lists, and the automation table to function
without intervention.

Using intermediate focal points helps to concentrate sessions. Many distributed
systems can have sessions with one intermediate system, which can establish a
single session with the focal point. Therefore, you limit the number of systems that
must communicate with the focal point directly. The intermediate system might
also perform external automation and recovery for its distributed systems,
reducing the load on the focal point.

394 Automation Guide

Intermediate focal points are especially valuable in multisite environments.
Strategically placed intermediate focal points can reduce the overhead associated
with switched lines or the cost associated with leased lines.

Message/Alert Forwarding with OST-NNT
In addition to the SNA-MDS/LU 6.2 and NV-UNIQ/LUC alert forwarding
mechanisms, there is a third mechanism for forwarding alerts. It is an older
method, and with it the OPER filter is used to convert alerts to BNJ146I messages.
You can then use message forwarding to transmit the BNJ146I message to another
NetView and the GENALERT command to reconstitute a similar alert.

Full-Screen Functions and the Terminal Access Facility
Other NetView functions can help you manage distributed systems from a central
location. These functions include full-screen functions and the terminal access
facility (TAF).

Using the SDOMAIN Command While Monitoring
The hardware monitor and the session monitor can assist in centralized operations,
because they can display data from other domains. For example, operators can
issue the hardware monitor command SDOMAIN to switch the domain they are
monitoring. If the forwarded alerts do not provide enough information about a
particular situation, operators can use the SDOMAIN command to get additional
hardware monitor information from a distributed system. Similarly, the session
monitor accepts an SDOMAIN command that enables operators to view session
data on distributed systems.

Using a TAF Session to Shift Domains
Another option for shifting the domain you monitor is to use a TAF session.
Focal-point operators can use a TAF session to log on to other NetView domains in
either full-screen or operator-control mode. Automation routines can also use TAF,
but only in the operator-control mode. See Table 18 on page 432 for suggestions
about using TAF for automation.

Logging on to a Distributed System Directly
Of course, if none of these methods solves a problem, you can log on to NetView
on a distributed system directly. NetView Access Services can assist you if you
want to log on to a large number of systems simultaneously.

Limitations
When you use an SDOMAIN command, work with a full-screen TAF session, or
directly log on to a distributed system, you do not see consolidated data from
several domains on a single panel. Another disadvantage of full-screen methods is
that automation cannot use them. Therefore, full-screen methods are better suited
to problem determination in exceptional cases than to continuous monitoring.

Choosing a Forwarding Method
You can transmit information between a distributed system and a focal point with
command forwarding, message forwarding, alert forwarding, status forwarding,
and the LU 6.2 transports. In addition, you can obtain extra information for
problem determination by using full-screen methods.

Chapter 26. Centralized Operations 395

The following guidelines can help you to determine which method of forwarding
information is appropriate for you.
v Using an MVS system for a focal point, status forwarding can effectively provide

operators with information about the state of your network. Although you must
provide definitions and choose focal points, the forwarding is automatic, and
you have the advantage of a graphical interface.

v If you prefer to work with messages, use the RMTCMD command and
distributed autotasks. This technique allows you to correlate asynchronous data
using the PIPE command, and enables you to track all active remote tasks using
the RMTSESS command processor.

v For forwarding exception notifications, you can choose message forwarding,
LUC alert forwarding, or the LU 6.2 transports.

v If you prefer to work with alerts, use SNA-MDS/LU 6.2 alert forwarding.
However, if the alert focal point is most often a pre-V3 NetView, then use
NV-UNIQ/LUC alert forwarding.

v The LU 6.2 transports provide a flexible communication option if you are willing
to do some customization. You can use them for exception notification and other
data transmission you require. Use the MS transport for low-volume
transmissions that require high reliability, such as exception notification. Use the
high-performance option of the MS transport for high-volume transmissions,
where speed is important.
Refer to the IBM Tivoli NetView for z/OS Application Programmer’s Guide for more
information about choosing between the two versions of the LU 6.2 transport.

v A need to communicate with NetView programs prior to Version 2 Release 2
might restrict your options. Table 17 shows the release of NetView needed for
each forwarding mechanism.

Table 17. NetView Forwarding Options by Release

Option Release Required

Command Forwarding

Using the ROUTE Command Any

Using the RMTCMD Command V2R2 or later

Data Forwarding

Forwarding Messages with OST-NNT Sessions (START DOMAIN) Any

Forwarding Alerts with LU 6.2 Sessions V3R1 or later

Forwarding Alerts with LUC Sessions Any

Forwarding Status V2R1 or later

Forwarding Messages with Distributed Autotasks (RMTCMD) V2R2 or later

LU 6.2 Transports V2R2 or later

Changing Focal Points

Using the CHANGEFP Command Any

Using the FOCALPT CHANGE Command V2R2 or later

396 Automation Guide

Choosing a Configuration
When choosing a configuration for the centralized-operations environment,
consider both the physical connections that connect your focal points with
distributed systems and the type of session you must use. You might also want to
include backup or intermediate focal points in your design.

Leased and Switched Lines
You can attach a focal point to a distributed system with a leased line, such as a
channel, or with a switched line. Whereas leased lines are permanent connections
between systems, you establish a connection over a switched line by dialing. With
switched lines, either a focal point or a distributed system can initiate and end
sessions between the two. There can also be communication controllers between
the two.

In most instances, use leased lines, particularly when the focal point and the
distributed systems are in close proximity. Leased lines require less CPU utilization
by the NetView and VTAM programs.

However, switched lines can be much less expensive than leased lines. Switched
lines are often appropriate when you have several distributed systems at remote
sites or when you expect very little traffic between a distributed system and its
focal point. Similarly, they can be useful in connecting distributed systems to a
backup focal point. Switched lines can help you minimize line costs without
sacrificing the advantages of interconnected multisystem automation. Figure 148
illustrates a switched-line configuration.

If you perform message forwarding with the NetView samples or LUC alert
forwarding, NetView establishes the dialed connections automatically. For

CNM01 CNM02

VTAM VTAM

VTAM

NetView NetView

NetView

NCP

CNM99

Figure 148. Switched Line Support

Choosing a Configuration

Chapter 26. Centralized Operations 397

instructions about switched-line configurations, refer to IBM Tivoli NetView for
z/OS Installation: Getting Started. If you perform LUC alert forwarding over a
switched line, distributed database retrieval also uses the switched line. With the
RMTCMD and LU 6.2 transports (including SNA-MDS/LU 6.2 alert forwarding),
dialing is left to the VTAM program. Status forwarding requires leased lines.

An operator or autotask with access to the program operator interface (POI) can
explicitly activate or deactivate a switched link by issuing a VTAM command:
v V NET,DIAL,ID=linkstation_name activates a link.
v V NET,HANGUP,ID=linkstation_name deactivates a link.

For more information about the syntax of these VTAM commands, refer to the
VTAM library.

Automation can take advantage of a switched connection from NetView if you
have your command procedures issue the VTAM commands to activate and
deactivate links. Before starting a session, NetView can determine whether to
activate a switched connection. If so, it can activate the line before requesting the
session. The NetView command list DIALCDRM (CNME7023 and CNME1502)
performs a dial and shows examples of how you can use the VTAM DIAL and
HANGUP commands in a NetView command procedure.

Persistent and Nonpersistent Sessions
NetView can automatically establish communication between a distributed system
and its focal point. When a distributed system recognizes that it has information to
send to the focal point, NetView can establish a session and forward the data.
Depending on your definitions, NetView opens either a persistent or a
nonpersistent session.
v A persistent session remains active after data is forwarded.
v A nonpersistent session ends after a user-specified time, if NetView does not

forward additional data.

In general, persistent sessions are used in an environment of leased lines or
channels and a large amount of forwarded traffic. Nonpersistent sessions, however,
are usual when leased lines connect the distributed and focal-point systems.

Refer to IBM Tivoli NetView for z/OS Installation: Getting Started for the definitions
necessary for choosing between persistent and nonpersistent sessions. For each
domain that NetView communicates with, you can make a separate choice of
whether LUC sessions must be persistent or nonpersistent. LUC sessions are used
for alert forwarding, status forwarding, distributed database retrieval, and
cross-domain viewing with the session monitor or the hardware monitor using the
SDOMAIN command. When you use the NetView samples to set up message
forwarding, you can also choose whether they use persistent or nonpersistent
sessions.

However, NetView does not control whether the RMTCMD command and the LU
6.2 transports (including SNA-MDS/LU 6.2 alert forwarding) use persistent or
nonpersistent sessions. You must use VTAM to make this decision.

The rules that apply to lines and sessions between a distributed system and its
focal point also apply to lines and sessions between a distributed system and its
backup focal point. That is, you can use switched or leased lines and persistent or
nonpersistent sessions.

Choosing a Configuration

398 Automation Guide

However, use nonpersistent sessions for message forwarding with the NetView
samples if you expect forwarding to the primary focal point to quickly resume.
This is because a persistent session continues to carry data to the backup focal
point after the primary focal point becomes available, unless you explicitly end the
session.

Using More Than One Focal Point
When forwarding information from a distributed system to a focal point, it is
common to choose a single focal point for all types of data. This design enables an
operator or automation application at the focal point to gather all of the relevant
data about a given distributed system. However, you can use several focal points if
you prefer.

A distributed system can have separate focal points for each category of forwarded
data: messages, alerts, status information, and operations management data. In
addition, the system can have one focal point for each user-defined category of MS
application.

If you want to divide data in some way other than by these categories, use one of
the mechanisms that enable you to implement customized designs, such as
RMTCMD message forwarding or the LU 6.2 transports. For example, you might
want to send low-priority notifications to one focal point and high-priority
notifications to another. In this case, you might write an application that establishes
RMTCMD sessions with each message recipient and determines which recipient is
to receive each message. Similarly, you can use the LU 6.2 transports to direct
information to the application and the system of your choice.

Changing, Dropping, and Listing Focal Points
The FOCALPT CHANGE and FOCALPT ACQUIRE commands enable you to
change focal points for both architectural and NetView-unique focal points. To
change a focal point for alerts (for both SNA-MDS/LU 6.2 and NV-UNIQ/LUC
alert forwarding), status, operations management, or a user-defined category of MS
application, use FOCALPT CHANGE or FOCALPT ACQUIRE.

You issue the CHANGEFP or the FOCALPT CHANGE command from the new
focal-point system and specify a target system. The domain from which you issue
the command becomes the primary focal point of that target system until you issue
another change command or stop and restart NetView on the target system. For
messages, alerts, operations management data, and user-defined MS categories,
you can also specify a new backup focal point. Issue the FOCALPT ACQUIRE
command to specify new focal point systems from an entry-point system.

Depending on the ALERTFWD statement specified in the CNMSTYLE member
(refer to the IBM Tivoli NetView for z/OS Administration Reference for information
about ALERTFWD), a Version 3 or later entry point NetView forwards alerts with
either SNA-MDS/LU 6.2 alert forwarding or NV-UNIQ/LUC alert forwarding.
Therefore, the FOCALPT CHANGE and ACQUIRE commands establish alert
forwarding from a Version 3 or later entry point NetView to its focal point by one
mechanism or the other. When NV-UNIQ/LUC alert forwarding is used, and if the
focal point and entry point are both NetView programs, the NetView DSICRTR
task on the focal point sends a REQUEST message to its counterpart on the
distributed system. The alert-forwarding LUC session between the distributed
system and its old focal point ends after all alerts already queued for the session
are sent. Other alerts are sent to the new focal point.

Choosing a Configuration

Chapter 26. Centralized Operations 399

|

When SNA-MDS/LU 6.2 alert forwarding is used, the MS-CAPS application
establishes the entry point-focal point relationship. Once the relationship is
established, the ALERT-NETOP application forwards all alerts it receives to its
focal point, which is also an ALERT-NETOP application, over the MS transport.

For example, with either SNA-MDS/LU 6.2 or NV-UNIQ/LUC alert forwarding,
you can change the CNMDS alert focal point to CNMFP and its backup to
CNMBA by issuing the following command:
FOCALPT CHANGE TARGET=CNMDS BACKUP=CNMBA FPCAT=ALERT

By substituting an operand of FPCAT=OPS_MGMT, FPCAT=STATUS, or
FPCAT=user-defined, you can change an operations management or status focal
point, or a focal point for a user-defined MS category. Requests in the
operations-management and user-defined categories are handled by the MS-CAPS
application, as are requests in the alert category that you send to a non-NetView
target or send to a Version 3 or later NetView target that has “ALERTFWD
SNA-MDS” coded in the CNMSTYLE member. See “The MS-CAPS Application” on
page 378 for more information about categories.

Changing a status focal point is a lengthy process, because the new focal point has
to start by collecting initial status information. Change the status focal point only if
you expect the primary focal point to be out of service for an extended time. You
cannot use the BACKUP operand with status focal points.

To change and add backup focal points, use the FOCALPT ACQUIRE command.
This command enables you to:
v Change the backup focal point name.
v Define a new backup list for a data category.
v Add backup focal points to an existing backup list.
v Remove focal points from the backup list.

You can also use FOCALPT ACQUIRE to restore the focal points to those defined
in DSI6INIT.

Use the FOCALPT QUERY or LIST FOCPT command to list a system’s focal
points. You can issue the FOCALPT DROP command on a distributed system to
stop forwarding a category of information to a focal point, except for status
information or messages. You can also issue FOCALPT DROP to remove one or
more focal points from the backup list. You can issue the ENDTASK command to
end message forwarding by deactivating a distributed autotask. To stop forwarding
messages with an OST-NNT session, you can send a LOGOFF command to the
NNT.

Choosing a Configuration

400 Automation Guide

|

Part 7. Additional NetView Automation Topics
Chapter 27. Automating Other Systems, Devices, and Networks 405
Tivoli NetView for UNIX Service Point . 405
Event/Automation Service . 406

Forwarding Alerts . 406
Forwarding Messages . 407

NCP Frame Relay Switching Equipment Support . 408

Chapter 28. Automation Using the Resource Object Data Manager 409
Managing Multiple RODM Data Caches . 409

Managing RODM Using the DSIQTSK Task . 409
Defining RODM Using the DSIQTSKI Initialization Member. 410
Managing RODM Using the ORCNTL Command . 411

Issuing Commands from RODM Methods . 411
Verifying Commands Issued from RODM Methods. 412
Accessing RODM from NetView . 412

The ORCONV Command . 413
Accessing RODM from High-Level Language and Assembler Language Programs 413

A RODM Automation Scenario . 413
The Scenario Events . 414
The Scenario Entities . 414
Setting Up the Scenario . 415
Running the Scenario. 417
Key Sections of Change Method EKGCPPI . 421

Procedure Statement . 422
Local Variables . 423
Constants . 425
Initialization. 426
Changing a Subfield . 427
Querying a Field . 427
Querying an Object Name . 428
Triggering an Object-Independent Method. 429

Chapter 29. Automation Using the Terminal Access Facility 431
Overview. 431
How TAF Works . 432
Setting Up TAF. 432

Adding VTAMLST Definitions. 432
Adding CICS Terminal Definitions . 433
Adding IMS Terminal Definitions . 434

NetView Commands Used for TAF . 434
Automating Applications Using TAF . 435

Chapter 30. Automation Involving Common Base Events 437
Introducing Common Base Events . 437
Creating Common Base Events . 437

Creating Common Base Events by Automating Messages and MSUs 437
Creating Common Base Events by Setting Hardware Monitor Filters 438

Using Common Base Events in Automation . 438
Correlating Common Base Events . 439

Chapter 31. Using Automated Operations Network . 443
Understanding AON Automation and Recovery . 443

Automation Table . 443
The Control File . 443

Understanding Automated Operators . 444

© Copyright IBM Corp. 1997, 2009 401

Understanding Notifications . 444
Understanding Automation Tracking . 445
Understanding Automation Notification Logging in the Hardware Monitor 445
Resource Recovery and Thresholds . 445
AON/SNA Automation . 447

Understanding the AON/SNA Options. 448
Using the AON/SNA Tutorials . 448
Using the AON/SNA Help Desk . 448
Using SNAMAP . 449
Managing VTAM Options . 449
Using NetStat . 449
Issuing VTAM Commands . 449
Monitoring X.25 Switched Virtual Circuits . 449
Displaying NCP Recovery Definitions . 449

AON/SNA Subarea VTAM Resource Automation Support 450
Monitoring Advanced Peer-to-Peer Networking Resources 450
AON/SNA X.25 Monitoring Support . 450

AON/TCP Automation . 451
Passive Monitoring in AON/TCP for Tivoli NetView (AIX) 452
Proactive Monitoring . 453
Recovery Monitoring . 453
Threshold values for AON/TCP with Tivoli NetView (AIX) 453
MIB Polling and Thresholding (TCP/IP for z/OS only) 454
Operator Awareness . 454

Chapter 32. Running Multiple NetView Programs Per System 457
Installing Multiple NetView Programs . 458
NetView Interfaces and Functions . 458

Program Operator Interface (POI) . 458
Communications Network Management Interface (CNMI) 459
Hardware Monitor Local-Device Interface . 459
MVS Subsystem Interface . 460
GENALERT . 461
Status Monitor and Log Browse . 461

Using the Interfaces . 461
Separating Network Functions from System Functions 462
Separating Problem Determination Functions from Automation Functions 462
Migration . 463
Communication between Two NetView Programs . 463

LUC Alert Forwarding . 463
Command and Message Forwarding . 463
LU 6.2 Transports . 463
MVS Subsystem Interface . 464

Automated Recovery of NetView. 464
Priorities . 464

Chapter 33. Automation Tuning . 465
Log Analysis Program . 465
Resource Controls, Task Priorities, and Multitasking . 468

Resource Controls . 468
CPU Usage . 468
Storage Usage . 468
Message Queuing . 468
Input/Output Usage . 469

Task Priority. 469
Multiple Autotasks . 469
Multiple NetView Programs . 469

Automation-Table Processing . 470
Hardware Monitor Alerts . 470

Chapter 34. Automation Table Testing . 473

402 Automation Guide

Automation Table Testing . 473
Starting Parallel Testing . 473
Testing an Automation Table Using Recorded AIFRs . 474
Sample Report for the AUTOTEST Command . 475

Using a Test Environment . 479
Using Applications . 479
Using a Simulator . 479

Message Simulation . 479
MSU Simulation . 480

Implementing Automation Incrementally . 480
Verifying Automation Table Matches . 481
Verifying Automated Action Parameters . 481
Verifying Scheduled Commands . 482
Checking the Effect of Automation . 482
Ensuring That Autotasks Process Command Procedures Correctly 483

Using Debugging Tools . 484
Using Logs . 484
Evaluating Unautomated Messages and MSUs . 485
Using NetView Automation Table Listings. 485
Using NetView Automation Table Tracing . 486

Chapter 35. Logging . 489
Logging Considerations . 489
MVS System Log (SYSLOG) . 490
Network Log . 490
User-Provided Logs . 491
NetView Logging Capabilities . 491
MVS System Log and NetView Network Log Records . 492

Chapter 36. Job Entry Subsystem 3 (JES3) Automation 493
Message Flow in a JES3 Complex. 493

Messages That Originate on the Global Processor . 493
Messages That Originate on the Local Processor . 494

Commands in a JES3 Environment . 495
Issuing JES3 Commands from NetView. 495
Issuing MVS Commands from NetView in a JES3 Complex 496
Issuing NetView Commands from Operating System Consoles in a JES3 Complex 496

NetView in a JES3 Environment . 496

Chapter 37. SNMP Trap Automation . 499
The SNMP trap automation task . 499

Configuring an SNMP trap automation task . 499
SNMP trap automation task configuration file . 500

SNMP Trap Automation CP-MSU . 502
Example of SNMP trap automation . 506

Part 7. Additional NetView Automation Topics 403

404 Automation Guide

Chapter 27. Automating Other Systems, Devices, and
Networks

The previous chapters discuss automation of processors that are capable of running
NetView. They describe automating devices and networks that use SNA protocols
and report to NetView through the VTAM program. In this chapter, NetView
automation capabilities for automated management of many other IBM and
non-IBM systems, devices, and networks are described.

NetView automation capabilities for a non-NetView system or non-SNA device
depend on the capabilities of the system or device. The system or device must be
able, directly or indirectly, to send problem reports and other information to
NetView in a form (messages or MSUs) that can be automated and to receive
commands from NetView.

For information about managing non-SNA networks through automation, refer to
the IBM Tivoli NetView for z/OS Resource Object Data Manager and GMFHS
Programmer’s Guide.

Often a product that cannot be automated directly can be automated with an
appropriate interface product. This chapter describes a few examples of interface
products that implement service points and enable you to expand the scope of
your NetView automation:
v Tivoli NetView for UNIX service point
v Event/Automation Service
v Service point application (SPA) router and remote operations service (ROPS)
v NCP frame relay switching equipment

See Chapter 2, “Overview of Automation Products,” on page 21 for some
additional examples of interface products.

Tivoli NetView for UNIX Service Point
The Tivoli NetView for UNIX service point is an interface program that can assist
NetView in managing non-SNA devices. The Tivoli NetView for UNIX service
point runs on a RISC System/6000 machine.

The Tivoli NetView for UNIX service point provide services to applications that
manage outboard devices such as a private branch exchange (PBX), LAN, or T1
multiplexer. The service point application is the active agent that communicates
with the outboard device, formats alerts, sends them to NetView, and receives and
responds to commands. Therefore, the automation capabilities available to you are
those supported by the service point application. One example of a service point
application is the Host Connection function of Tivoli NetView.

The primary task of a Tivoli NetView service point in automation is to send alerts
to the NetView system. The Tivoli NetView for UNIX service point does not have
local management capabilities but instead acts as an operatorless gateway between
NetView and a non-SNA network.

When an alert reaches NetView, the NetView automation table can issue a
command procedure in response. This capability is discussed in Chapter 22,
“Automating Messages and Management Services Units (MSUs),” on page 319. The

© Copyright IBM Corp. 1997, 2009 405

|
|
|
|

command procedure that is issued can attempt to solve the problem indicated by
the alert by sending commands to the service point application.

The commands that your automation can send to the service point application are
the same ones a NetView operator can send:

LINKPD Asks the service point application to do problem determination on
the specified link.

LINKTEST Asks the service point application to test the specified link.

RUNCMD Sends a command string to the service point application for
execution. The data that is placed in the command string depends
on the service point application and is not necessarily the same
across applications. You can expand the types of commands and
responses supported with RUNCMD by appropriately
programming the service point application and updating your
NetView automation to take advantage of the added functions. For
example, actions such as retry or reconfigure can be taken only if
they are supported in the service point application.

NMVTs carry alerts, commands, and responses. Refer to the Tivoli NetView (for
UNIX) library for data formats and contents, and background information.

Event/Automation Service
The Event/Automation Service provides support for the translation and
forwarding of event data between the NetView hardware monitor, the Tivoli
Enterprise Console , and SNMP trap managers. Alerts received by the hardware
monitor can be translated to either Tivoli Enterprise Console events or to SNMP
traps and forwarded to the respective event manager. Messages received by
NetView can be translated to Tivoli Enterprise Console events and forwarded to
the Tivoli Enterprise Console. Finally, SNMP traps or Tivoli Enterprise Console
events can be translated to alerts and forwarded to the hardware monitor.

For alerts, only a portion of the original alert data is forwarded to the
Event/Automation Service. NetView adds information to the alert and forwards it
to the Event/Automation Service. The combined information is used by the alert
adapter service, confirmed alert adapter service, or the alert-to-trap service of the
Event/Automation Service to create the Tivoli Enterprise Console event or SNMP
trap. You can customize the contents of the outgoing events or traps by
customizing the information that is forwarded from NetView. For more
information, see “Forwarding Alerts.”

Messages are processed similarly. The entire message is combined with additional
information created by NetView and is forwarded to the Event/Automation
Service. The combined information is used by the message adapter service or the
confirmed message adapter service of the Event/Automation Service to create the
Tivoli Enterprise Console event. You can customize the contents of the Tivoli
Enterprise Console event by customizing the information that is forwarded from
NetView. For more information, see “Forwarding Messages” on page 407.

Forwarding Alerts
If you want to forward a hardware monitor alert without changing how the Tivoli
Enterprise Console event or SNMP trap is built, use the hardware monitor
recording filters to choose which alerts NetView must forward. The TECROUTE
filter selects alerts for forwarding to the Tivoli Enterprise Console and the

406 Automation Guide

|

|

TRAPROUT filter selects alerts for forwarding to an SNMP manager. For an alert
to be forwarded, either the TECROUTE or TRAPROUT filter must be set to PASS.
However, an alert must pass the ESREC and AREC filters before it goes to either
the TECROUTE or TRAPROUT filter. You can use the SRFILTER command to
specify filter settings from the hardware monitor or you can use the SRF action to
specify filter settings from the automation table.

To customize how the Tivoli Enterprise Console event or SNMP trap is built when
an alert is forwarded:
v Set the TECROUTE or TRAPROUT filter to PASS using either the hardware

monitor SRFILTER command or the automation table SRF action.
v Write a command that performs your customization. For information of how to

write the command, see the NetView samples CNMEALUS and CNMSIHSA.
v In the NetView automation table, specify the name of your command in the

cmdstring parameter of an automation table IF-THEN statement. Add the
keyword TECROUTE to the beginning of cmdstring as a prefix.

Notes:

1. Only one such prefixed command is supported for a given alert; it must
handle all TECROUTE and TRAPROUT actions. This command is driven
only once even if the TECROUTE and TRAPROUT filters are both passed.

2. If you are using the confirmed alert adapter service, the cmdstring parameter
must begin with TECROUTE, followed by the PIPE command or the name of
a command that will ultimately invoke the pipe PPI stage using the
TECRTCFM keyword.

v Customize the alert adapter service class definition statement file (sample
IHSAACDS), the confirmed alert adapter service class definition statement file
(sample IHSABCDS), or the alert-to-trap server class definition statement file
(IHSALCDS).

v Customize any baroc files that have been applied to Tivoli Enterprise Console
servers. For more information, refer to theIBM Tivoli NetView for
z/OS Customization Guide. This step is not necessary for the confirmed alert
adapter service.

Forwarding Messages
To forward a message from NetView without making any changes to how the
Tivoli Enterprise Console event is built, specify a NetView automation table
IF-THEN statement with this information in cmdstring:
'PIPE SAFE * | PPI TECROUTE PPI_receiver_ID'

In this command, PPI_receiver_ID is the name of the PPI receiver associated with
the Event/Automation Service. The default value is IHSATEC. Specify a value in
PPI_receiver_ID, even if you use the default. Note that no messages are output in
this example, even if the PPI stage fails. NetView sample CNMEMSUS has
examples that use the secondary output of the PPI stage to output error messages.

Note: To use the confirmed message adapter, use the following information in the
cmdstring:
'PIPE SAFE * | PPI TECRTCFM PPI_receiver_ID'

To customize how the Tivoli Enterprise Console event is built when a message is
forwarded to the Tivoli Enterprise Console or to handle error messages:

Chapter 27. Automating Other Systems, Devices, and Networks 407

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

v Write a command that performs your customization. For information about how
to write the command, refer to the NetView samples CNMEMSUS and
CNMSIHSA.

v In the NetView automation table, specify the name of your command in the
cmdstring parameter of an automation table IF-THEN statement.

v Customize the message adapter service message format file (sample
IHSAMFMT) or the confirmed message adapter service message format file
(sample IHSANFMT)

v Customize any baroc files that have been applied to Tivoli Enterprise Console
servers. For more information, refer to theIBM Tivoli NetView for
z/OS Customization Guide. This step is not necessary for the confirmed message
adapter service.

NCP Frame Relay Switching Equipment Support
NetView supports architected major vectors and subfields that contain protocol
information for NCP frame relay switching equipment.
v The X'0E' subfield within the X'52' subvector contains frame relay status

information.
v The X'0F' subfield within the X'52' subvector contains frame relay configuration

information.

The X'0E' and the X'0F' subfields can be present in the X'1332' major vector. The
X'0E' subfield can be present in the X'0000' major vector.

The frame relay vectors are not displayed by the hardware monitor, but they are
passed to the automation table for processing as MSUs. An automation table
statement is shipped, commented out, in the sample automation table DSITBL01.
This statement can be used to conditionally run a command processor to process
the frame relay information. NetView does not ship a sample command processor
of this type.

Refer to the NCP library for the format of the vector and the subfields.

408 Automation Guide

|
|
|
|

Chapter 28. Automation Using the Resource Object Data
Manager

The Resource Object Data Manager (RODM) is an in-storage data cache that stores
configuration data and resource status information. You can use RODM for both
network and system automation.

Before designing an automation project that uses RODM, be familiar with RODM
terminology and concepts. For more information about the object-oriented terms
used by NetView to describe RODM and its data model, refer to the IBM Tivoli
NetView for z/OS Resource Object Data Manager and GMFHS Programmer’s Guide.

This chapter describes automation using RODM by explaining basic concepts and
providing a detailed automation scenario. The concepts are:
v Managing one or more RODM data caches
v Issuing NetView commands from RODM methods
v Verifying commands issued from RODM methods
v Accessing RODM from the NetView automation table, NetView high-level

language, and assembler-language programs

NetView offers a dedicated NetView task and a series of services that allow you to
use RODM. With these NetView services, you can automate with RODM more
easily than by using the basic RODM APIs. This set of NetView services is referred
to as the RODM automation platform.

An automation-in-progress indicator is maintained by NetView in RODM for
resources undergoing automation. This enables operators using a NetView
graphical display to wait until automation is finished for a resource before
attempting to solve a problem.

You can use the RODMView tool to view and manipulate data and objects in
RODM. RODMView also includes an application programming interface to RODM.
Refer to the IBM Tivoli NetView for z/OS Resource Object Data Manager and GMFHS
Programmer’s Guide for more information about RODMView.

Managing Multiple RODM Data Caches
RODM resides separately from the NetView application address space or the
NetView subsystem address space. Multiple RODMs can reside on a single system;
each RODM resides in its own address space.

Managing RODM data caches includes, connecting to, disconnecting from, and
checkpointing your RODM data caches. A checkpoint is a request to save to DASD
all of the current data contained in RODM. You can write applications to manage
RODM data caches, or you can manage your RODM data caches from the NetView
address space using the NetView DSIQTSK task.

Managing RODM Using the DSIQTSK Task
The DSIQTSK task is dedicated to communicating with the RODM address space
and to managing specified RODM data caches. Each RODM that you want to
manage from the NetView address space must be defined to DSIQTSK. DSIQTSK

© Copyright IBM Corp. 1997, 2009 409

is a NetView optional task (OPT). DSIQTSK is defined in the CNMSTYLE member
and is started with the START TASK command.

In addition to managing your RODM data caches, DSIQTSK can:
v Receive commands sent by RODM
v Dispatch commands to NetView autotasks that are defined to DSIQTSK, based

on the autotasks’ workload

If you have more than one NetView program on a single host, each NetView
program has a DSIQTSK task. Each DSIQTSK must use a unique receiver name.
The DSIQTSK task automatically registers as the receiver for commands sent from
RODM.

If you want DSIQTSK to receive the commands sent from RODM, use the
DSIQTSKI initialization member to define a receiver name and the names of the
autotasks to which the commands are dispatched.

Defining RODM Using the DSIQTSKI Initialization Member
The DSIQTSKI initialization member of DSIPARM contains keywords that define
administrative details about how DSIQTSK manages your RODM data caches.
These keywords define RODM attributes, autotask names, and the command
receiver name that RODM uses when sending commands to DSIQTSK.

The keywords are defined briefly here. For more information, refer to the IBM
Tivoli NetView for z/OS Administration Reference.

CMDRCVR
The name of the program-to-program interface queue that RODM uses to
send commands to the NetView address space. The DSIQTSK task is a
dedicated receiver for this queue. Commands sent from RODM to NetView
are placed on the program-to-program interface with the RODM method
called EKGSPPI. Refer to the description of the methods that are supplied
with the NetView program in the IBM Tivoli NetView for z/OS Resource
Object Data Manager and GMFHS Programmer’s Guide.

REP The name of a RODM. Use one REP keyword for each RODM you want to
manage.

These are the parameters on the REP keyword:

CONN Indicates whether RODM is to be connected to the
NetView address space when DSIQTSK is activated. This
parameter is entered as CONN=Y or CONN=N.

AO Indicates whether this RODM is the default RODM for the
ORCONV command, the CNMQAPI high-level language
service routine, and the DSINOR assembler-language
macro.

PASS Indicates the password or password phrase for this RODM.
This password or password phrase is used when DSIQTSK
attempts to connect to this RODM.

CMD Indicates a command that DSIQTSK uses when connecting
to RODM.

T Indicates the amount of time that requests issued using
ORCONV, CNMQAPI, or DSINOR wait if RODM is
checkpointing and unavailable to process those requests. If

410 Automation Guide

|

|
|

|
|
|

the wait-time expires, the requests fail with a return code
indicating that a checkpoint is in progress.

ID Indicates the application ID that DSIQTSK uses to identify
itself to RODM.

TASK The name of a NetView autotask.

When DSIQTSK receives a command from RODM, DSIQTSK dispatches
that command to a NetView autotask. Use one TASK statement for each
autotask you want to be available to DSIQTSK.

Managing RODM Using the ORCNTL Command
After you define RODM data caches in the DSIQTSKI initialization member and
activate the DSIQTSK task, use the NetView ORCNTL command to:
v Connect to a specified RODM.
v Disconnect from a specified RODM.
v Change the connection password or password phrase for a specified RODM.
v Change the default RODM for the NetView ORCONV command, the CNMQAPI

high-level language service routine, and the DSINOR assembler-language macro.
v Initiate a checkpoint for a specified RODM.
v List the status of autotasks under the control of DSIQTSK.
v List the status of all RODM data caches managed by DSIQTSK.

For information about the syntax and usage of the ORCNTL command, refer to the
NetView online help.

Issuing Commands from RODM Methods
Use the EKGSPPI method to issue commands from your RODM methods. The
EKGSPPI method uses the program-to-program interface to send commands to the
NetView DSIQTSK task. These commands include any command that can be run
from a NetView autotask. For example, if a resource fails, you might want to
trigger a method to attempt activation of that resource automatically using the
VTAM VARY command. The VARY command cannot be run from the RODM
address space. Therefore, the command is sent to the NetView address space. The
DSIQTSK task in the NetView address space dispatches the commands to NetView
autotasks for execution.

For more information, refer to the description of the methods that are supplied
with the NetView program in the IBM Tivoli NetView for z/OS Resource Object Data
Manager and GMFHS Programmer’s Guide.

When you define RODM, include the name of the program-to-program interface
queue that RODM uses to send commands to the NetView address space. The
DSIQTSK task is a dedicated receiver for that queue.

Sending commands over the program-to-program interface is enabled only for
RODM data caches defined to DSIQTSK.

Chapter 28. Automating with RODM 411

|

|
|

Verifying Commands Issued from RODM Methods
After writing a RODM method that triggers the EKGSPPI method to send
commands to DSIQTSK, test your method without actually executing the
commands. Instead of dispatching the commands to an autotask, DSIQTSK can
display the commands as messages and enable an operator to edit, discard, or
issue the commands for actual execution. This is called issuing the commands in
assist mode.

To help you use assist mode:
v The ASSIST parameter of the EKGSPPI method

In your method, you can pass the ASSIST parameter to EKGSPPI to specify that
EKGSPPI is to issue commands in assist mode. If a command is issued in assist
mode, DSIQTSK converts the command to a message (message DWO670I) rather
than executing the command.
Refer to the IBM Tivoli NetView for z/OS Resource Object Data Manager and
GMFHS Programmer’s Guide for information about calling EKGSPPI.

v The SAVECMD command
In the automation table, use the SAVECMD command to route message
DWO670I to an operator. SAVECMD saves command and text information for
the ASSISCMD command.
The ASSISCMD command is invoked by an operator. ASSISCMD uses the
NetView VIEW facility to create a full-screen panel of the commands and text
stored by SAVECMD. The operator can then approve, change, or discard the
commands.
The SAVECMD command list is run when the DSIQTSK task receives
automation message DWO670I. Use online command help for the correct format
of the SAVECMD command.
Figure 149 shows how to use the SAVECMD command list in the automation
table:

v The ASSISCMD command
After a command is routed to an operator, the operator sees message CNM436I.
Subsequent commands routed to the same operator are put in a queue for that
operator and message CNM436I is not displayed. After the operator has
processed all the saved commands and the queue is empty, message CNM436I is
displayed for the next command routed to the operator.
Message CNM436I indicates that the operator is to enter ASSISCMD. The
operator can use ASSISCMD to manipulate the commands saved by SAVECMD.
Using ASSISCMD, the operator can:
– Delete the command
– Edit and reissue the command
– Run the command as it is

Refer to the NetView online help for the syntax of the ASSISCMD command.

Accessing RODM from NetView
RODM data caches that are managed by the DSIQTSK task can be accessed using
three methods:

IF MSGID='DWO670I' THEN
EXEC(CMD('SAVECMD') ROUTE(ONE NETOP1));

Figure 149. Using the SAVECMD Command List in the Automation Table

412 Automation Guide

ORCONV A NetView command
CNMQAPI A high-level language service routine
DSINOR An assembler-language macro

CNMQAPI and DSINOR can be issued from command processors and installation
exits. You can use the ORCONV command and the application programming
interfaces only with RODM data caches managed by DSIQTSK. If you are
managing RODM data caches in some other way, use the EKGUAPI application
programming interface to access RODM.

The ORCONV Command
The ORCONV command changes fields and invokes methods in RODM from the
following sources:
v The NetView automation table
v Command lists
v The command facility
v Procedures written in REXX, PL/I, or C

Refer to the online command help for parameter specifications and format of the
ORCONV command.

Accessing RODM from High-Level Language and Assembler
Language Programs

The high-level language (HLL) service routine, CNMQAPI, and the
assembler-language macro, DSINOR, are intended to be issued from HLL and
assembler programs, respectively. CNMQAPI and DSINOR use the native RODM
application programming interface, EKGUAPI. CNMQAPI and DSINOR can be
used only on RODM data caches defined to DSIQTSK.

Refer to IBM Tivoli NetView for z/OS Programming: PL/I and C and to IBM Tivoli
NetView for z/OS Programming: Assembler for more information about CNMQAPI
and DSINOR.

A RODM Automation Scenario
This automation scenario incorporates the concepts and functions discussed in this
chapter into a working example. You can see how the automation platform can be
used to:
v Manage RODM
v Manipulate data in RODM
v Automate the recovery of a failing resource
v Dispatch work to autotasks
v Verify commands issued from RODM methods

This scenario has five parts:
v An outline of the scenario events
v A description of the various entities (such as RODM names, RODM classes,

resources, and operator IDs) used in the scenario
v Steps to set up the scenario
v Steps for executing the scenario
v Excerpts, with explanations, from key sections of the change method (EKGCPPI)

used in the scenario

Chapter 28. Automating with RODM 413

The Scenario Events
These are major events in this scenario:
1. The DSIQTSK task automatically connects to two RODM data caches, based on

the RODM definitions in the DSIQTSKI initialization member.
2. The ORCNTL command is issued to change the default RODM.
3. A network resource, A01A704, fails.
4. VTAM issues an IST105I message indicating that the resource has failed.
5. The IST105I message is trapped in the automation table.
6. As a result of the IST105I message, the automation table issues the ORCONV

command to change the status of the resource in RODM.
7. The RODM change method invoked as a result of the status change checks a

field called AOLEVEL to determine whether to issue any automation
commands for this resource. In this scenario, the AOLEVEL field indicates that
automation commands are issued in assist mode.

8. The RODM method sends a VTAM command to DSIQTSK to activate the
resource. This command is issued in assist mode, using the EKGSPPI method.
Refer to the description of the methods that are supplied with the NetView
program in the IBM Tivoli NetView for z/OS Resource Object Data Manager and
GMFHS Programmer’s Guide for a detailed description of EKGSPPI.

9. Because the command was issued in assist mode, DSIQTSK does not dispatch
the VTAM command to an autotask. Instead, the command is saved. An
operator can issue the ASSISCMD command to edit and re-issue, discard, or
issue the command as displayed.

The Scenario Entities
The scenario refers to these entities:

Entity Description

RODM1 Defined in the DSIQTSKI initialization member as the default
RODM. The default RODM is the RODM that CNMQAPI,
DSINOR, and ORCONV act on.

RODM2 Defined in the DSIQTSKI initialization member as an additional
RODM.

TERMINAL The name of a class contained in RODM2.

A01A704 The identifier of an object, of class TERMINAL, in RODM2. This
object is a locally attached logical unit (LU) in the network.

STATUS The name of a field in object A01A704. This field contains the
status (UP or DOWN) of the resource. A RODM change method,
EKGCPPI, is associated with this field. This method attempts to
reactivate A01A704 when the status changes to DOWN.

AOLEVEL The name of a field in object A01A704. This field contains a
numeric value: 1, 2, or 3. In this scenario, the AOLEVEL field is
used to determine whether automation commands associated with
a resource are issued. This field is also used to determine whether
assist mode is used.

1 The RODM method issues a VTAM command to activate
the resource. The IST105I message that notified NetView
that the resource was down does not receive any special
handling.

414 Automation Guide

|
|

2 The IST105I message that notified NetView that the
resource was down is routed to an operator as specified by
the ORCONV command, and RODM does not attempt to
activate the resource.

3 The RODM method issues a VTAM command, in assist
mode, to activate the resource, and the IST105I message
that notified NetView that the resource was down does not
receive any special handling.

CNM01 The name of the command receiver queue that RODM uses to send
commands to DSIQTSK.

AUTO1, AUTO2, AUTO3
Three autotasks to which DSIQTSK dispatches commands.

Setting Up the Scenario
To set up the scenario:
1. Identify the “failing resource” for the scenario.

This scenario uses resource A01A704 as its failing resource. You need to define
A01A704 to VTAM, or decide to use another resource in your network and
substitute your resource name for A01A704 in this scenario.

2. If you do not have an operator ID called NETOP1, define NETOP1 or substitute
one of your operator IDs throughout this scenario. Be sure to include the
operator ID on the MSGPARMS parameter of the ORCONV command.

3. Create and start three autotasks, using the AUTOTASK command. This scenario
uses the names AUTO1, AUTO2, and AUTO3. If you do not have automated
operators named AUTO1, AUTO2, and AUTO3 define them, or substitute three
of your autotask names throughout this scenario.

4. Create an automation table called DSITBL01. You can also rename your
automation table to DSITBL01, or you can substitute the name of your
automation table throughout this scenario.

5. Define your RODM data caches to DSIQTSK.
The DSIQTSKI initialization member, you can define various administrative
details about the RODM data caches you want to manage. The DSIQTSKI
member is located in DSIPARM. This sample DSIQTSKI member defines:

CNM01
A command receiver queue name.

RODM1 and RODM2
Two RODM data caches to be managed. RODM1 is the default.

AUTO1, AUTO2, and AUTO3
Three autotasks to which DSIQTSK can dispatch work.

Figure 150 on page 416 shows the DSIQTSKI initialization member. Any row
beginning with an asterisk is treated as a comment. Only one keyword can be
defined on each line. For example, notice that the TASK statements for AUTO1,
AUTO2, and AUTO3 are not on the same line.

Chapter 28. Automating with RODM 415

6. Add an automation table statement to DSITBL01. This statement traps message
IST105I and issues the ORCONV command to RODM1 to change the resource
status to DOWN. Figure 151 shows the automation table statement that
accomplishes this.

DISPLAY is set to Y because this message needs to be displayed to the operator,
NETOP1. If DISPLAY were set to N, the message is never displayed anywhere
(even if the ORCONV command specifies a destination).

7. Create a RODM change method to attempt the recovery of the failed resource,
A01A704.
A programmer creates a method that uses the EKGSPPI method to send the
VARY NET,ACT command to DSIQTSK. The DSIQTSK task receives this
command and dispatches it to one of the autotasks defined in DSIQTSKI.
In this scenario, the method that calls EKGSPPI is the EKGCPPI method.
EKGCPPI is written in PL/I. “Key Sections of Change Method EKGCPPI” on
page 421 presents excerpts from EKGCPPI.
The EKGCPPI method checks the AOLEVEL field to determine whether the
VARY NET,ACT command is issued in assist mode. In this scenario, AOLEVEL
is set to 3, so commands are issued in assist mode.
Because the AOLEVEL field indicates assist mode, EKGCPPI requests assist
mode when calling the EKGSPPI method. Assist mode means that any
command issued by the RODM method is not run. Instead, this command is
trapped by DSIQTSK and issued as NetView message DWO670I. You can trap
this message in the automation table and save it using the SAVECMD
command. Commands saved using SAVECMD can be displayed and
manipulated using ASSISCMD. See step 9 on page 419 for an example of using
ASSISCMD.

*
* Define the PPI command receiver, and make it APF-authorized.
*
CMDRCVR ID=CNM01
*
* Define two resource object data managers (RODMs) to be managed
* by the DSIQTSK. RODM1 is the default RODM. Both RODMs will
* be connected automatically (using the password) when the DSIQTSK
* task is started.
*
REP RODM1,CONN=Y,AO=Y,PASS=PASSWORD,T=300,ID=APPL1
REP RODM2,CONN=Y,AO=N,PASS=PASSWORD,T=300,ID=APPL2
*
* Define three autotasks to which the DSIQTSK can dispatch work.
*
TASK AUTO1
TASK AUTO2
TASK AUTO3
*

Figure 150. Sample DSIQTSKI Initialization Member for the DSIQTSK Task

IF MSGID = 'IST105I' THEN
BEGIN;
IF TOKEN(2) = 'A01A704' THEN

EXEC(CMD('ORCONV TYPE=CHANGE,
CLASS=TERMINAL,OBJECT=A01A704,FIELD=STATUS,DATA='DOWN',
MSGFIELD='AOLEVEL',MSGPARMS='NETOP1,HELD=Y'')
ROUTE(ONE NETOP1)) DISPLAY(Y);

END;

Figure 151. Automation Table Statement to Trap IST105I and Issue ORCONV Command

416 Automation Guide

Without assist mode, DSIQTSK would have dispatched the command to
autotask AUTO1 to be run.
After the change method is created, it must be compiled and link-edited into
one of the libraries specified with the STEPLIB data definition (DD) statement
of the RODM START procedure.

8. Create an automation table statement in DSITBL01. This statement traps
message DWO670I and saves the command passed from RODM.
Figure 152 shows the automation table statement that accomplishes this. This
statement traps the DWO670I message and uses the SAVECMD command to
save the VTAM VARY command issued by the RODM method. In this scenario,
the SAVECMD is then routed to NetView operator NETOP1, if NETOP1 is
logged on.
When the SAVECMD command is routed to NETOP1, NETOP1 receives
message CNM436I. NETOP1 can then use the ASSISCMD to edit, discard, or
issue the saved command.

9. Create an input file for the RODM loader to:
v Install the EKGCPPI method and the EKGSPPI method.
v Create the classes and fields used in the scenario.
Figure 153 shows the input file used for this scenario. Lines beginning with the
characters “--” are comment lines.

Refer to the IBM Tivoli NetView for z/OS Resource Object Data Manager and
GMFHS Programmer’s Guide for more information about the RODM load
function.

Running the Scenario
To run the scenario:
1. Start RODM1 and RODM2. Refer to IBM Tivoli NetView for z/OS Installation:

Getting Started for information about starting multiple RODM data caches.
2. Run the RODM loader with the input file you created to load RODM2. This

step:

IF MSGID = 'DWO670I' THEN
EXEC(CMD('SAVECMD')

ROUTE(ONE NETOP1))
DISPLAY(N) NETLOG(Y);

Figure 152. Sample Automation Table Statement to Trap DWO670I

-- Install EKGSPPI and EKGCPPI Method
OP EKG_Method HAS_INSTANCE EKGSPPI;
OP EKG_Method HAS_INSTANCE EKGCPPI;

-- Create the class called TERMINAL under UniversalClass
OP TERMINAL HAS_PARENT UniversalClass;

-- Create fields and subfields for Class TERMINAL
OP TERMINAL HAS_FIELD (INTEGER) AOLEVEL;
OP TERMINAL HAS_FIELD (CHARVAR) STATUS;
OP TERMINAL.STATUS HAS_SUBFIELD CHANGE;

-- Create object instance A01A704 for class TERMINAL
OP TERMINAL HAS_INSTANCE A01A704;

-- Set the value for the fields and subfield for the Object
OP TERMINAL.A01A704.STATUS HAS_VALUE (CHARVAR) 'UP';
OP TERMINAL.A01A704.AOLEVEL HAS_VALUE (INTEGER) 3;
OP TERMINAL.A01A704.STATUS.CHANGE SUBFIELD_HAS_VALUE

(METHODSPEC) ('EKGCPPI');

Figure 153. Input File for RODM Loader

Chapter 28. Automating with RODM 417

v Installs the EKGCPPI method and the EKGSPPI method
v Creates the TERMINAL class, the A01A704 object, and the STATUS field in

RODM2
Refer to the IBM Tivoli NetView for z/OS Resource Object Data Manager and
GMFHS Programmer’s Guide for information about loading RODM and
installing methods.

3. Log on to NetView as NETOP1.
4. Start the DSIQTSK task. Issue START TASK=DSIQTSK from a NetView

operator panel, unless this task was started when NetView was initialized.
When DSIQTSK starts, it automatically connects to RODM1 and RODM2, with
RODM1 as the default RODM. The default RODM is also referred to as the
current run-time RODM. The CNMQAPI service routine, the DSINOR macro,
and the ORCONV command act on RODM1, the default RODM, rather than
RODM2.

Note: DSIQTSK can connect to a RODM only if that RODM is active.
5. Change the default RODM. Because the class, object, and field this scenario

acts on are in RODM2, you need to make RODM2 the default RODM. To
change the default, use the command in Figure 154.

Now the ORCONV command you coded in the automation table acts on
RODM2.

6. Activate the automation table. To start the automation table, use the command
in Figure 155.

If an IST105I message is received for A01A704, the ORCONV command is
issued to change its status to DOWN. When the status is changed to DOWN,
a change method is invoked. The change method checks AOLEVEL. The
AOLEVEL field is set to 3, so the VTAM VARY command is issued in assist
mode rather than being dispatched to an autotask for execution.

7. Use the DEFAULTS command to ensure that an operator is notified of a failed
resource if recovery of that resource is not automated.
The DEFAULTS command has a parameter called SENDMSG. You can use this
parameter, in combination with the MSGFIELD and MSGPARMS parameters
of the ORCONV command, to determine what to do with the IST105I message
that caused the ORCONV command to be issued.
In the scenario, the RODM change method checks the AOLEVEL field to
determine whether to automate recovery of the failed resource. If recovery is
not automated, an operator needs to be notified that the resource has failed.
However, the RODM change method does not have access to this IST105I
message. Instead, you can use the ORCONV command to examine the
AOLEVEL field just as the change method did. Based on the value of this
field, the ORCONV command routes the IST105I message to an operator you
specify with the ORCONV command.
First, set the SENDMSG parameter to a numeric value (or list of values). In
this scenario, SENDMSG is set to 2. From the operator panel, enter the

ORCNTL CHNG,OR=RODM2

Figure 154. Changing the Default RODM

AUTOTBL MEMBER=DSITBL01

Figure 155. Activating the Automation Table

418 Automation Guide

command in Figure 156.

The MSGFIELD parameter tells the ORCONV command to compare the value
set by SENDMSG to the value of AOLEVEL (see Figure 151 on page 416). The
ORCONV command compares the value of AOLEVEL to the value set by
SENDMSG.
If the value of AOLEVEL matches one of the values set by the DEFAULTS
SENDMSG command, the message that caused the ORCONV command to be
issued is routed to the destination defined with the MSGPARMS parameter of
ORCONV. In step 6 on page 416, the ORCONV command is issued as a result
of an IST105I message. Also, Figure 151 on page 416 shows that MSGFIELD is
set to AOLEVEL and MSGPARMS is set to NETOP1. Therefore, the IST105I
message is routed to the operator NETOP1 if AOLEVEL is set to 2.
If the value of AOLEVEL does not match one of the values set by the
DEFAULTS SENDMSG command, the IST105I message is not routed to the
destination specified by MSGPARMS. If AOLEVEL were set to 1, the RODM
method changes the status of A01A704 to DOWN, and the IST105I message is
not be routed to the destination specified by MSGPARMS. The RODM method
attempts to automate the recovery of the resource.

8. Deactivate the resource A01A704.
To continue this scenario, deactivate a resource. From NetView, issue the
command in Figure 157.

9. After the resource is inactivated, you see message CNM436I. This message
indicates that you need to enter the ASSISCMD command. Figure 158 shows
the first ASSISCMD panel.

DEFAULTS SENDMSG=2

Figure 156. Setting the DEFAULT SENDMSG Parameter

V NET,INACT,ID=A01A704,F

Figure 157. Example of Inactivating Resource A01A704

assispn1 Commands for Operator Assistance

1. V NET,ACT,ID=A01A704
MORE This command was sent by the change method EKGCPPI to act

2.
3.
4.
5.
6.

Command===>
PF1 = Help PF2 = Exit
PF6 = Roll

Figure 158. Example Screen for the ASSISCMD Command

Chapter 28. Automating with RODM 419

If the command had not been issued in assist mode, the CNM436I message
was not received and the VARY NET,ACT command would have been issued
without being displayed to the operator.
The first panel displayed by the ASSISCMD command shows the last six
commands issued in assist mode. Any informational text associated with the
commands is also displayed. This informational text displayed is the same text
that is associated with the command when calling the EKGSPPI method, as
shown in Figure 165 on page 426. As each of the commands is processed by
the operator, the next saved command is displayed on the panel. Up to 20
commands can be queued for display. This number can be changed by
modifying the SAVECMD command list.

10. After the first ASSISCMD panel appears, the operator can type one of these
letters next to the command on the panel:

E Run the command as it is displayed. This option can be entered from
the first or second panel.

D Delete the command. This option can be entered on the first or second
panel.

M Modify the command, or display more information. If there is more
information to be displayed, the word MORE appears on the first
panel as the first word on the line immediately following the
command. The M option displays the second ASSISCMD panel. The
operator can view the entire command and any informational text
associated with the command.

In Figure 158 on page 419, the word MORE appears under the command. This
word indicates that more details about the command are available.

11. Enter M next to the command as shown in Figure 159.

12. After you enter M, the second ASSISCMD panel, shown in Figure 160 on page
421, is displayed. This panel provides an explanation of why the command
was issued. This text was created in the change method EKGCPPI (see
Figure 165 on page 426) and passed to the method EKGSPPI as a parameter.

assispn1 Commands for Operator Assistance

1. M V NET,ACT,ID=A01A704
MORE This command was sent by the change method EKGCPPI to act

2.
3.
4.
5.
6.

Command===>
PF1 = Help PF2 = Exit
PF6 = Roll

Figure 159. Example Screen for the ASSISCMD Command--Enter M for More Detail

420 Automation Guide

13. To process the command, enter E next to the command, as shown in
Figure 161. If you want to edit the command before executing it, type over the
command, and then type E to run the command.

Key Sections of Change Method EKGCPPI
This section describes selected parts of the change method EKGCPPI. EKGCPPI is
a NetView sample on the distribution tape.

These excerpts from EKGCPPI are intended to help you understand the change
method. Examine the entire method in addition to these excerpts. Each excerpt is
followed by explanations of some of the fields or statements. For information
about writing change methods, refer to the IBM Tivoli NetView for z/OS Resource
Object Data Manager and GMFHS Programmer’s Guide.

assispn2 Full Detail of Command for Operator Assistance

V NET,ACT,ID=A01A704

This command was sent by the change method EKGCPPI to activate a
resource. This command was sent because both of the following
conditions have occurred: (1) The status of the resource has been
set to DOWN in RODM. (2) RODM indicates that recovery of this
resource should be attempted automatically.

Command===>
PF1 = Help PF2 = Exit PF3 = Previous Panel
PF6 = Roll

Figure 160. Example Screen for the ASSISCMD Command--More Detail About Command

assispn2 Full Detail of Command for Operator Assistance

E V NET,ACT,ID=A01A704

This command was sent by the change method EKGCPPI to activate a
resource. This command was sent because both of the following
conditions have occurred: (1) The status of the resource has been
set to DOWN in RODM. (2) RODM indicates that recovery of this
resource should be attempted automatically.

Command===>
PF1 = Help PF2 = Exit PF3 = Previous Panel
PF6 = Roll

Figure 161. Example Screen for the ASSISCMD Command--Enter E to Execute Command

Chapter 28. Automating with RODM 421

Procedure Statement

Key Explanation

�1� Because this is a change method, it is responsible for physically making the
change to the VALUE subfield of the STATUS field in RODM. To make this
change, the method needs to know which field to change and what the
new value is for that field. This information is passed to the change
method by RODM, and must be defined as parameters on the method’s
procedure statement.

In this scenario, the ORCONV command attempted to change the value of
the STATUS field to DOWN. However, because the change method
EKGCPPI is associated with the STATUS field, RODM triggers the
EKGCPPI method and passes the name of the field and the new value to
EKGCPPI.

...
EKGCPPI: PROCEDURE (IN_FLD_ID,IN_LLP,IN_SLP,IN_DATATYPE,

IN_CHARLEN, IN_DATAPTR)
OPTIONS (REENTRANT);�1�

Figure 162. Procedure Statement for Change Method EKGCPPI

422 Automation Guide

Local Variables

Key Explanation

�1� EKGSPPI is the method that places commands on the program-to-program
interface to send the commands to the NetView task DSIQTSK. This
self-defining string contains seven parameters that are passed to the
object-independent method EKGSPPI. All leading blanks are deleted from
these input parameters before they are processed.

�2� The RCVRID_CHARVAR statement defines the command receiver name as
CNM01. This is the receiver name that EKGSPPI uses when sending
commands to DSIQTSK over the program-to-program interface. This is the
same receiver name defined in the DSIQTSKI initialization member.

�3� The ASSIST_CHARVAR statement defines the variable that passes either

/**/
/* */
/* LOCAL VARIABLES */
/* */
/**/...

/* Selfdefining data for */
/* OI method EKGSPPI�1� */

DCL 1 EKGSPPI_BLK UNALIGNED,
3 TOTAL_LEN Smallint, /* Not including its length */
3 RCVRID_CHARVAR,�2� /* Receiver id CharVar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CHAR_LEN), /* CharVar len */
5 CHAR_DATA CHAR(8) INIT('CNM01'), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B), /* Null data */

3 ASSIST_CHARVAR,�3� /* Assist information CharVar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CHAR_LEN), /* CharVar len */
5 CHAR_DATA CHAR(8), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B), /* Null data */

3 TASKINFO_CHARVAR,�4� /* Task information CharVar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CHAR_LEN), /* CharVar len */
5 CHAR_DATA CHAR(8) INIT('ONLYANY'), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B), /* Null data */

3 TASKNAME_CHARVAR,�5� /* Task name CharVar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CHAR_LEN), /* CharVar len */
5 CHAR_DATA CHAR(8) INIT('AUTO1'), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B), /* Null data */

3 SENDER_CHARVAR,�6� /* Sender token CharVar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CHAR_LEN), /* CharVar len */
5 CHAR_DATA CHAR(8) INIT('EKGCPPI'), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B), /* Null data */

3 CMD_CHARVAR,�7� /* Command Charvar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CMD_LEN), /* CharVar len */
5 CHAR_DATA CHAR(MAX_CMD_LEN), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B), /* Null data */

3 CMD_DESC_CHARVAR,�8� /* Command Description Charvar */
5 DATA_TYPE Smallint INIT(EKG_DT_CharVar), /* Data type */
5 CHAR_LEN Smallint INIT(MAX_CMD_DESC_LEN), /* CharVar len */
5 CHAR_DATA CHAR(MAX_CMD_DESC_LEN), /* CharVar data*/
5 NULL_DATA BIT(8) INIT ('00000000'B); /* Null data */...

Figure 163. Local Variables for Change Method EKGCPPI

Chapter 28. Automating with RODM 423

ASSIST or NOASSIST to EKGSPPI. When the value of this variable is
ASSIST, any commands sent to DSIQTSK are issued in assist mode. In this
scenario, the value of this variable is based on the value of the AOLEVEL
field in RODM.

�4� The TASKINFO_CHARVAR statement specifies whether DSIQTSK
dispatches commands to a specific autotask, or to the next available
autotask. Its CHAR_DATA statement has the following attributes:

Attribute Meaning

ONLYANY A specific autotask is used, unless that autotask is not
available. If it is not available, the next available autotask
(after the most recently used autotask) defined to DSIQTSK
issues the command. Autotasks are used in the order in
which they are defined in the DSIQTSKI member of
DSIPARM.

ONLY A specific autotask is used. If this autotask is busy, the
command is queued for the autotask. If the specified
autotask is not available, the command is not issued.

ANY The next autotask (after the most recently used autotask)
defined to DSIQTSK issues the command. Autotasks are
used in the order in which they are defined in the
DSIQTSKI member of DSIPARM.

�5� The TASKNAME_CHARVAR statement specifies that DSIQTSK dispatches
the command specified in CMD_CHARVAR to autotask AUTO1.

�6� The SENDER_CHARVAR statement identifies the method that is sending a
command to EKGSPPI. In this scenario EKGCPPI is used as the identifier
or sender token.

�7� The CMD_CHARVAR statement defines the variable that contains the
name of the command passed from EKGSPPI to DSIQTSK.

�8� The CMD_DESC_CHARVAR statement defines the variable that contains
text describing the command sent from EKGSPPI to DSIQTSK. This text is
displayed if the command is issued in assist mode and an operator enters
ASSISCMD.

424 Automation Guide

Constants

Key Explanation

�1� The $ASSISTON constant is used to determine whether the AOLEVEL field
is set to 3. The value 3 indicates that the object-independent method
EKGSPPI issues commands in assist mode.

�2� The $ASSISTOFF constant is used to determine whether the AOLEVEL
field is set to 1. A value of 1 indicates that the object-independent method
EKGSPPI sends commands to DSIQTSK without assist mode. That is, the
commands are sent to DSIQTSK, dispatched to an autotask, and processed.

�3� The FIELD_AO constant contains the name of the field that EKGCPPI
checks to determine if commands are issued in assist mode. In this
scenario, the field is AOLEVEL.

�4� The FIELD_MyName constant contains the name of the field that EKGCPPI
queries to find out the name of the object. The field is MyName.

�5� The EKGSPPI_NAME constant contains the name of the
object-independent method that this change method (EKGCPPI) triggers to
send commands to DSIQTSK over the program-to-program interface. In
this scenario, the method is EKGSPPI.

�6� The CMD_VALUE constant contains the actual command that EKGSPPI
sends to DSIQTSK over the program-to-program interface. In this scenario,
the command is V NET,ACT,ID=opid. Later in this method, the resource
name is determined and concatenated to this command string.

�7� The CMD_DESC_VALUE constant contains the descriptive text associated
with the command. This is the text that is displayed when an operator
enters ASSISCMD. The value of this constant is not initialized. It is
assigned later in the method.

/**/
/* */
/* CONSTANTS */
/* */
/**/...
DCL $ASSISTON FIXED BIN(31) INIT(3);�1� /* Send cmd to DSIQTSK*/
DCL $ASSISTOFF FIXED BIN(31) INIT(1);�2� /* Send cmd to DSIQTSK*/...
DCL FIELD_AO CHAR(7) INIT('AOLEVEL');�3� /* Field name for AOLEVEL */
DCL FIELD_MyName CHAR(6) INIT('MyName');�4� /* MyName Field */
DCL EKGSPPI_NAME CHAR(7) INIT('EKGSPPI');�5� /* EKGSPPI OI method name */

/* CMD Value */
DCL CMD_VALUE CHAR(MAX_CMD_LEN - RESOURCE_NAME_SIZE) VARYING

INIT('V NET,ACT,ID=');�6�
/* CMD description */

DCL CMD_DESC_VALUE CHAR(MAX_CMD_DESC_LEN) VARYING;�7�...

Figure 164. Constants for Change Method EKGCPPI

Chapter 28. Automating with RODM 425

Initialization

Figure 165 shows the part of the method that assigns a value to the function
identifier fields in the RODM function blocks that is used throughout this method.
These functions are used in this method:
v Change a subfield
v Trigger an object-independent method
v Query a subfield

These are standard RODM functions. Refer to the IBM Tivoli NetView for
z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for a
description of these RODM functions.

Key Explanation

�1� The F1403_FUNC_BLK statement assigns a function identifier for changing
a subfield.

�2� The F1416_FUNC_BLK statement assigns a function identifier for
triggering an object-independent method. In this scenario, the method
started is EKGSPPI.

�3� The F1502_FUNC_BLK statement assigns a function identifier for querying
a subfield. In this scenario, the EKGCPPI method queries two fields:
v The VALUE subfield of the AOLEVEL field
v The VALUE subfield of the MyName field

�4� The CMD_DESC_VALUE statement defines the text that is associated with
the command defined by the CMD_VALUE constant in Figure 164 on page
425.

/**/
/* Initialization */
/**/

/* Set change subfield fid */
F1403_FUNC_BLK.Function_ID = EKG_ChangeSubfield;�1�

/* Trigger OI method func id */
F1416_FUNC_BLK.Function_ID = EKG_TriggerOIMethod;�2�

/* Set the query subfield fid */
F1502_FUNC_BLK.Function_ID = EKG_QuerySubfield;�3�...

/* Set the cmd desc value */
CMD_DESC_VALUE = 'This command was sent by the change method '�4�

|| 'EKGCPPI to activate a resource. '
|| 'This command was sent because both of the '
|| 'following conditions have occurred: '
|| '(1) The status of the resource has been set '
|| 'to DOWN in RODM. '
|| '(2) RODM indicates that recovery of this '
|| 'resource should be attempted automatically. ';

Figure 165. Initialization of Change Method EKGCPPI

426 Automation Guide

Changing a Subfield

Figure 166 shows the part of the method that changes the value of the STATUS
field. The STATUS field is the field with which the method is associated.

Key Explanation

�1� IN_DATATYPE specifies the data type of the STATUS field. This parameter
is specified on the procedure statement in Figure 162 on page 422.

�2� IN_CHARLEN specifies the length of the new data. In this scenario, the
new value is DOWN. This parameter is specified on the procedure
statement in Figure 162 on page 422.

�3� IN_DATAPTR specifies the pointer to the new data. This parameter is
specified on the procedure statement in Figure 162 on page 422.

�4� This statement calls the RODM API EKGMAPI. EKGMAPI performs the
actual change to the status field. Function identifier 1403 is defined as
EKG_ChangeSubfield in Figure 165 on page 426.

Querying a Field

/**/
/* Change the value subfield of the input */
/**/...

/* Set datatype of change fld */
F1403_FUNC_BLK.Data_type = IN_DATATYPE;�1�

/* Set char data length */
F1403_FUNC_BLK.New_char_data_length = IN_CHARLEN;�2�

/* Set new data pointer */
F1403_FUNC_BLK.New_data_ptr = IN_DATAPTR;�3�...

/* Change subfield */
CALL EKGMAPI(TRANS_INFO_BLK,F1403_FUNC_BLK,RESPONSE_BLK);�4�...

Figure 166. Changing a Subfield with Change Method EKGCPPI

/**/
/* Query the AOLEVEL field to see it is 1 */
/**/...

/* Length is set */
FIELD_ACCESS_INFO_BLK.Field_name_length = LENGTH(FIELD_AO);�1�

/* Set the field ptr */
FIELD_PTR = ADDR(FIELD_AO);�2�...

/* Query a AOLEVEL subfield */
CALL EKGMAPI(TRANS_INFO_BLK,F1502_FUNC_BLK,RESPONSE_BLK);�3�...

/* Send the command or not */
IF TEMP_DATA_VALUE = $ASSISTON |

TEMP_DATA_VALUE = $ASSISTOFF THEN
DO;�4� /* Prepare to send command */

/* Is ASSIST ON */
IF TEMP_DATA_VALUE = $ASSISTON THEN

EKGSPPI_BLK.ASSIST_CHARVAR.CHAR_DATA = 'ASSIST';�5�
ELSE

EKGSPPI_BLK.ASSIST_CHARVAR.CHAR_DATA = 'NOASSIST';�6�

Figure 167. Querying a Field with Change Method EKGCPPI

Chapter 28. Automating with RODM 427

Figure 167 on page 427 shows the part of the method that determines whether the
object-independent method, EKGSPPI, issues commands in assist mode. The
change method, EKGCPPI, examines the AOLEVEL subfield associated with the
failed resource.
v If the value of AOLEVEL is 1 (the constant $ASSISTOFF), EKGSPPI is called

with the ASSIST option.
v If the value of AOLEVEL is 3 (the constant $ASSISTON), EKGSPPI is called with

the NOASSIST option.
v For any other value of AOLEVEL, EKGSPPI is not called.

Key Explanation

�1� This statement defines the length of the field name.

�2� This statement defines the address of the AOLEVEL field name. FIELD_AO
was given the value AOLEVEL in Figure 164 on page 425.

�3� This statement calls EKGMAPI to query the AOLEVEL field. Function
identifier 1502 was defined as EKG_QuerySubfield in Figure 165 on page
426.

�4� The TEMP_DATA_VALUE was set based on the result of the subfield
query. This IF statement checks the value of TEMP_DATA_VALUE to
determine whether commands are sent to DSIQTSK with assist mode or
without assist mode.

�5� This statement determines whether the value of TEMP_DATA_VALUE is
$ASSISTON. If so, the ASSIST_CHARVAR variable (see Figure 163 on page
423) is set to ASSIST. The command sent to DSIQTSK is issued in assist
mode. An operator can use the ASSISCMD command to display, modify,
and issue the commands.

�6� This statement determines whether the value of TEMP_DATA_VALUE is
$ASSISTOFF. If so, the ASSIST_CHARVAR variable (see Figure 163 on page
423) is set to NOASSIST. The command sent to DSIQTSK is dispatched to
an autotask for execution; assist mode is not used.

Querying an Object Name

This section of the method determines the object name for the failed resource. In
this scenario, the object name is the resource name. This name is then concatenated
with the value of CMD_VALUE and sent to EKGSPPI.

Key Explanation

�1� This statement defines the length of the field name.

/**/
/* Query the Object name for V NET,ACT,ID=objectname */
/**/...

/* Length is set */
FIELD_ACCESS_INFO_BLK.Field_name_length

= LENGTH(FIELD_MyName);�1�
/* Set the field ptr */

FIELD_PTR = ADDR(FIELD_MyName);�2�...
/* Query a Object name subfld */

CALL EKGMAPI(TRANS_INFO_BLK,F1502_FUNC_BLK,RESPONSE_BLK);�3�...

Figure 168. Querying an Object Name with Change Method EKGCPPI

428 Automation Guide

�2� This statement defines the address of the MyName field name.
(FIELD_MyName was given the value MyName in Figure 164 on page
425.)

�3� This statement calls EKGMAPI to query the VALUE subfield of the
MyName field. Function identifier 1502 was defined as EKG_QuerySubfield
in Figure 165 on page 426.

Triggering an Object-Independent Method

This section of the method triggers the object-independent method EKGSPPI.
EKGSPPI sends the command defined in CMD_CHARVAR to DSIQTSK, over the
program-to-program interface.

Key Explanation

�1� This statement concatenates the command to be issued with the resource
name. The complete command is then put into the variable
CMD_CHARVAR, which is part of the self-defining string sent to
EKGSPPI.

�2� This statement puts the text associated with the command (see Figure 165
on page 426) into the variable CMD_DESC_CHARVAR, which is part of
the self-defining string sent to EKGSPPI.

�3� This statement defines EKGSPPI as the name of the object-independent
method to be triggered.

�4� This statement defines the address of the parameter list (a self- defining
string) for the object-independent method EKGSPPI.

�5� This statement calls EKGMAPI to start EKGSPPI.

/**/
/* Prepare to trigger OI method EKGSPPI to send the */
/* command V NET,ACT,ID=objectname to DSIQTSK */
/**/...

/* Set the cmd with */
/* MyName field value */

EKGSPPI_BLK.CMD_CHARVAR.CHAR_DATA =
CMD_VALUE || SUBSTR(CHARVAR_RESP_BLK.CHAR_DATA,

1,CHARVAR_RESP_BLK.CHAR_LEN);�1�
/* Set the cmd description */

EKGSPPI_BLK.CMD_DESC_CHARVAR.CHAR_DATA =
CMD_DESC_VALUE;�2�

/* Set OI method name */
F1416_FUNC_BLK.Method_name = EKGSPPI_NAME;�3�

/* Set selfdefining parm */
F1416_FUNC_BLK.Method_parms = ADDR(EKGSPPI_BLK);�4�...

/* Message triggered MAPI call*/
CALL EKGMAPI(TRANS_INFO_BLK,F2009_FUNC_BLK,

RESPONSE_BLK);�5�...

Figure 169. Triggering an Object-Independent Method with Change Method EKGCPPI

Chapter 28. Automating with RODM 429

430 Automation Guide

Chapter 29. Automation Using the Terminal Access Facility

The NetView terminal access facility (TAF) is a VTAM relay function that permits a
NetView operator’s terminal to appear as an LU1 or LU2 type terminal to any
application supporting those protocols. The applications include, but are not
limited to, the Customer Information Control System (CICS) and Information
Management System (IMS). TAF enables both NetView operators and autotasks to
view messages and issue commands as if they were logged on to the subsystem
console or master terminal for that application. Messages coming across the TAF
LU1 sessions that link NetView to the applications are processed by the
automation table and are available for automation using the standard NetView
automation capabilities.

TAF is especially useful in cases where messages from the automated application
to its own console or master terminal are not available to the operating system
message processing facilities. On MVS systems, for instance, both CICS and IMS
generate messages to their console or master terminal that are not broadcast on the
subsystem interface and are not available to NetView for automation except
through TAF.

Overview
TAF offers two modes of operation. One mode of operation, operator-control, or
OPCTL, sessions are LU1 sessions and emulate SNA 3767 terminals.
Operator-control sessions transmit messages and commands in line-by-line mode
rather than full-screen mode. Messages usually viewed by the operator on the
application subsystem console or master terminal are sent to NetView across the
LU1 session and are processed by the automation table. Automation involving TAF
is done with operator-control (LU1) sessions. Using those sessions, autotasks can
enter any transaction that is possible from a 3767 terminal directly attached to the
application, including CICS and IMS control functions that normally are entered
from the CICS and IMS master terminals.

Another mode of operation, full-screen, or FLSCN, sessions are LU2 sessions and
emulate SNA 3270 terminals. By establishing a full-screen session with an
application, NetView operators can view the application screens from the NetView
terminal just as if they are logged directly onto the application itself from a locally
attached subsystem console or master terminal. Because the data that appears on
the NetView screen is transmitted in full-screen rather than line-by-line format, the
data is not available to NetView automation processing facilities. Messages
received over the LU2 session and viewed on the NetView screen do not pass
through the automation table. Autotasks by definition do not have physical
terminals; therefore, they cannot view the full-screen session.

For these reasons, you cannot use full-screen sessions for automation. You might
want to use them, however, in instances where your automation does not yet
handle all control functions for an application. In those instances, a NetView
operator can perform the actions required by using TAF full-screen sessions. This
ability plays an important part in consolidating subsystem consoles, enabling you
to operate several subsystems and applications from a single NetView console. It
can be important in focal-point operation, where operators at a central system
controls applications on several systems, which might be remote.

© Copyright IBM Corp. 1997, 2009 431

Both LU1 and LU2 sessions are types of VTAM sessions. All TAF sessions, whether
operator-control or full-screen, require that the VTAM program be active.

How TAF Works
TAF works by establishing a session between a TAF virtual terminal, which is
called a source LU (SRCLU), and the application. The source LU is the secondary
logical unit, and the application is the primary logical unit. The same source LU
can establish sessions with more than one application at a time. Each operator
station task (OST), whether an operator or an autotask, can use one source LU. The
operator can control several applications by starting a TAF session between this
source LU and each application. All messages or displays returned from an
application through a TAF session are received by the operator task associated
with the source LU that initiated the session.

Table 18 lists applications that you can control from the NetView program using
TAF. You can also use TAF to log on to and enter commands to another NetView,
in full-screen mode only.

Table 18. Terminal Access Facility Options

Subsystem Operator-Control Full-Screen

CICS * *

IMS * *

HCF DPPX * *

HCF DPCX *

TSO *

Remote NCCF *

TCAM VER *

DSX *

NPM *

SSP (THRU TSO) *

Setting Up TAF
The system setup for TAF consists of adding definition statements to the
VTAMLST data set for the TAF source LUs and adding terminal definitions to your
applications, such as CICS and IMS, for those same source LUs. Using the sample
definitions provided for the VTAMLST data set, CICS, and IMS in the following
sections can help in setting up the system.

Adding VTAMLST Definitions
To set up TAF for automation, you need to add definitions to your VTAMLST data
set for your TAF SRCLUs (virtual terminals or source LUs). The NetView sample
network includes sample definitions for both operator-control sessions and
full-screen sessions in the VTAMLST data set member A01APPLS (CNMS0013). In
the samples, source LUs with names such as TAF01O00, TAF01O01, and TAF01O02
represent operator-control sessions. Full-screen sessions are represented by source
LUs named TAF01F00, TAF01F01, TAF01F02, and so forth.

432 Automation Guide

Figure 170 shows a sample VTAMLST definition for a TAF source LU from the
NetView samples.

The parameters in Figure 170 are:

Parameter Meaning

MODETAB Represents the table in the VTAMLST data set that defines a
logmode for each terminal type

DLOGMOD Specifies which logmode from the logmode table is to be used for
the source LU when it tries to initiate a session

AMODETAB Is the sample logmode table provided with the NetView sample
network in VTAMLST data set member AMODETAB (CNMS0001)

The logmode specifies the bind parameters for the terminal from which the source
LU session is started. It includes information such as screen size and color
capabilities. For TAF operator-control sessions, the logmode must always be
M3767, as shown in Figure 170. Because information over operator-control sessions
is always displayed line-by-line, no physical terminal need be involved at all, as in
the case of autotasks. If a physical terminal is involved, its physical characteristics
do not matter.

For TAF full-screen sessions, use the correct logmode to establish the TAF session.
The operator must use the same logmode when starting the full-screen session that
the operator used when logging on to NetView, because the physical characteristics
of the terminal determine the formatting of the full-screen display.

NetView does not keep track of the logmode used when the NetView operator logs
on. Therefore, operators must know the logmode that is associated with each
physical terminal type and specify that logmode when starting a full-screen TAF
session. Ensure that you have sufficient source LUs defined in the VTAMLST data
set, with each of the various logmodes that might be required, for all NetView
operators who might need to start full-screen TAF sessions.

Because you have already defined both NetView and the target applications in
your VTAMLST, no other definitions are required in either the VTAMLST data set
or NetView to initiate TAF sessions. However, definitions also need to be added to
the applications themselves to define the source LUs to the applications as
terminals.

Adding CICS Terminal Definitions
Figure 171 shows a sample CICS definition that defines a TAF operator-control
session to CICS:

TAF01O00 APPL MODETAB=AMODETAB,EAS=9 X
DLOGMOD=M3767

* STATOPT='TAFAPPL 000'

Figure 170. A Sample VTAMLST Definition for a TAF Source LU

DFHTCT TYPE=TERMINAL,TRMTYPE=3767,NETNAME=TAF01O00,TRMIDNT=TOFO,
GMMSG=YES,RELREQ=(YES,YES),TIOAL=256,VF=YES,
LOGMODE=M3767,BUFFER=256,TRMSTAT=TRANSCEIVE,RUSIZE=256,
BMSFEAT=(NOROUTE,NOROUTEALL),PGESTAT=PAGE,
PGESIZE=(12,80)

Figure 171. Defining TAF to CICS

Chapter 29. Automation Using the Terminal Access Facility 433

The keywords in Figure 171 on page 433 are:

TRMTYPE The terminal type must always be 3767 for operator-control
sessions, because TAF is then emulating 3767 terminals. For
full-screen sessions, the terminal type must be whatever physical
terminal is to be used by the NetView operator.

NETNAME Represents the TAF source LU (SRCLU). You need to set up a
separate CICS definition for every TAF SRCLU that might at some
point need to log on to the application.

LOGMODE must be M3767 for operator-control sessions, to match the source
LU logmode. For full-screen sessions, the logmode must match the
logmode in the source LU definition and is determined by the type
of physical terminal that the NetView operator uses.

TRMSTAT must be TRANSCEIVE, to enable both sending and receiving over
the session with TAF.

For all other parameters, consult your CICS application programmer for guidance.

To simplify the creation of these terminal definitions, you can use the AutoInstall
feature of CICS to create definitions for both LU1 and LU2 type terminals. In
creating definitions for LU1 type terminals, review the results to ensure that you
are getting the security protection that you anticipated.

Adding IMS Terminal Definitions
Figure 172 shows an example of an IMS definition.

Include definition statements in the IMS generation for as many SRCLUs as you
expect to use in session with IMS. The statements are included with the terminal
definitions that remain statically defined, such as printers or terminals with an
extra logical name.

NetView Commands Used for TAF
An operator or autotask starts a TAF session with an application by entering the
NetView BGNSESS command or one of the NetView command lists that simplify
the BGNSESS syntax. (BOSESS starts operator-control sessions, and BFSESS starts
full-screen sessions.)

Consider security when you have an autotask enter the password or password
phrase to log on to an application. Refer to the IBM Tivoli NetView for z/OS Security
Reference for password and suppression character issues.

An autotask can establish an operator-control session and log on by issuing the
BGNSESS or BOSESS command. The autotask must have the correct password or
password phrase and enter it without recording it in a system or network log. For
that reason, write logon procedures in the NetView command list language and
suppress the command containing the password or password phrase by preceding
it with the NetView suppression character. The default suppression character is a
question mark (?).

TYPE UNITYPE=SLUTYPE1
TERMINAL NAME=TAF01O00
NAME TAF01O00

Figure 172. Defining TAF to IMS

434 Automation Guide

|
|

|
|

|

Additionally, protect the command procedure with command authorization. Refer
to the IBM Tivoli NetView for z/OS Security Reference for information about
protecting keywords on the LIST and BROWSE commands.

To enter a password or password phrase or send a command to an application
over the TAF session you have established, use the SENDSESS command. You can
send commands to any application with which you can establish operator-control
sessions, including CICS/VS, IMS/VS, and HCF. Messages generated by the
application in response to the SENDSESS command are received by the operator or
autotask that issued the SENDSESS command.

To display information about active TAF sessions, use the LISTSESS command or
the LSESS command list. To end a TAF session, use the ENDSESS command or the
ESESS command list.

For information about the syntax of the commands used for TAF, refer to NetView
online help.

Automating Applications Using TAF
For some applications, such as DB2®, all automation can be performed without the
use of TAF. For other applications, such as IMS, some automation can be
performed without TAF, and some requires the use of TAF.

In an IMS environment, operational messages can have three different paths:
v Some messages go to the console only.
v Some messages go to the IMS Master Terminal Operator (MTO) only.
v Some messages go to the console and the MTO.

Your automation design depends on the message flow.

On MVS systems, messages that are broadcast on the subsystem interface are
available for NetView automation without the use of TAF. For example, you do not
need TAF to automate messages involved in the following types of functions:
v Start system
v Shut down system
v Recovery or restart
v For extended recovery facility (XRF), maintaining USERVAR information

between systems

For messages that are not broadcast on the subsystem interface, you need to use
TAF for automation. For example, on IMS, error messages are sent to the IMS
master console operator.

By establishing TAF sessions to the application and logging on to the application in
emulation of the master terminal or application console, you forward those
messages over the TAF session to NetView, making them available for automation.

When you have established an operator-control session to an application, messages
from the application or subsystem are subject to NetView automation processing
just as any other messages are. Automation facilities, such as timer commands or
the automation table, can issue commands over the TAF session to the application.

Chapter 29. Automation Using the Terminal Access Facility 435

|

436 Automation Guide

Chapter 30. Automation Involving Common Base Events

This chapter introduces the concept of Common Base Events and the Common
Event Infrastructure that manages Common Base Events.

Note: In this chapter, Common Base Events might also be called events.

Introducing Common Base Events
NetView selects messages and Management Services Units (MSUs) and uses these
to generate Common Base Events. These Common Base Events can be used for
functions such as reporting status change, configuration changes, performance
reporting, and the creation or deletion of an object. The format of a Common Base
Event is expressed as an XML document, the design of which is controlled by a
defined schema. Each event contains the identification of the component that
reported the event, the identification of the component that is affected by the
event, and the situation that caused the event to be generated.

The Common Event Infrastructure is an IBM component technology used to
manage these events. It provides a server that stores Common Base Events in a
database and distributes copies of the events to interested listeners.

NetView creates events and passes them to the Common Event Infrastructure for
distribution. NetView also receives events from the Common Event Infrastructure
for automation.

The Common Base Event format is described in IBM Tivoli NetView for
z/OS Customization Guide. It describes the XML elements of the Common Base
Event.

Creating Common Base Events
There are two means of creating Common Base Events:
v Automating a message or a Management Services Unit (MSU) to create a

Common Base Event. This is described in “Creating Common Base Events by
Automating Messages and MSUs.”

v Setting hardware monitor filters to create Common Base Events when MSUs are
recorded by the Hardware Monitor. This is described in “Creating Common Base
Events by Setting Hardware Monitor Filters” on page 438.

Creating Common Base Events by Automating Messages and
MSUs

You can use the automation table CBE action to construct an event and sent it to
the Common Event Infrastructure server for distribution and recording in the
database. The CBE action is very similar to the EDIT action. It accepts an EDIT
pipe stage specification that can be used to produce the event. The key portion of
the edit specification is the CBETEMP global order, described in IBM Tivoli NetView
for z/OS Programming: Pipes. This pulls in an XML template stored by NetView
when the CBE.TEMPLATES statement is processed in the CNMSTYLE member.
Other stages in the edit specification can modify the template to produce the
specified event.

© Copyright IBM Corp. 1997, 2009 437

|

This is a sample automation table entry that uses the default message template
msgdefault:
IF MSGID=.something. THEN

CBE('CBETEMP /msgdefault/ COPY *');

In this example, the global order CBETEMP / msgdefault/ reads the msgdefault
template. It produces as output a complete XML document that can be sent to the
Common Event Infrastructure server. This order makes this template the primary
input for the EDIT stage, and the subsequent COPY order copies it to the output.
The resulting XML document is then sent to the server.

The CNMSCBET templates sample that is supplied with the NetView program
provides a set of templates for messages and alerts. Templates can refer to variable
data that pulls in information from the message or alert at runtime when the
CBETEMP order is processed.

You can create your own templates, and construct more complex EDIT stages to
manipulate the resulting XML. The NetView sample CNMSCBEA shows some of
the ways the edit specification can be used to add or delete elements, or change
the values supplied by the template.

A process similar to this can be performed for a Management Services Unit by
using the msudefault template.

Note: If VSAM correlation data is included (by including the vsamcorr extended
data element), the event cannot be completed until the Hardware Monitor
records the MSU. Consequently, the event is not produced immediately, but
is produced during Hardware Monitor recording. Only one event is
produced in these circumstances, regardless of filter settings. If VSAM
correlation data is not included, a Common Base Event is constructed
immediately; a second Common Base Event can be produced by NPDA by
use of the filter settings.

Creating Common Base Events by Setting Hardware Monitor
Filters

The hardware monitor filter CBEROUTE (similar to TECROUTE and TRAPROUT)
allows you to select MSUs for Common Base Event conversion without the need to
code automation table statements. These Common Base Events are built using the
msugeneric template or the msunongeneric template. As with TECROUTE and
TRAPROUT, these filters can be specified in the automation table, as well as by
using the SRFILTER command.

Using Common Base Events in Automation
NetView can also receive Common Base Events for automation purposes. When
NetView receives an event, the event is presented as a multiline message XML
document. The XML document is preceded by a BNH875I message indicating that
an event has been received. The ACQUIRE automation table conditional can be
used to select information from the document for comparison purposes. For
example, suppose that a Common Base Event has an extended data element
named failure_causes. It is presented to the automation table in this format:
<extendedDataElements name="failure_causes" type="string">
<values>HUB_FAILURE</values>
</extendedDataElemeents>

438 Automation Guide

|

The ACQUIRE conditional to check the value can be coded in many ways. This is
an example:
IF ACQUIRE(FINDLINE /name="failure_causes"/FINDLINE/<values>/UPTO"</values>

"parse/<>word 3.*) = HUB_FAILURE" THEN

The BNH875I message contains two inserts, type and msg. The type insert is set
only if the event was produced by another NetView. It contains either MSG or
MSU as its value in such a case, indicating whether the event was generated by a
message or by an MSU. If the event was not produced by NetView, this insert is
set to N/A. The msg insert contains the value of the msg attribute on the
CommonBaseEvent tag. This is generally a high-level text description of the event.
For messages, it is the first (or only) line of message text. For alerts, it is the alert
description text. If this attribute is not provided as part of the event, this insert is
also set to N/A.

Correlating Common Base Events
When events are sent to the server, they can optionally pass through the
correlation process described in “Correlating Messages and MSUs Using the
Correlation Engine” on page 336. By default, they do not pass through the
correlation process. To have events correlated, include the correlate extended data
element with a value of true. (See the CNMSCBET sample for details.) When an
event passes through the correlation process, the XML document is converted into
the event format supported by the correlation processing. Field and attribute
names are used as attributes in the event. Values are generally presented to
correlation as string values, but in some cases other values such as Long or
stringArray are used. The mapping of event data to correlation event attributes is
shown in the table below. The value for the type attribute of the correlation event
is always CBE.

Note that only values contained in the Common Base Event map to a correlation
event attribute. Since most of the Common Base Event fields and attributes are
optional, many of these fields are not be present as event attributes. You must be
familiar with the format of the event that is passing through correlation to
understand what attributes can be used in the correlation rules. In general, the
correlation attribute taken from an event corresponds to the uppercase attribute
name defined in the Common Base Event schema. If an attribute name is unique
within the event schema, it is used alone. For attribute names that are not unique,
such as location in a ComponentType element (which can be used for
reporterComponent or sourceComponent) the attribute is preceded by the
containing element’s name, such as REPORTERCOMPONENT.LOCATION. For
those elements that are defined as arrays, such as extended data elements or
context data elements, the value on the name= attribute is used to reference the
array element, followed by a ’.’ followed by the uppercase attribute name defined
within the extended data element or context data element. Note that the values
taken from name= attributes are not uppercase. AssociatedEvents do not have a
name attribute, so a numeric value (starting at zero for the first element of the
array) is assigned to each member of the array, for example,
ASSOCIATEDEVENTS0.RESOLVEDEVENTS.

When an event causes a correlation rule to trigger, the most common action to take
is to send the event to the Common Event Infrastructure or NetView, depending
on whether the event is being received from NetView or the NetView WebSphere®

client. NetView provides two actions, CBEToCEI and CBEToNetView that can be
used to route the events when correlation occurs.

Chapter 30. Automation Involving Common Base Events 439

Table 19. Common Base Event Correlation

Common Base Event attribute Correlation attribute
Correlation
value type

Common Base Event attribute Correlation attribute String

CommonBaseEvent.extensionName EXTENSIONNAME String

CommonBaseEvent.Version VERSION String

CommonBaseEvent.globalInstanceId GLOBALINSTANCEID String

CommonBaseEvent.localInstanceId LOCALINSTANCEID String

CommonBaseEvent.priority PRIORITY String

CommonBaseEvent.creationTime CREATIONTIME String

CommonBaseEvent.severity SEVERITY Long

CommonBaseEvent.repeatCount REPEATCOUNT Long

CommonBaseEvent.elapsedTime ELAPSEDTIME Long

CommonBaseEvent.sequenceNumber SEQUENCENUMBER Long

reporterComponentId.application REPORTERCOMPONENTID.APPLICATION String

reporterComponentId.component REPORTERCOMPONENTID.COMPONENT String

reporterComponentId.componentIdType REPORTERCOMPONENTID.COMPONENTIDTYPE String

reporterComponentId.componentType REPORTERCOMPONENTID.COMPONENTTYPE String

reporterComponentId.executionEnvironment REPORTERCOMPONENTID.EXECUTIONENVIRONMENT String

reporterComponentId.instanceId REPORTERCOMPONENTID.INSTANCEID String

reporterComponentId.location REPORTERCOMPONENTID.LOCATION String

reporterComponentId.locationType REPORTERCOMPONENTID.LOCATIONTYPE String

reporterComponentId.processId REPORTERCOMPONENTID.PROCESSID String

reporterComponentId.subComponent REPORTERCOMPONENTID.SUBCOMPONENT String

reporterComponentId.threadId REPORTERCOMPONENTID.THREADID String

sourceComponentId.application SOURCECOMPONENTID.APPLICATION String

sourceComponentId.component SOURCECOMPONENTID.COMPONENT String

sourceComponentId.componentIdType SOURCECOMPONENTID.COMPONENTIDTYPE String

sourceComponentId.componentType SOURCECOMPONENTID.COMPONENTTYPE String

sourceComponentId.executionEnvironment SOURCECOMPONENTID.EXECUTIONENVIRONMENT String

sourceComponentId.instanceId SOURCECOMPONENTID.INSTANCEID String

sourceComponentId.location SOURCECOMPONENTID.LOCATION String

sourceComponentId.locationType SOURCECOMPONENTID.LOCATIONTYPE String

sourceComponentId.processId SOURCECOMPONENTID.PROCESSID String

sourceComponentId.subComponent SOURCECOMPONENTID.SUBCOMPONENT String

sourceComponentId.threadId SOURCECOMPONENTID.THREADID String

AssociatedEvents[n].resolvedEvents ASSOCIATEDEVENTSn.RESOLVEDEVENTS String

AssociatedEvents[n].associationEngineInfo.name ASSOCIATEDEVENTSn.ASSOCIATIONENGINEINFO.NAME String

AssociatedEvents[n].associationEngineInfo.type ASSOCIATEDEVENTSn.ASSOCIATIONENGINEINFO.TYPE String

AssociatedEvents[n].associationEngineInfo.id ASSOCIATEDEVENTSn.ASSOCIATIONENGINEINFO.ID String

AssociatedEvents[n].associationEngine ASSOCIATEDEVENTSn.ASSOCIATIONENGINE String

contextname.type contextname.TYPE String

contextname.contextValue contextname.CONTEXTVALUE String

contextname.contextId contextname.CONTEXTID String

Any[n] ANYn String

MsgDataElement.MsgId MSGID String

MsgDataElement.MsgCatalog MSGCATALOG String

MsgDataElement.MsgLocale MSGLOCALE String

MsgDataElement.MsgCatalogType MSGCATALOGTYPE String

MsgDataElement.MsgCatalogId MSGCATALOGID String

MsgDataElement.MsgTokens MSGTOKENS StringArray

situation.categoryName CATEGORYNAME String

situation.reasoningScope REASONINGSCOPE String

situation.reportCategory REPORTCATEGORY String

situation.operationDisposition OPERATIONDISPOSITION String

situation.availabilityDisposition AVAILABILITYDISPOSITION String

situation.processingDisposition PROCESSINGDISPOSITION String

situation.successDisposition SUCCESSDISPOSITION String

situation.situationDisposition SITUATIONDISPOSITION String

situation.dependencyDisposition DEPENDENCYDISPOSITION String

situation.featureDisposition FEATUREDISPOSITION String

440 Automation Guide

Table 19. Common Base Event Correlation (continued)

Common Base Event attribute Correlation attribute
Correlation
value type

situation.situationQualifier SITUATIONQUALIFIER String

situation.otherAny OTHERANY String

extendedDataElements.type namehierarchy.TYPE String

extendedDataElements.values namehierarchy.VALUES String or
StringArray

Notes on the table:
v n is a numeric value used to reference elements in an array of

AssociatedEvents[].
v contextname is the value of the name= attribute value of a contextDataElement

member of the ContextDataElement[] array.
v namehierarchy is the hierarchy of name= values used to reference an extended data

element and its children. For example, suppose an event had this extended data
element:
<extendedDataElements

name=sample
type=string
<values>top level value</values>
<children name-secondLevel type=string>

<values>secondLevelValues</values>
<children name=thirdLevel typ=string>

<values>thirdLevelValues</values>
</children>

</children>
</extendedDataElements>

The correlation attributes that is built for this extended data element is:
sample.TYPE=string
sample.VALUES=top level value
sample.secondLevel.TYPE=string
sample.secondLevel.VALUES=secondLevelValues
sample.secondLevel.thirdLevel.TYPE=string
sample.secondLevel.thirdLevel.VALUES=thirdLevelValues

Chapter 30. Automation Involving Common Base Events 441

442 Automation Guide

Chapter 31. Using Automated Operations Network

Automated Operations Network (AON) provides comprehensive, drop-in,
policy-based programs that can be customized and extended to provide network
automation. The following components of AON provide consistent automation
across network protocols:
v SNA Automation (AON/SNA)
v TCP/IP Automation (AON/TCP)

You can choose to run one or more of these components.

AON components intercept alerts and messages that indicate problems with
network resources. The components of AON monitor and attempt to recover failed
resources. The AON components also record resource failures to enable you to
track recurring network problems. AON uses many of the functions described in
this manual such as global variables, automation table constructs, and timers.
Implementing AON automation provides you with a base set of automation
functions.

Understanding AON Automation and Recovery
The automation provided by AON is driven by messages, MSUs, or timers.
Messages and MSUs are trapped by the automation table, which calls AON
routines to take predetermined actions. These actions are governed by the
automation policy specified in the control file. To understand AON, you must be
familiar with the automation table and the control file. The components of AON
provide the automation policy and automation table statements to trap messages
and MSUs and take actions appropriate for the network.

The AON full-screen operator interface enables you to issue commands and receive
responses for AON functions and other NetView facilities.

Although there are different types of networks and resources, the tasks that
automate each of these networks are similar. AON provides automation modules
for the tasks that are similar. For example, when a resource fails in an SNA or
TCP/IP network, information about the resource, such as the resource type,
connectivity, and status, must be gathered before automated recovery can continue
for the resource. Each of these network types has a different program to gather the
resource information, but they are called and processed the same way by the
automation driver.

The benefits of having common automation drivers are increased reliability,
reduced training, and simplified network problem determination.

Automation Table
The automation table detects messages, alerts, and resolutions and takes actions
based on those messages and MSUs. It then drives AON failure or recovery
processing, as appropriate.

The Control File
The control file contains the automation policy that determines how automation
works in your particular network. All of the components of AON store their

© Copyright IBM Corp. 1997, 2009 443

automation parameters in the control file. For coding flexibility, the control file
data is accessible by key or data-content searches.

The control file is loaded into storage each time NetView is initialized. You can
change the control file data while AON is running by issuing the appropriate
commands from the command line or from the operator interface. These changes
to the control file data are made in storage rather than in the control file. If you
want these changes to be permanent, your systems programmer can change them
in the control file using an editor.

The automation policy is contained in the control file to provide these advantages:
v Site-dependent variables (for example, the name of a resource to be recovered

and monitored) remain separate from the routines that use the information.
v The information uses positional and KEYWORD=value parameters that are easy

to code and independent of the language used for the routines.
v The design is flexible. A control file entry can be for specific resource name or

for a resource type such as PU and NCP. If resource names or types are not
specified, enterprise-wide defaults are used.

Note: Refer to the IBM Tivoli NetView for z/OS Administration Reference for more
information about the control file entries.

Understanding Automated Operators
The NetView automation task design enables AON to divide its workload among
separately defined automated operators providing concurrent processing.
Automated operators are programs that have an operator ID and are known to
NetView to be NetView operators. Automated operators do much of the
automation work such as reactivating or deactivating resources, sending messages
and MSUs to the operators when further action is required, and sending records to
an automation log for tracking purposes. The operator status panels, called the
Dynamic Display Facility (DDF), reflect these changes by updating the panel in
real time. Each component adds additional automation tasks.

Understanding Notifications
An automation notification can consist of one or more of these responses:
v Message
v MSU
v Tivoli Enterprise Console event
v Dynamic Display Facility (DDF) update
v NMC update, such as the Automation In Progress status
v Beeper or e-mail, request using Inform Policy definitions

These notifications describe significant actions detected or taken by AON. A
notification informs the operator that a resource requires operator intervention or
that a significant network event has occurred. Messages are routed to the
appropriate operators (known as the notification operators) and optionally held on
the command facility display until deleted.

AON message notifications occur based on the usage of message classes. You can
define notification operators with sole responsibility for specific message classes.
For example, define one or more notification operators to receive messages
pertaining only to TCP/IP resources.

444 Automation Guide

You can also define inform policy statements that enable you to notify appropriate
personnel using pagers (numeric or alphanumeric) or e-mail. The inform policy is
customizable. For example, you can send e-mail to first shift operators and page
third shift operators.

Understanding Automation Tracking
To improve problem determination productivity, AON provides these files for
recording the automation process and the status of the network resources:

Status file
The status file time stamps and tracks the last 10 failures experienced by a
resource. The status file also tracks current automation statuses and
threshold exceptions. If operators were notified of the last failure, AON
tracks which operator last acted on the resource.

Automation log
A record of automation activity is kept in an optional automation log that
consolidates automation information in one place. AON writes availability
records to the log when a resource has become unavailable and when the
resource becomes available again. These records indicate whether the
action was caused by automation, the help desk function, or by an
operator. The information kept in the automation log is also recorded in
the NetView log to be used for automation and reports.

Understanding Automation Notification Logging in the Hardware
Monitor

AON logs its resource-related notifications in the hardware monitor database for
use in problem determination and event correlation on specific resources. You can
use the Alerts Dynamic and Most Recent Events facility, which enables a NetView
graphical display to reflect AON automation activity.

Resource Recovery and Thresholds
You can set recovery criteria for an individual resource, for a group of resources, or
for global levels. You can select many parameters and options, such as setting
thresholds for the number of errors counted during a period of time or automating
recovery based on the time of day or day of the week.

When a resource changes from available to unavailable, a message or alert is
generated. The components of AON intercept this message or alert and begin
recovery actions for the resource. AON notes these outages in a status file. If the
number of errors exceeds a user-defined number in a period of time, the AON
components attempt to recover the resource and notify the appropriate operator
that the resource is experiencing frequent or infrequent errors. This gives you the
opportunity to proactively investigate resources with degraded availability.

When a resource demonstrates availability problems so often that the
user-specified critical threshold setting is exceeded, automation is stopped to
prevent reiterative, unproductive recovery attempts. The AON components
continue to check the status of the resource and try to recover it at intervals
defined in the control file.

Chapter 31. Using Automated Operations Network 445

The components of AON do much more than issue commands and recover a
resource. Figure 173 illustrates a basic example of AON recovery logic.

When a network failure occurs:

�1� When the status of a resource changes from available to unavailable, a
message is generated. AON intercepts this message and begins recovery
actions for the resource.

�2� AON determines whether recovery processing is active for the resource.
You can set automation completely off for a resource or schedule times
when automation does not occur.

�3� AON uses thresholds to determine whether to notify operators of the
resource failure and whether to continue recovery attempts. You can set

AON discovers that
a resource has failed.1

2

3

4

5

6

Resource is not
eligible for recovery.

Critical threshold
setting reached.

Resource is
eligible for
recovery.

Recovery is not
successful.

Recovery is
successful.

End of recovery
monitoring intervals
has been reached.

Recovery monitoring
intervals in effect.

Number of failures
is below the
critical threshold.

AON begins recovery actions
for the resource and sets AIP
operator status in RODM.

AON checks the
control file settings to

determine if the resource
is eligible for recovery.

AON counts the
resource failure, then
checks the thresholds

settings for the
resource.

Is recovery successful?

The resource is active.
Resource recovery Rtn scheduled.

AON stops recovery attempts
(AIP status reset).

AON checks the
control file to determine

the next MONIT
intvl.

No recovery.

No recovery.

Figure 173. Automation Failure Logic

446 Automation Guide

three threshold levels: infrequent, frequent, and critical. At the infrequent
or frequent threshold levels, AON notifies operators to give them the
opportunity to proactively investigate resource failures. When the number
of failures exceeds the critical threshold, AON notifies operators and stops
further recovery attempts to prevent reiterative, unproductive automation.

�4� AON begins reactivation attempts. For all types of failed resources, AON
monitors resource recovery at the intervals specified in the control file. For
RODM users, the Automation in Progress (AIP) operator status is also set
for resources that AON is recovering.

�5� AON determines whether the recovery attempt is successful. If recovery is
not successful, AON checks the control file to determine whether to
continue recovery actions or stop recovery processing.

�6� Recovery was successful and the resource is active. If proactive monitoring
is defined, it begins at this point.

For each failure of a network resource (such as a line, PU, or CDRM for SNA
resources), AON automation checks the control file for automation scheduling,
threshold analysis, reactivation scheduling, and notification directions.

AON/SNA Automation
AON/SNA automates System Network Architecture (SNA) and offers automation
functions for:
v VTAM/SNA subarea resource monitoring
v VTAM/SNA Advanced Peer-to-Peer Networking resources

Figure 174 shows the types of network resources that AON/SNA controls.

Service point
(Tivoli NetView for Z/OS)

(IBM z/OS Communications Server IP)

Service point
(Tivoli NetView for Z/OS)

(IBM z/OS Communications Server IP)

NetView
AON

Host processor Communication
controller

Modems

Local

Non-SNA
device

Remote

Local SNA
device

TCP/IP devices

S
N
A

T
C
P

VTAM

Various
devices

NCP

Figure 174. Resources Automated by AON/SNA

Chapter 31. Using Automated Operations Network 447

AON/SNA automates network recovery based on VTAM messages and alerts that
indicate problems with network resources. AON/SNA intercepts critical VTAM
messages and alerts that indicate problems with network resources. AON/SNA
then issues commands to reactivate the failed resources and monitors the resources
until they are active again. By providing both management and control for your
network, AON/SNA produces quantifiable savings.

Some of the capabilities of AON/SNA are:
v Real-time status display
v Operator-productivity functions from a simple operator interface
v Automated help desk
v Resource processing for status changes

To perform a task in AON/SNA, you can use the operator interface or panels. To
bypass the operator interface, use the command line in NetView, AON, or any
AON component that is installed and initialized on your system. You can also
manage control of AON/SNA recovery from the workstation interface.

Understanding the AON/SNA Options
You can use AON/SNA to automate control of your network. As an operator, you
can use the AON/SNA operator interface as follows:
v Display the online tutorial
v Resolve network problems
v List the resources on a domain
v Look at and update the VTAM start-up options
v See the status of resources
v Issue VTAM commands
v Monitor Advanced Peer-to-Peer Networking resources
v Manage leased lines
v Monitor X.25 switched virtual circuits
v Display NCP recovery definitions

These topics describe each of these options.

Using the AON/SNA Tutorials
An online tutorial provides an overview of each of the options on the SNA
Automation: menu panel and specific instructions about using these options.

Using the AON/SNA Help Desk
AON/SNA provides an SNA-specific automated help desk component that enables
inexperienced help desk operators to resolve network problems. To use the SNA
help desk, you need only the terminal ID of the user. After you enter the terminal
ID on the appropriate panel, the SNA help desk displays a picture of how the
user’s terminal is attached to the system.

Note: If NetView Access Services is installed on your system, the SNA help desk
can determine the location of network problems by using the user ID. In this
case, you do not need to know the terminal ID.

The SNA help desk automates the problem determination procedures. To solve
network problems, you can select an action from a list of recovery procedures on
the SNA help desk problem determination panels. To increase the productivity of
help desk personnel, the SNA help desk:
v Reduces the amount of input you enter.
v Automates problem determination.

448 Automation Guide

v Enables you to be productive immediately, even though you do not know the
network configuration.

v Teaches problem determination skills while resolving network failures.

The SNA help desk enables you to view a resource and its connected higher nodes.
With SNAMAP, you can display a resource and zoom to its connected lower nodes.

Using SNAMAP
AON/SNA provides a tool called SNAMAP to list the resources on a particular
domain. To create a list of the resources, select a resource type or enter the name of
a specific resource. When you select a category, AON/SNA displays a list panel
that shows the resource names that fit that category.

SNAMAP can zoom to its connected lower nodes. In contrast, the SNA help desk
provides a view of a resource and its connected higher nodes.

Managing VTAM Options
The VTAM options management function displays the current and default VTAM
start-up options for a domain. You can scroll through this list of options and make
changes by moving the cursor to the setting you want and typing over the
information displayed. After you press Enter, AON/SNA processes the changes.

Using NetStat
NetStat displays a resource list that is created by selecting the type of resource, the
status you want to display, and whether you want the recovery flag to be set.
Using this information, NetStat displays a list of resources that fit the criteria you
selected. This option is a display only option.

Issuing VTAM Commands
The VTAM commands option enables you to issue VTAM commands from a panel
and display the results of the command on a subsequent panel. If the results of the
command you issued are displayed on more than one panel, you can scroll
through the panels to see all of the information. The VTAM commands option
saves commands across user task sessions. If you type a command on the VTAM
commands panel, the command is displayed in the same place on that panel when
you return to that panel (in the same session or at a later session).

The VTAM commands option is cursor sensitive. AON/SNA issues the command
at the position of the cursor. To issue a command, you can type a new command
on the panel and press Enter or move the cursor to the command you previously
entered and press Enter.

Monitoring X.25 Switched Virtual Circuits
AON/SNA includes monitoring SNA physical resources that make up X.25
switched virtual circuits (SVC). The operator interface enables you to add, change,
and delete SVC links that AON/SNA is monitoring.

The X.25 commands also include LUDR pool management. This provides a
mechanism to determine the logical unit count available for an NCP. AON/SNA
can monitor this count and alert operators when the count drops below a defined
threshold.

Displaying NCP Recovery Definitions
You can display the NCPRECOV control file definitions for a particular NCP or for
all defined NCPs.

Chapter 31. Using Automated Operations Network 449

AON/SNA Subarea VTAM Resource Automation Support
AON/SNA supports SNA subarea networks by trapping VTAM messages
indicating changes in the network. This includes resource status changes, storage
problems, and outstanding replies requiring operator action. Resources managed
include NCPs, lines, physical units, cross-domain resource manager (CDRMs),
cross-domain resources (CDRSCs), applications (ACBs), and sessions.

You can monitor AON/SNA subarea resources by:
v Passive monitoring
v Recovery monitoring
v Proactive monitoring

Passive monitoring occurs if you want AON/SNA to notify you when there is a
problem with an AON/SNA resource, which is indicated by a VTAM message.
Recovery monitoring consists of checking and trying to recover an unavailable
resource at the intervals you defined in the MONIT control file entry. Proactive
monitoring occurs if you want AON/SNA to periodically monitor and report on
important network devices.

Monitoring Advanced Peer-to-Peer Networking Resources
AON/SNA Advanced Peer-to-Peer Networking is a powerful, flexible networking
solution for client-server and distributed applications. AON/SNA Advanced
Peer-to-Peer Networking provides proactive monitoring for Advanced Peer-to-Peer
Networking resources, including control points and sessions between Advanced
Peer-to-Peer Networking resources. AON/SNA Advanced Peer-to-Peer Networking
provides an operator interface for common VTAM Advanced Peer-to-Peer
Networking functions.

AON/SNA X.25 Monitoring Support
AON/SNA includes monitoring SNA physical resources that make up AON/SNA
X.25 switched virtual circuits (SVC). The operator interface enables you to add,
change, or delete switched virtual circuits (SVC) links that AON/SNA is
monitoring.

Switched connections are monitored by using a full-screen panel. Each time there
is a connection or a disconnection related to the monitored lines, the panel is
updated.

The AON/SNA X.25 commands also include LUDRPOOL management. This
provides a mechanism to determine the logical unit count available for a Network
Control Program (NCP). AON/SNA monitors this count and alerts operators when
the alert drops below a defined threshold.

Users of the X.25 NCP Packet Support Interface (NPSI) can obtain network event
information from the hardware monitor. AON/SNA provides a communication
network management (CNM) interface user exit. This user exit suppresses the
alerts coming from NPSI and generates a BNJ146I message containing the original
data given by NPSI. This message prompts AON/SNA to trigger programs that
scan the error bytes and other information in the alert, find the meaning of the
error bytes, and send an improved alert by the GENALERT command. This alert in
the hardware monitor gives the operator a clear interpretation of the error,
including specific actions. AON/SNA inserts a message in the NetView log. This
message correlates the INOP message generated by VTAM and the corresponding
NPSI alert. Also, each time the hardware monitor encounters an incorrect XID
problem, an alert is sent to the monitor.

450 Automation Guide

AON/TCP Automation
AON/TCP helps you manage your TCP/IP network. The connection between
NetView and your TCP/IP network is the NetView for UNIX service point or
TCP/IP for z/OS.

Some AON/TCP functions are:
v AON/TCP detects, reacts to, and notifies NetView operators of TCP/IP resource

failures. You can instruct AON/TCP to use passive monitoring, proactive
monitoring, or both to detect these network failures.

v AON/TCP uses ping responses during resource failure processing to detect
name server failures in the TCP/IP network. If a name server is down,
AON/TCP notifies operators so they can reconnect the appropriate name server
to the TCP/IP network.

v With AON/TCP you can associate interfaces with routers. When a router
interface fails, AON/TCP notifies operators that both the router and the router
interface (link) are not fully operational.

v With the Dynamic Display Facility (DDF) and the operator interface, operators
can manage the TCP/IP network on an exception basis by seeing and managing
only problem resources, without sorting through resources that are active and
operating properly.

v In large TCP/IP networks, you can limit the types of failures and resources that
AON/TCP monitors. To use definitions in the AON control file, you can change
these definitions as your network requirements change by using the AON/TCP
operator interface.

When you are using the Tivoli NetView (AIX) product with AON/TCP:
v AON/TCP uses the NetView RUNCMD command to communicate with the

NetView (AIX) management software. NetView (AIX) sends alerts to NetView to
notify it of changes in the TCP/IP network. AON/TCP uses the alerts and
RUNCMD commands to provide network management assistance at the
NetView host.

v Besides failure detection, AON/TCP also watches for performance problems
such as limited free disk space and excessive CPU utilization on TCP/IP hosts
that report those kinds of problems to Tivoli NetView (AIX).

v AON/TCP counts security authorization failures and compares the number of
failures to threshold values you specified. Operators are notified for every
security authorization failure or when there are excessive failures on a node.

When you are using TCP/IP for z/OS with AON/TCP, you can:
v Manage IP connections across multiple TCP/IP stacks.
v Perform problem determination on hung sessions (such as TN3270 and FTP) and

take corrective actions. For example, you can drop the session.
v Issue SNMP requests such as GET and SET to manage your IP resources.
v Manage TCP/IP resources using IPMAN.
v Perform MIB polling and thresholding on selected IP resources.
v Correlate IP interface and host traps
v Monitor and recover failed IP sockets
v Support (concurrently) both UNIX and TSO environments
v Manage your IP resources from a Web browser
v Provide support for starting and stopping these IP traces:

Chapter 31. Using Automated Operations Network 451

– CTRACE
– PKTTRACE

v Use SNMP to manage
– Your IP stack
– Remote devices

Proactive monitoring is automatically started for each TCP/IP for z/OS stack
defined in the control file. Figure 175 shows the part of the network that
AON/TCP monitors.

The following sections describe the capabilities of AON/TCP in more detail.

Passive Monitoring in AON/TCP for Tivoli NetView (AIX)
Passive monitoring occurs if you want AON/TCP to only react to notifications sent
to it by Tivoli NetView (AIX) about resource failures. Tivoli NetView (AIX) sends
alerts to notify NetView of TCP/IP network changes. NetView stores these alerts in
the hardware monitor database. AON/TCP traps these alerts in the NetView
automation table and drives failure processing, recovery processing, or
performance threshold analysis for the alerts it receives.

In large TCP/IP networks, you might not want AON/TCP to notify you about the
connection or disconnection of every TCP/IP device. Adjusting alert processing in
large networks is helpful because the rate of resource status change is directly
proportional to the size of the networks and the number of important resources
becomes a smaller percentage of the total resources.

To help you manage larger networks, AON/TCP can track and process only status
changes and alerts for explicitly defined resources, groups of resources, or failure
types. Tivoli NetView (AIX) can send up to three alerts for each connection or
connection loss. To save CPU time, you can define which of these failure types you

Service point
(Tivoli NetView for Z/OS)

(IBM z/OS Communications Server IP)

VTAM

NetView
AON NCP

Host processor Communication
controller

Modems

Local Remote

Non-SNA
device

Local SNA
device

TCP/IP devices

S
N
A

T
C
P

VTAM

Various
devices

Service point
(Tivoli NetView for Z/OS)

(IBM z/OS Communications Server IP)

Figure 175. Tivoli NetView (AIX) monitors resources

452 Automation Guide

want AON/TCP to process. You can also filter alerts that are sent to NetView with
definitions on the Tivoli NetView (AIX) system. Filtering saves CPU time and
DASD storage on the mainframe and decreases network traffic.

AON/TCP processes failures and recoveries using AON automation drivers, which
update operators (including logs and DDF) and manage recovery and proactive
monitoring. TCP/IP hosts can send alerts reporting CPU time and DASD storage.
AON/TCP notifies operators only when defined CPU or DASD usage thresholds
are exceeded. AON/TCP also traps security authorization failures. AON/TCP can
notify operators for each such failure or only when there are excessive performance
or security failures (for example, a threshold has been exceeded).

Proactive Monitoring
Continuously monitoring and reporting on network devices is called proactive
monitoring.

To actively monitor your resources, place a definition in the AON/TCP control file.
AON/TCP issues a PING command or SNMP GET request (z/OS only), which
checks the status of these resources for availability at AON/TCP initialization, and
at the predefined time intervals.

If a resource is not available (the status you defined in the control file is not the
current status), AON tracks the outage, updates the operators, and manages
recovery monitoring. Recovery monitoring is in effect during an outage so
proactive monitoring is not necessary. Therefore, AON suspends proactive
monitoring whenever it knows a resource is unavailable. When the resource is
available again, the active monitoring timer is reinstated. AON/TCP issues
messages that tell you whether failures are being detected by proactive or passive
monitoring. This enables you to discontinue the overhead of proactive monitoring
when passive monitoring is sufficient.

Recovery Monitoring
Recovery monitoring consists of checking the status of an unavailable resource at
the intervals you defined in the AON control file.

AON/TCP starts recovery monitoring whenever it detects a failure for a resource.
This monitoring continues at intervals defined in the AON/TCP control file. You
must define these intervals to be irregularly spaced in order to monitor more
frequently at the beginning of an outage, when recovery is most likely to occur.
The longer the outage continues, the less frequently you need to monitor the
resource for recovery. When a recovery is detected, AON recovery automation
begins. AON updates operators, stops recovery monitoring, and reinstates the
proactive monitoring that is defined in the control file.

Threshold values for AON/TCP with Tivoli NetView (AIX)
AON/TCP with Tivoli NetView (AIX) checks the threshold values you defined in
the control file to determine what action it must take when a certain threshold is
exceeded. AON/TCP with Tivoli NetView (AIX) checks:
v Resource failures
v CPU utilization
v Disk utilization
v Security authorization failures

Chapter 31. Using Automated Operations Network 453

v IP address to host name resolution failures (excessive failures of this type
usually indicate a name server failure)

When the system exceeds any of the threshold values you defined, AON/TCP with
Tivoli NetView (AIX) notifies operators about the exception. You can define
AON/TCP to notify operators for each event (for example, every resource failure
or security failure) or only for a threshold exception. You can also define the types
of network changes for TCP/IP devices that compose a failure. For example, you
can specify that AON/TCP considers host failures, interface failures, or link
failures to be a failure.

MIB Polling and Thresholding (TCP/IP for z/OS only)
Using AON proactive monitoring, you can use SNMP requests instead of PING
commands. SNMP proactive monitoring provides MIB polling functions. MIB
polling queries the interface table of the device being monitored. If one or more
interfaces have an incorrect status, AON/TCP sends a notification. You can code a
user exit for further processing.

MIB thresholding can occur while a device is being proactively monitored. MIB
thresholding queries MIB variables that you define and compare their expected
values with the actual values. AON/TCP compares less than, less than or equal,
equal, greater than or equal, and greater than conditions. When a threshold is
exceeded, AON/TCP sends a notification. You can code a user exit for further
processing.

As an example, you can use the MIB polling and thresholding functions for a
router. MIB polling detects failed interfaces on the router. With MIB thresholding,
you can define performance related MIB variables and their thresholds. Unless
AON/TCP cannot communicate with the device, the proactive monitoring
continues.

For more information about setting up proactive monitoring, refer to the IBM Tivoli
NetView for z/OS Administration Reference.

Operator Awareness
Operators can choose from several AON/TCP interfaces to receive updates about
network exception conditions:
v Define operators as notification operators, so that they receive messages for each

exception condition. They can clear these messages by refreshing their screen or
using the AON DM command.

v Access DDF where all the exception conditions are color coded according to
severity and organized by time, severity and resource type. You can quickly see
only the TCP/IP resources that require attention and receive real-time updates.
DDF display panels have function keys set to commands you can issue by
moving the cursor to the resource and pressing the appropriate function key.
The samples provide commands to ping the resource, send an AIX command, or
show the NV6KVIEW summary data for the resource. From NV6KVIEW, you
can manage AON/TCP recovery definitions and influence monitoring.

v Browse the NetView log or the AON automation log for messages regarding a
resource in question, particularly if the resource is currently available.

v If you need data for a particular resource, use the AON AUTOVIEW or
NV6KVIEW commands to display a summary of all data known by AON/TCP
about the resource.

454 Automation Guide

This includes control file data, status file data, DDF data, and ping results. This
panel has a pop-up window with commands that an operator can use to change
automation settings, send a ping, view NetView log data applicable only for this
resource or change monitoring. With TCP/IP for z/OS, you can use IPMAN
command to assist you with managing your network.

v Send all messages regarding a resource to the hardware monitor.
You can view these messages from the hardware monitor or a NetView
graphical display.

For more information about AON functions and customization capabilities, refer to
the IBM Tivoli NetView for z/OS User’s Guide: Automated Operations Network.

Chapter 31. Using Automated Operations Network 455

456 Automation Guide

Chapter 32. Running Multiple NetView Programs Per System

You can run multiple NetView programs on a single system. When you install
multiple NetView programs on a single system to separate the functions:
v You can separate system support from network support. For example, one

NetView program can handle system operation and automation and another can
handle network operation, automation, and problem determination.

v You can separate problem determination from automation. In this case, the
automated NetView program includes system and network automation. If you
do not want network management activities to affect automation performance,
run automated NetView at a higher priority than any of the tasks it automates,
and schedule the problem determination NetView so that it does not interfere
with subsystems or network automation.

When two NetView programs are running on a single system, each NetView
program can monitor and recover the other. If a single NetView program is limited
by constraints for a critical resource, such as the command list data set or network
log, a second NetView program can be beneficial. However, CPU utilization is not
decreased in this situation.

When migrating from one NetView release to another, you can use one NetView
program as a production system while using a second to test the new NetView
release.

Running multiple NetView programs requires:
v Maintaining additional copies of libraries and logs
v Routing a message between NetView programs
v Ensuring a message is not automated more than once
v Using a different designator character for each NetView subsystem

Additional considerations are:
v Some NetView functions cannot be used on more than one NetView program

per system or per VTAM program.
– For a single VTAM, only one NetView program at a time can use the program

operator interface (POI).
– Only one NetView program can use the CNMI to receive unsolicited network

management data from a given VTAM program, and only one can use the
VTAM status monitor performance enhancement.

– Only one NetView program in a system can use the hardware monitor local
device interface.

v Because each NetView program maintains its databases separately, operators on
the two NetView programs do not, for example, browse the same network log.

See “NetView Interfaces and Functions” on page 458 for more information about
NetView function restrictions.

Running more than one NetView program requires additional processor storage. A
small system might not have the processor storage capacity required to run two
NetView programs. Also, NetView CPU utilization tends to be higher with more
than one NetView program.

© Copyright IBM Corp. 1997, 2009 457

Installing Multiple NetView Programs
These are things to consider when installing multiple NetView programs in an
automation environment:
v One NetView program might not need all the NetView libraries and data sets.

However, keep all libraries and data sets in the NetView start procedure to
avoid problems and to have them on hand in case recovery situations occur
(that is, if one NetView program takes over the functions of another).

v Online help panels, VTAM files, hardware monitor panels, and hardware
monitor color maps must be included in the NetView procedure so the NetView
program can be initialized without errors.

v Multiple NetView programs cannot share any NetView databases. Each NetView
program requires unique databases for the NetView functions it uses (and for
any NetView functions it might take over during a recovery situation).
– A NetView program that is to record alerts or display them on the hardware

monitor requires the hardware monitor and network log data sets.
– A NetView program that is not to record or display alerts requires only the

network log data sets.
v NetView programs on a system can share all DSIPARM members. NetView load

libraries and panel data sets can also be shared across two NetView programs.

NetView Interfaces and Functions
Some NetView interfaces or functions can be used by only one NetView program
per operating system or by only one NetView program per VTAM program. Other
NetView interfaces or functions can be used by more than one NetView program
in a system but require special setup. The following sections describe
considerations related to NetView functions and interfaces in the multiple-NetView
environment.

Program Operator Interface (POI)
Through the POI, NetView receives unsolicited VTAM messages. You can use
unsolicited VTAM messages for network automation. For a single VTAM program,
only one NetView program at a time can use the POI. To use the POI, you must
specify AUTH=PPO on the VTAM APPL statement for the NetView PPT
(domidPPT).

Although only one NetView program at a time can use the POI in a single VTAM
program, other NetView programs can be defined as secondary program operators
(SPOs). NetView programs defined as SPOs can enter VTAM commands and
receive solicited messages from the VTAM program (for example, responses to
commands). For these NetView programs, specify AUTH=SPO on the VTAM APPL
statement for the NetView PPT (domidPPT). If you want to automate unsolicited
VTAM messages on an SPO NetView program, send the messages from the PPO
NetView program.

If an active NetView is the primary program operator (PPO) for VTAM, VTAM
sends all unsolicited messages to that NetView program only. Unsolicited VTAM
messages are not available on the subsystem interface.

If the PPO is not active or AUTH=SPO is specified for all NetView programs,
unsolicited VTAM messages go to the operating system console, where the
messages are available on the subsystem interface to all NetView programs using

458 Automation Guide

the subsystem interface. In this case, you must ensure that you do not automate an
occurrence of a VTAM message more than once.

With releases of the VTAM program prior to V3R3, the NetView status monitor
uses the POI to obtain status information. In this case, only the NetView program
with the POI can have accurate status information.

Communications Network Management Interface (CNMI)
Only one NetView program can use the CNMI to receive unsolicited network
management data from a given VTAM. This restriction is controlled by how you
code the VTAM global routing table, which specifies which NetView task receives
each of the following types of network management data:
v Network management vector transport (NMVT) (alert, unsolicited RTM data at

session end)
v RECFMS
v Other CNM data records

You must specify that all of the types of network management data listed above
are to be received by DSICRTR, the CNM router, as specified in the sample VTAM
routing table ISTMGC00. DSICRTR then distributes the data to the appropriate
NetView task (session monitor or hardware monitor).

In a multiple-NetView environment, NetView that uses the CNMI can be called a
problem determination NetView program because the unsolicited network
management data available to it is used for problem determination. Alerts flow
across the CNMI, so network alert messages are generated only at NetView that is
using the CNMI. If those alert messages are to be automated, they must be
automated at the CNMI NetView program or routed to another NetView program
for automation.

The NetView program that uses the CNMI (the problem determination NetView
program) performs these actions:
v Starts the CNM router (DSICRTR) and the traditional network management

tasks (session monitor, hardware monitor, and 4700 Support Facility tasks)
v Starts the VTAM APPL for DSICRTR and the VTAM APPLs for the network

management tasks
v Accesses the NetView databases associated with the network management

functions
v Receives MDS-MUs addressed to the VTAM CP name

A NetView program that is not using the CNMI can start DSICRTR and can use its
own hardware monitor databases if necessary for system alerts (see “GENALERT”
on page 461), but it must not activate the VTAM APPL associated with DSICRTR.

Note: Changing the CNMI from one NetView program to another requires
bringing down the traditional network management tasks and their VTAM
APPLs.

Hardware Monitor Local-Device Interface
Only one NetView program in a system can receive local-device records from the
operating system. These local-device records include system-formatted alert
records, such as:
v Outboard record (OBR)

Chapter 32. Running Multiple NetView Programs Per System 459

v Miscellaneous data record (MDR)
v Machine check handler (MCH)
v Channel recovery word (CWR) record
v Second level interrupt handler (SLIH) records

If you automate these records, you must automate them on the NetView identified
to receive the hardware monitor local-device records, or first route them to another
NetView program. Messages related to the errors might also be available on the
MVS subsystem interface for all NetView programs using the subsystem interface.

For NetView that is to receive the hardware monitor local-device records:
v Use a start procedure with PGM=BNJLINTX.
v Activate BNJMNPDA.

For a NetView program that does not receive hardware monitor local-device
records:
v Use a start procedure with PGM=DSIMNT.
v Do not activate BNJMNPDA.

Note: Changing the receiver of the hardware monitor local-device records from
one NetView program to another requires bringing down both NetView
programs.

MVS Subsystem Interface
The subsystem interface is used to receive system messages and enter system
commands. With extended multiple console support (EMCS) consoles, the
subsystem interface is used to receive commands, not messages. In a single system,
multiple NetView programs can use the subsystem interface. Using the subsystem
interface is optional. If you do not need to receive system messages or enter
system commands from a NetView program, you do not need to have that
NetView program use the subsystem interface.

Each NetView program that uses the subsystem interface requires:
v Two NetView address spaces: a NetView subsystem address space and a

NetView application address space. The start procedures for each pair of address
spaces must begin with the same 4 characters (the subsystem name). The
subsystem name must be different from that of any other pair of NetView
address spaces in the same system. The NetView subsystem address space is
used for receiving MVS system messages and entering system commands. It is
also used for the NetView program-to-program interface.

v An active CNMCSSIR task.
v Subsystem-allocatable consoles for any operator or automation task that issues

MVS commands. This step is required if you are not using EMCS consoles to
receive MVS system messages.

v A unique designator character that is used to prefix NetView commands entered
at an MVS console. The designator character is specified on the start procedure
for the NetView subsystem address space. The default is a percent sign (%).

If multiple NetView programs in a single system run on the subsystem interface,
they can communicate with each other over the subsystem interface by issuing
write-to-operator messages (WTOs). Ensure that an occurrence of a message is
automated by only one of the NetView programs.

460 Automation Guide

Note: Use of the subsystem interface must be controlled by starting and stopping
the NetView CNMCSSIR task rather than starting and stopping the NetView
subsystem address space.

GENALERT
Generation of alerts using GENALERT does not require the VTAM CNMI.
Therefore, two or more NetView programs in a single system can generate alerts. A
NetView program without the CNMI can still have its own hardware monitor
database for handling alerts. This can be useful if you are using alerts to display
information about problems that you do not yet handle automatically. See
“Monitoring Alerts with the Hardware Monitor” on page 364 for more information.

Any NetView program using the GENALERT interface requires:
v Unique hardware monitor databases
v Active BNJDSERV task
v Active DSICRTR task
v If this is NetView that is using the CNMI:

– FUNCT=BOTH must be specified on the DSTINIT statement in BNJMBDST.
– FUNCT=CNMI must be specified on the DSTINIT statement in DSICRTTD.
– VTAM applications for DSICRTR and BNJHWMON must be activated.

v If this NetView program is not using the CNMI:
– FUNCT=VSAM must be specified on the DSTINIT statement in BNJMBDST.
– FUNCT=OTHER must be specified on the DSTINIT statement in DSICRTTD.

Program temporary fix (PTF) UY25868 is required for this.
– VTAM applications for DSICRTR and BNJHWMON must not be activated.

For a NetView program that does not use GENALERT or the hardware monitor, it
is not necessary to activate the BNJDSERV task or associate the VTAM APPL
definitions and NetView databases with that task. However, you can still require
the DSICRTR task to be used by the session monitor.

Status Monitor and Log Browse
Only one NetView program can use the VTAM status monitor interface.

You can use an O SECSTAT statement in NetView’s DSICNM to specify a
secondary status monitor. This action prevents a NetView program from using the
VTAM status monitor performance enhancement. Otherwise, the first NetView
program to start uses the VTAM status monitor performance enhancement.

For more information about the VTAM status monitor performance enhancement,
refer to IBM Tivoli NetView for z/OS Installation: Getting Started.

Using the Interfaces
To run two or more NetView programs on a system, use the techniques described
in this section.

Functions are commonly split among NetView programs in one of two ways:
v Network functions versus system functions
v Problem determination versus automation

Chapter 32. Running Multiple NetView Programs Per System 461

Separating Network Functions from System Functions
Separating network functions from system functions helps improve organization. If
you have separate groups for system support and network support, separate
NetView programs can provide independence for those groups.

One NetView program can handle system operation and automation, while another
handles network operation, automation, and problem determination. In this case,
the system automation NetView program uses the subsystem interface. Optionally,
the system automation NetView program can have a GENALERT interface. The
network NetView program uses the POI, the CNMI, and the hardware monitor
local-device interface. Optionally, the network automation NetView program can
also use the subsystem interface and GENALERT.

The advantages of this approach are:
v Network support and system support each have an automation table.
v Network messages, network alerts, and local alerts need not be sent to another

NetView program for automation.

The disadvantages of this approach follow:
v Some error situations might require coordination of network and system

automation.
v Network automation competes for resources with problem determination

functions in the problem determination NetView program according to NetView
task priorities.

v Correlation of data among logs might be required.
v Procedures might be required to shut down network management tasks during

network failure situations to improve performance.

Separating Problem Determination Functions from Automation
Functions

Separating traditional network management functions, such as problem
determination from automation functions, can improve performance. If you do not
want network-management activities to affect automation performance, separating
those functions in different NetView programs enables the automated NetView
program to run at a higher priority than any of the tasks it automates, while the
network management and problem determination NetView program can run at a
priority that does not interfere with subsystems and applications. The automation
NetView program can include both system and network automation.

With this kind of separation, the problem-determination NetView program uses the
POI, the CNMI, and the hardware monitor local-device interface, and optionally,
the subsystem interface. The problem-determination NetView program also runs
the status monitor. The problem-determination NetView program does some
automation, such as recovering the automated NetView program and routing
unsolicited VTAM messages, network alert messages, and local alert messages to
the automation NetView program.

The automation NetView program does the bulk of the automation and can
optionally generate alerts for any system messages and problems that it cannot
fully automate. In this case, the automation NetView program uses the subsystem
interface, and possibly the GENALERT and log-browse functions.

462 Automation Guide

Migration
When migrating from an earlier release of NetView to the current release, NetView
can run network-management or problem-determination functions while a test
NetView program can run automation functions. When this migration situation
occurs, the production NetView program uses the POI, the CNMI, and the
hardware monitor local-device interface. The test NetView program uses the
subsystem interface and optionally the GENALERT interface.

Communication between Two NetView Programs
You might need to establish communication between two NetView programs in a
system because of NetView function restrictions. For example, a
problem-determination NetView program might need to send unsolicited VTAM
messages, local device alert messages, and network alert messages to an
automation NetView program. You might also need communication between two
NetView programs for backup and recovery purposes.

The vehicles available for setting up communication between two NetView
programs in a single system are:
v LUC alert forwarding
v Command and message forwarding
v The LU 6.2 transports
v The MVS subsystem interface

LUC Alert Forwarding
You can use the NetView LUC alert-forwarding function to route alerts from one
NetView program to another. Use the hardware monitor ROUTE filter to specify
which of the records in the alert database you want to forward.

When an alert passes through the automation table, the DUIFECMV command
processor is invoked. This command processor sends information to GMFHS and
initiates GMFHS processing of the alert. If you are running multiple copies of
GMFHS, you can change the domain to which GMFHS forwards alerts with the
DUIFECMV parameter GMFHSDOM. Refer to the IBM Tivoli NetView for
z/OS Resource Object Data Manager and GMFHS Programmer’s Guide for more
information.

Command and Message Forwarding
You can use the RMTCMD command to send commands from one NetView
program to another. Messages resulting from the command you issue return to you
on the issuing NetView program. By issuing a command that sends a message,
such as the MSG command, you can also use the RMTCMD command for message
forwarding.

Another way to forward commands and messages is with OST-NNT sessions. After
an OST on one NetView program logs on as an NNT on the other NetView
program, you can use the ROUTE command to forward commands. The OST can
issue commands to the NNT and receive messages in response, and messages
arriving at the NNT go across to the OST. You can use the NetView
message-forwarding samples to accomplish OST-NNT communication, or you can
create a forwarding scheme.

LU 6.2 Transports
You can use the MS transport or the high-performance transport for
communication between two NetView programs, including two NetView programs
on a single system. You can create LU 6.2 applications for both NetView programs

Chapter 32. Running Multiple NetView Programs Per System 463

and send MSUs between them. Or you can write an application for one of the
NetView programs and communicate with an application that is supplied with the
NetView program on the other. For example, NetView supplies a NVAUTO
application that can receive MSUs and pass them directly to the automation table.

MVS Subsystem Interface
To communication among more than two NetView programs, each program must
use the subsystem interface. Therefore, do these activities:
v Define each NetView program as a subsystem
v Run a subsystem address space in each
v Start the CNMCSSIR task in each

See “MVS Subsystem Interface” on page 460 for further information about the
requirements in each NetView program. Each NetView program can issue WTOs
that go onto the subsystem interface, where they are available to other NetView
programs. This approach does not depend on the VTAM program.

Automated Recovery of NetView
When running two NetView programs, each NetView monitors and recovers the
other. Each NetView can look for system messages indicating that the other
NetView has abnormally ended. You can also use proactive monitoring. For
example, you can use an EVERY command to periodically send a message from
one NetView program to the other and check for a response. A RMTCMD session
or the subsystem interface can carry the message. If a response does not come back
within a specified time, the issuing NetView program can assume that the other
program needs recovery. With proactive monitoring, be sure to provide a way to
turn the automation off so that you can bring down one of the NetView programs
normally.

If two NetView programs are to monitor each other on MVS, they both need the
subsystem interface, because each might need to issue an MVS command to restart
the other NetView program. The subsystem interface is not required for issuing
MVS system commands if you are using EMCS consoles.

Priorities
The dispatching priority of the NetView subsystem address space must be high.

The dispatching priority of a NetView application address space that performs
system automation must be below that of the subsystem address space but higher
than that of any address space it automates, except the resource management
facility (RMF) and generalized trace facility (GTF) address spaces.

Set the dispatching priority of a NetView application address space that performs
network automation and network management functions below the priority of the
VTAM program. Also, balance the priority of the NetView application against
application priorities.

464 Automation Guide

|
|

Chapter 33. Automation Tuning

These are methods that you can use to tune your automation and optimize
performance:
v Log analysis program
v Multitasking and task priorities
v Automation table processing
v Hardware monitor alerts

For other methods, refer to the IBM Tivoli NetView for z/OS Tuning Guide.

You can generate an automation table usage report by using the AUTOCNT
command. This report provides information about compare items and the level of
automation taking place in your system. See “Automation-Table Usage Reports” on
page 240 for more information.

You can also use the TASKMON and TASKUTIL commands to analyze automation
workloads. Refer to the IBM Tivoli NetView for z/OS Tuning Guide for more
information.

Log Analysis Program
When setting up your automation environment, decrease the amount of message
traffic occurring within the network by suppressing unnecessary messages at their
point of origin. Automate messages that occur frequently, but that do not require
operator intervention. A sample log analysis program that analyzes both JES2 and
JES3 logs helps identify those messages that are good candidates for suppression
or automation.

NetView sample CNMS62J2 provides sample JCL to run the log analysis program.
The JCL is set up to process a JES2 log. Customize the JCL for your environment.
Changes you might need to make include changes in the sort routine, sort files,
input file volume, and PARMS options. Although the program is written to analyze
the message frequency for JES2 and JES3 logs, you can modify it to analyze the
message frequency for any log. Instructions for changing the program to analyze
additional logs are included in the comments at the beginning of the program.

Options available for the program include specifying the type of log to be
processed, start and stop times, time intervals, and filtering. In the example in
Figure 176 on page 466, the parameter values passed into the program are a log
type of JES2, a starting time of 01:00 (which means that only those records with a
time stamp equal-to or later-than 01:00 are to be considered for the report), a stop
time of 03:00 (which means that only those records with a stop time of 03:00 or
earlier are to be considered for the report), and a time interval of one hour (which
means that the report is to be broken into subreports every hour). In addition,
filtering was turned off.

© Copyright IBM Corp. 1997, 2009 465

The example in Figure 176 shows only the first 10 messages that were found in the
log in the first time interval. As you can see, 27876 messages were found between
01:01:17 and 02:01:16 with 63 different message IDs. At that rate, the operator
monitoring the extended multiple console support (EMCS) console sees an average
of 7.74 messages per second displayed on the console.

By looking at the cumulative percentage, you can see that the first 10 messages
listed in the report account for 93.32% of the messages written to the log in that
period, which is not unusual. Generally, the 10 most frequently generated messages
account for at least 80% of the messages in the log.

Upon analyzing the messages in the report, you can identify messages that are not
really necessary for an operator to see to manage the environment. As a result, you
might choose to suppress those messages from the operator’s view. If you choose
to suppress several of the messages, you might want to rerun the program with
filtering on. By listing the messages that you want to have filtered in the filter file,
you can simulate what happens if the messages are actually suppressed.

In Figure 177 on page 467, the filter file contains five messages to be filtered. You
can use a message processing facility (MPF) file as filtering input, because the
format of the filter file can accommodate the MPF file format.

06/12/00 (000612) JES2 SYSLOG MESSAGE FREQUENCY ANALYSIS 01:01:17

PARAMETER VALUES:

LOG TYPE: JES2
START TIME: 01:00:00
STOP TIME: 03:00:00
TIME INTERVAL: 01:00:00
FILTERING: OFF
06/12/00 (000612) JES2 SYSLOG MESSAGE FREQUENCY ANALYSIS 01:01:17

+++++ ANALYSIS STATISTICS +++++
CURRENT INTERVAL: 000612 01:01:17 - 000612 02:01:16
NUMBER OF SECONDS ANALYZED IN LOG: 3600
TOTAL NUMBER OF MESSAGE LINES: 27876
TOTAL NUMBER OF UNIQUE MESSAGE IDS: 63
AVERAGE NUMBER OF MESSAGES/SECOND: 7.74
+++++ MESSAGE ID FREQUENCY ANALYSIS +++++
MESSAGE INDIVIDUAL CUMULATIVE

ID FREQUENCY PERCENTAGE PERCENTAGE PARTIAL TEXT OF FIRST OCCURRENCE
===
$HASP250 6300 22.60 22.60 RWJBB13 IS PURGED
$HASP530 6130 21.99 44.59 TJRMB13 ON L9.ST1 2 RECORDS
$HASP540 6002 21.53 66.12 RWJBB13 ON L9.SR1 2 RECORDS
$HASP534 3884 13.93 80.05 L9.ST1 INACTIVE
IKJ574I 2342 8.40 88.46 NO SPACE IN BROADCAST DATA SET FOR MAIL
ACT510I 472 1.69 90.15 #CLR019V.MSG STEP WAS NOT EXECUTED
$HASP100 288 1.03 91.18 U$MASSU ON L37.JR1 PROTO.USING
IEC141I 254 0.91 92.09 COMMSP.AS2.NMSD4W.ACNMCLST
ICH70001 171 0.61 92.71 DATAMGT LAST ACCESS AT 01:00:29 ON TUESDAY, SEPTEMB
$HASP373 171 0.61 93.32 #CLR032V STARTED - INIT 9 - CLASS 0 - SYS C33R...
===
TOTAL: 27876

Figure 176. Log Analysis Program Output

466 Automation Guide

The resulting report starts with a listing similar to the one in Figure 176 on page
466, but with filtering set to ON. In addition, a second listing gives information
about the messages in the log as if the filtered messages did not exist. Figure 178
shows the second listing.

With filtering, only 8985 messages were found between 01:01:17 and 02:01:16 with
58 unique message IDs. By filtering five of the 63 unique message IDs in the file,
you reduce the number of messages displayed to the operator by 68%, making the
average number of messages that an operator sees each second drop from 7.74 to
2.50.

Analyzing messages that are being written to the log must be an ongoing process.
Analyze different time intervals. For example, if you have batch job streams
running on second shift, a different set of messages might be generated for that
shift than are generated on first shift. Because your system and network are
constantly changing, so are the messages that you receive.

$HAP250
$HAP530
$HAP540
$HAP100
$HAP373

Figure 177. Messages to be Filtered

06/12/00 (000612) JES2 SYSLOG MESSAGE FREQUENCY ANALYSIS 01:01:17

+++++ FILTERING ANALYSIS +++++
ATTEMPTED FILTERING MESSAGE IDS:

$HASP100 $HASP250 $HASP373 $HASP530 $HASP540

+++++ ANALYSIS STATISTICS +++++
CURRENT INTERVAL: 000612 01:01:17 - 000612 02:01:16
NUMBER OF SECONDS ANALYZED IN LOG: 3600
TOTAL NUMBER OF MESSAGE LINES: 8985
TOTAL NUMBER OF UNIQUE MESSAGE IDS: 58
AVERAGE NUMBER OF MESSAGES/SECOND: 2.50
+++++ MESSAGE ID FREQUENCY ANALYSIS +++++
MESSAGE INDIVIDUAL CUMULATIVE

ID FREQUENCY PERCENTAGE PERCENTAGE PARTIAL TEXT OF FIRST OCCURRENCE
===
$HASP534 3884 43.23 43.23 L9.ST1 INACTIVE
IKJ574I 2342 26.07 69.29 NO SPACE IN BROADCAST DATA SET FOR MAIL
ACT510I 472 5.25 74.55 #CLR019V.MSG STEP WAS NOT EXECUTED
IEC141I 254 2.83 77.37 COMMSP.AS2.NMSD4W.ACNMCLST
ICH70001 171 1.90 79.28 DATAMGT LAST ACCESS AT 01:00:29 ON TUESDAY, SEPTEMB
$HASP395 170 1.89 81.17 #CLR019V ENDED
IEF404I 170 1.89 83.06 #CLR019V - ENDED - TIME=01.02.01
IEF403I 170 1.89 84.95 #CLR032V - STARTED - TIME=01.02.06
IKJ144I 147 1.64 86.59 UNDEFINED USERID(S) NCPRACF
$HASP520 131 1.46 88.05 NOTIFY ON L35.JT2...
===
TOTAL: 8985

Figure 178. Log Analysis Program Output with Filtering

Chapter 33. Automation Tuning 467

Resource Controls, Task Priorities, and Multitasking
NetView consists of many subtasks, each competing for storage and CPU cycles.
The relative priorities for the different NetView subtasks affect the order in which
work is done. The way you define NetView to the system affects its performance
and therefore affects the performance of all NetView subtasks.

Resource Controls
NetView provides ways to measure automation resource usage and enables you to
control the order of processing, reduce backlogs, and optimize performance.
Specific limits can be set for any task using the DEFAULTS and OVERRIDE
commands. The command parameters interact. Therefore, you might want to
change the parameters in the following order: CPU, storage, message queuing, and
I/O. Monitor the effects on all values after each change.

Attention: Excessively low values can degrade system performance.

CPU Usage
Use the MAXCPU parameter of the DEFAULTS and OVERRIDE commands to
limit the CPU usage of a task. The TASKMON command and SMF data can be
used to analyze CPU usage on a task-by-task basis.

Limiting the CPU usage for a task might result in better performance than altering
the dispatch priority because limiting usage affects how tasks interleave work,
instead of which task uses the CPU.

Storage Usage
The DEFAULTS command has MAXSTG, SLOWSTG, AVLSLOW, and AVLMAX
parameters that can be used to change how tasks respond when using storage
above certain limits. The OVERRIDE command can set SLOWSTG and MAXSTG
values for each task. The TASKMON command and SMF data can be used to
analyze storage usage on a task-by-task basis.

Use the AVLSLOW and SLOWSTG parameters to intentionally slow down
automation that is using large amounts of storage. Limiting the storage for a task
might result in a reduction of throughput, but can prevent sudden storage outages
that cause loss of automation.

Use the MAXSTG and AVLMAX parameters to limit runaway growth by a specific
task. This might result in the automation being disrupted for that task, but the
benefit is that the rest of the tasks are not be affected.

Monitor the BNH162I and BNH163I messages. These messages tell you when the
NetView address space is too small for the workload. If you receive BNH162I or
BNH163I messages, consider raising the region size the next time you start
NetView.

Message Queuing
The DEFAULTS and OVERRIDE commands have MAXMQIN and MAXMQOUT
parameters that control the rate of message flow between tasks. You adjust flow
rates to avoid excessive storage use or queuing delays caused by message traffic.
Use the TASKMON command and SMF data to analyze message flow rates on a
task-by-task basis.

468 Automation Guide

The MAXMQOUT parameter controls how fast (KB per minute) a task can send
data using the NetView message queuing service. Use the MAXMQOUT parameter
for tasks that primarily send data (for example, CNMCSSIR).

The MAXMQIN parameter controls how fast (KB per minute) all tasks can send
data to another task. Use the MAXMQIN setting for tasks that primarily receive
data (for example, DSILOG).

Input/Output Usage
The DEFAULTS and OVERRIDE commands have a MAXIO parameter to control
how fast (I/Os per minute) a task can run. The TASKMON command and SMF
data can be used to analyze I/O rates to determine which tasks are heavy I/O
users.

The use of LOADCL might help decrease the I/O rate.

Task Priority
Task priority in NetView is:

PPT The primary program operator interface task (PPT) has the highest priority
of all tasks (including data services tasks (DSTs) initialized at priority 1).

OSTs and NNTs
Lower in priority than the PPT, but higher in priority than autotasks,
operator station tasks (OSTs) and NetView-NetView tasks (NNTs) have a
relative priority of 4.

Autotasks
Lower in priority than PPT and OST/NNTs, autotasks have a relative
priority of 5.

DSTs Although DSTs are not a direct part of automation, they can influence
automation performance, depending on their level of priority. Priorities for
DSTs are specified in the CNMSTYLE member or by the START command.
Information about the CNMSTYLE member can be found in IBM Tivoli
NetView for z/OS Installation: Getting Started.

If high-priority automation procedures do not contain commands that the PPT
cannot run, you can run these procedures under the PPT. However, you must run
most automation procedures under an autotask. When invoking a procedure from
the automation table, you can use the ROUTE keyword on the EXEC action to
specify the executing task.

Multiple Autotasks
Use multiple autotasks to distribute the automation workload across multiple
processors, taking advantage of multitasking to improve throughput. Throughput
for an automation workload can be constrained by contention for system
processors or by contention for the command list data control block (DCB), which
synchronizes I/O to the command list data set. When the command lists are
preloaded using the LOADCL command, no I/O is necessary to the command list
data set, and therefore processor capacity is the only constraint on automation
throughput. When multiple processors are used, additional autotasks beyond the
number of processors probably do not offer a significant throughput improvement.

Multiple NetView Programs
If you plan to use additional NetView programs on a system, as described in
Chapter 32, “Running Multiple NetView Programs Per System,” on page 457, set

Chapter 33. Automation Tuning 469

|
|
|

the task priorities for the automation NetView program above the VTAM program
and the applications that NetView is to automate. You can give the other NetView
program a lower priority than your critical applications to minimize the impact of
the second NetView program on application response time. Dividing the NetView
workloads between different address spaces might not decrease the overall
NetView system processor utilization and can increase overall NetView storage
usage. However, dividing the workloads can improve automation responsiveness
and availability.

Automation-Table Processing
Careful design of your automation table can yield substantial savings of processing
time, because NetView periodically checks the table if you receive a large number
of messages and MSUs. “Design Guidelines for Automation Tables” on page 232
describes a number of principles for good design of automation tables. This section
summarizes the principles that directly affect processing efficiency:
v Use the message processing facility of your operating system to suppress as

many messages as possible before they reach the automation table.
v Use BEGIN-END sections to structure your table and reduce the number of

comparisons required for each message or MSU.
v Order the BEGIN-END sections according to frequency. Place the sections that

handle frequently received data at the beginning of the automation table.
v Order statements within each BEGIN-END section according to frequency. Place

the statements that handle frequently received data at the beginning of the
section.

v For frequently received data that you do not automate, you can stop the
NetView program from processing the whole table by placing a statement at the
beginning of the table that specifies no action. For example, if you do not
automate commands issued at a NetView terminal, you can add the statement in
Figure 179 at the top of your table.

v Isolate slow functions to avoid calling them more times than necessary.
Potentially slow functions include the DSICGLOB and MSUSEG, as well as any
lengthy automation table function (ATF) that you write yourself. Place these
functions in a BEGIN-END section or after a logical-AND (&). Call the function
only for the messages and MSUs that need it.

v Avoid calling a command procedure to process a message or MSU if you can
process it with the automation table alone.

Use the AUTOCNT command to generate an automation table usage report. This
report indicates how many times each statement was compared to a message or
MSU, and how many times the statement comparisons resulted in a match. See
“Automation-Table Usage Reports” on page 240 for more information.

Use the AUTOMAN command to manage one or more automation tables. See
“Managing Multiple Automation Tables” on page 250 for more information.

Hardware Monitor Alerts
If you are using hardware monitor alerts to display information about the
automated environment, try to limit the number of alerts sent to operators.

IF HDRMTYPE = '*' THEN ;

Figure 179. Preventing the Automation Table from Processing Commands

470 Automation Guide

For every alert that it processes, the hardware monitor checks to see if operators
are viewing the Alerts-Dynamic panel. For each operator viewing this panel, the
hardware monitor determines which alerts are sent to the operator and updates the
operator’s screen. The processing cost for updating the operator screens can
significantly increase the cost of processing the event, statistic, and alert workload.
Therefore, if your arrival rate for alerts is high, consider controlling the use of the
Alerts-Dynamic panel, either with operator command authorization checking or
with viewing filters.

Chapter 33. Automation Tuning 471

472 Automation Guide

Chapter 34. Automation Table Testing

Test the automation table thoroughly before putting it into production to ensure
that it functions properly. To test an automation table, generate the messages and
MSUs that you expect the table to handle and determine that automation produces
the correct response to each message and MSU.

To test the automation table:
v Use the AUTOTEST and AUTOCNT commands to test the effects of messages

and MSUs on an automation table.
v Set up automation procedures in a test environment that duplicates the

production environment.
v Introduce automation incrementally, on a production system, and ensure that

automation procedures are running after each step.

Notes:

1. The AUTOTEST and AUTOCNT commands can only test one automation table
at a time. This automation table can include additional members through the
use of the %INCLUDE statement.

2. You can use the AUTOMAN command to manage multiple automation tables.
It also provides additional diagnostic capabilities. For more information, see
“Managing Multiple Automation Tables” on page 250.

The following topics describe these methods and diagnostic procedures for the
automation table.

Automation Table Testing
Use the AUTOTEST command to test an automation table. Use either a recorded
input stream of messages and MSUs or messages and MSUs that are being
processed by the active automation table. Also, you can record messages and
MSUs to test an automation table in the future.

Two approaches to automation table testing are:
v Compare the active automation table processing in parallel with the test

automation table processing. You can do this by using the report generated with
the AUTOCNT command.

v Prerecord AIFRs (messages and MSUs) as they are processed by the active
automation table. Then use these AIFRs to repeat a test as necessary until the
automation results are satisfactory.

Starting Parallel Testing
To test an automation table in parallel with the active automation table, do these
steps:
1. Activate parallel testing using a command similar to:

AUTOTEST MEMBER=TESTTBL,LISTING=TESTLST,SOURCE=PARALLEL,
REPORT=TESTRPT

This command starts the testing of automation table TESTTBL. An automation
testing report (TESTRPT) is generated. A new set of statistics for automation

© Copyright IBM Corp. 1997, 2009 473

table TESTTBL is kept. If you also want to record AIFRs for future testing, add
the RECORD keyword to the AUTOTEST command. For example,
AUTOTEST MEMBER=TESTTBL,LISTING=TESTLST,SOURCE=PARALLEL,

REPORT=TESTRPT,RECORD=TESTRECS

AIFRs are recorded in member TESTRECS.
2. Reset the active table counters to match the table being tested:

AUTOCNT RESET

3. Allow the test to run for a period of time as messages and MSUs are processed
by both automation tables.

4. Create a report of the automation table use of both the active and the test
automation table:
AUTOCNT REPORT=BOTH,FILE=PRODTBL,STATS=DETAIL
AUTOCNT REPORT=BOTH,FILE=TESTTBL,TEST,STATS=DETAIL

5. Examine the results at any time. To reset the counters and continue automation
table testing, enter:
AUTOCNT RESET,STATS=DETAIL
AUTOCNT RESET,TEST,STATS=DETAIL

6. Compare the output generated by the AUTOCNT and AUTOTEST commands
to determine whether automation table processing was satisfactory.

Note: Some messages and alerts can be included in the test table count that are
not included in the active table count because of incoming traffic. This is
because both tables not being closed at the same instant.

7. Examine the automation table testing report to verify that the table logic is
correct. Verify that key messages and alerts that arrived during testing were
processed correctly (matched on the correct automation table statement). For an
example of the testing report, see “Sample Report for the AUTOTEST
Command” on page 475.

8. If the test was satisfactory, activate the test automation table using the
AUTOTBL command. If the test was not satisfactory, change the test
automation table and rerun the test against the recorded AIFRs. This procedure
is described in the following topic.

Testing an Automation Table Using Recorded AIFRs
You can test an automation table using message and MSU AIFRs recorded by a
prior AUTOTEST command, change the automation table, and analyze their effect
using a constant set of input data.

Record AIFRs as follows:
1. Activate AIFR recording:

AUTOTEST RECORD=TESTRECS

2. After a period of time, stop AIFR recording:
AUTOTEST RECORD=OFF

You can modify the file containing the recorded AIFRs by deleting AIFRs that are
not to be used for testing. To delete an AIFR from the file, delete the line beginning
!!------------ and subsequent lines up to but not including the next
!!------------ line.
1. Locate the AIFR to be deleted in the file. Below the AIFR in the file is a

separator line beginning
!!------------

474 Automation Guide

2. Delete the AIFR data lines and the separator line following the AIFR.

After saving the recorded AIFR file, you can change the security key on the first
line of the recorded file from S> to <S. This prevents subsequent AUTOTEST
commands from overwriting the file. The AUTOTEST command requires a security
key of S> or S< to be present in the first record of a file to be used as a source file
for the command.

To start automation table testing using recorded AIFRs:
1. Reset the test automation table counters and begin gathering statistics:

AUTOCNT RESET,TEST

2. Start automation table testing:
AUTOTEST SOURCE=TESTRECS,REPORT=TESTRPT

3. Discontinue gathering statistics for the test automation table when message
BNH382I is displayed, indicating end-of-file on the source data set:
AUTOCNT REPORT=BOTH,FILE=TESTTBL,TEST
AUTOCNT RESET,TEST

4. Analyze the reports and statistics to determine whether the automation table
processing was satisfactory. Also, examine the automation table testing report to
verify that the table logic is correct. If satisfactory, activate the new automation
table using the AUTOTBL command. If not satisfactory, change the automation
table and repeat this process until the results are satisfactory.

Use recorded AIFRs to compare processing between two automation tables. For
example, to compare processing between TESTTBL1 and TESTTBL2:
1. Test automation table TESTTBL1 using the recorded AIFRs in the previous

example:
AUTOTEST MEMBER=TESTTBL1,LISTING=LIST1,SOURCE=TESTRECS,

REPORT=TESTRPT1

2. Test automation table TESTTBL2 when message BNH382I is displayed,
indicating that testing of TESTTBL1 has completed, begin:
AUTOTEST MEMBER=TESTTBL2,LISTING=LIST2,SOURCE=TESTRECS,

REPORT=TESTRPT2

3. Compare the reports found in TESTRPT1 and TESTRPT2 when message
BNH382I is displayed, indicating that testing of TESTTBL2 has completed.

4. Examine the automation table testing report to verify that the table logic is
correct.

Sample Report for the AUTOTEST Command
The AUTOTEST command produces a report that shows the messages and MSUs
that were processed by the automation table being tested. Use the report and the
AUTOTEST listing file to understand the automation table statements identified in
the report. Items in the report to notice include:

�1� The AUTOTEST report contains a 2-character security key in the first
record. The letter R indicates that the report was produced by the
AUTOTEST command, and the character > indicates that the report can be
overwritten by a subsequent AUTOTEST command. You can change the >
to a < which prevents the AUTOTEST command from overwriting the
report. Similarly, the listing file produced by the AUTOTEST command has
the letter L in the first position, and the recorded AIFR file has the letter S
in the first position. The > or < character in these files also indicates
whether the AUTOTEST command allows overwriting of the files.

�2� There are three matches for message DSI077A in member TESTTBL1. The

Chapter 34. Automation Table Testing 475

matches are identified by sequence number 00120020, statement 2, and the
statement with a label of MYLABEL1.

A formatted example of a report follows:
R> �1�
>> Automation table test of member DSIPARM.TESTTBL1 Listing: LIST1
>> Time: 04/06/98 08:54:46 Requesting operator: OPER1 Source: TESTRECS

-----------> Input number: 1. Type = Message --------------

LIST ''

Matches: 0 Comparisons: 1

-----------> Input number: 2. Type = Message --------------

STATION: OPER1 TERM: NTB4L702

Matches: 0 Comparisons: 1

-----------> Input number: 3. Type = Message --------------

HCOPY: NOT ACTIVE PROFILE: DSIPROFA

Matches: 0 Comparisons: 1

-----------> Input number: 4. Type = Message --------------

STATUS: ACTIVE IDLE MINUTES: 0

Matches: 0 Comparisons: 1

-----------> Input number: 5. Type = Message --------------

ATTENDED: YES CURRENT COMMAND: LIST

Matches: 0 Comparisons: 1

-----------> Input number: 6. Type = Message --------------

AUTHRCVR: YES CONTROL: GLOBAL

Matches: 0 Comparisons: 1

-----------> Input number: 7. Type = Message --------------

NGMFADMN: NO DEFAULT MVS CONSOLE NAME: NONE

Matches: 0 Comparisons: 1

-----------> Input number: 8. Type = Message --------------

NGMFVSPN: NNNN (NO SPAN CHECKING ON NMC VIEWS)

Matches: 0 Comparisons: 1

-----------> Input number: 9. Type = Message --------------

NGMFCMDS: YES AUTOTASK: NO

Matches: 0 Comparisons: 1

-----------> Input number: 10. Type = Message --------------

IP ADDRESS: N/A

476 Automation Guide

Matches: 0 Comparisons: 1

-----------> Input number: 11. Type = Message --------------

OP CLASS LIST: NONE

Matches: 0 Comparisons: 1

-----------> Input number: 12. Type = Message --------------

DOMAIN LIST: NTVB4 (I) CNM02 (I) CNM99 (I) B01NV (I)

Matches: 0 Comparisons: 1

-----------> Input number: 13. Type = Message --------------

ACTIVE SPAN LIST: NONE

Matches: 0 Comparisons: 1

-----------> Input number: 14. Type = Message --------------

END OF STATUS DISPLAY

Matches: 0 Comparisons: 1

-----------> Input number: 15. Type = Message --------------

LIST KKK

Matches: 0 Comparisons: 1

-----------> Input number: 16. Type = Message --------------

DSI077A 'KKK' STATION NAME UNKNOWN

Matches: 3 Comparisons: 7 �2�
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1
02. 2 Statement Number TESTTBL1
03. MYLABEL1 Label TESTTBL1

-----------> Input number: 17. Type = Message --------------

LIST ABND

Matches: 0 Comparisons: 1

-----------> Input number: 18. Type = Message --------------

DSI077A 'ABND' STATION NAME UNKNOWN

Matches: 3 Comparisons: 7
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1
02. 2 Statement Number TESTTBL1
03. MYLABEL1 Label TESTTBL1

-----------> Input number: 19. Type = Message --------------

MSG ALL HI

Matches: 0 Comparisons: 1

-----------> Input number: 20. Type = Message --------------

Chapter 34. Automation Table Testing 477

DSI001I MESSAGE SENT TO ALL

Matches: 1 Comparisons: 7
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1

-----------> Input number: 21. Type = Message --------------

DSI039I MSG FROM OPER1 : HI

Matches: 2 Comparisons: 3
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1
02. 00160020 Sequence Number TESTTBL1

-----------> Input number: 22. Type = Message --------------

DSI039I MSG FROM OPER1 : HI

Matches: 2 Comparisons: 3
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1
02. 00160020 Sequence Number TESTTBL1

-----------> Input number: 23. Type = Message --------------

DSI039I MSG FROM OPER1 : HI

Matches: 2 Comparisons: 3
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1
02. 00160020 Sequence Number TESTTBL1

-----------> Input number: 24. Type = Message --------------

DSI039I MSG FROM OPER1 : HI

Matches: 2 Comparisons: 3
Match Location Location Type Member
----- ---------------- ---------------- --------
01. 00120020 Sequence Number TESTTBL1
02. 00160020 Sequence Number TESTTBL1

-----------> Input number: 25. Type = Message --------------

DATE

Matches: 0 Comparisons: 1

-----------> Input number: 26. Type = Message --------------

CNM359I DATE : TIME = 14:59 DATE = 03/31/98

Matches: 0 Comparisons: 1

-----------> Input number: 27. Type = Message --------------

AUTOTEST OFF

Matches: 0 Comparisons: 1

-----------> Input number: 28. Type = Message --------------

478 Automation Guide

BNH344I AUTOMATION TABLE TESTING IS NOT ACTIVE

Matches: 0 Comparisons: 1

-----------> Input number: 29. Type = Message --------------

BNH337I NO TEST AUTOMATION TABLE IS LOADED

Matches: 0 Comparisons: 1

-----------> Input number: 30. Type = Message --------------

AUTOTEST RECORD=OFF

Matches: 0 Comparisons: 1

>> End of automation table test. Time: 04/06/98 08:54:46

Using a Test Environment
If you are using a test environment, you can set up your applications to generate
the messages and MSUs to be automated, or you can write a program that
simulates the messages to be automated.

Using Applications
If, for example, you want to automate a payroll application, you can install a test
version of the payroll application and structure the input data to generate the
messages and MSUs that you want to automate. Then run the application to
generate the messages and MSUs. Observe and verify the results. If you do not get
the expected results, make the necessary corrections and repeat the test.

An advantage of this method is that the messages and MSUs come from the actual
application and, if you choose your test cases carefully, are very similar to the
messages you receive in production. However, installing test versions of
applications and creating test cases might be expensive because of the effort,
machine time, and other resources required. The expense can be lower if your
application developers already have test versions and test cases that you can use.

Using a Simulator
For simple automation, it might be easier to write a simulator program. A
simulator can read a file of required messages and issue them. A simulator can also
create MSUs and pass them to the automation table with the assembler DSIAUTO
macro or the PL/I and C CNMAUTO service routine. You can then compare the
result with the expected result (for example, was the proper command or reply
given?) and, if required, make corrections.

Message Simulation
A message simulator can read a file specifying the messages you want to test with
and can issue each one in turn. For simple automation-table statements that only
check the text of the message, the simulator need not be complex. A command list
can generate messages with the proper text by using SAY in REXX or &WRITE in
the NetView command list language. For automation-table statements that use only
MSGID, TEXT, and TOKEN compare items, this method is all that is required. Be
careful to issue each message precisely, with all characters in the correct locations.

For statements that check information other than the text, you might need a more
sophisticated simulator. The message simulator might need to generate messages

Chapter 34. Automation Table Testing 479

with the correct route codes, action codes, and job names. If your automation table
checks a message’s MVS job name, the simulator must generate and run a job to
generate the messages under the correct name.

Your input message file can contain all the information that your automation table
requires. For example, in MVS you might have the message ID, routing codes,
descriptor codes, message text, and job name. You can then write a command
procedure to take the message file as input, set the correct system variables, and
issue the messages.

A shortcoming of using a message simulator is that the messages are based on
what you think they should look like rather than the real messages generated by
the product or application.

A variation of the message-simulation approach is to write the program so that
instead of reading a file of messages, the program reads an existing message log
file and regenerates the messages based on the content of the log. The log you use
can be an actual system or network log, or you can edit it to change the mix of
messages to suit your test or to meet the input requirements of your simulator. The
messages you test with are then based on actual messages that you received from
applications while running in a production environment. With your simulator, you
can generate them any time you want for test purposes.

MSU Simulation
You can simulate MSUs by using the assembler, PL/I, and C interfaces to the
automation table. In assembler, the DSIAUTO macro passes an MSU through
automation table processing. The CNMAUTO service routine provides the
equivalent function in PL/I and C.

One method of creating an MSU to pass to the automation table is to use an MSU
that you have previously captured and stored. You can have an automation table
entry that selects MSUs and passes them to a command procedure. The command
procedure can save the buffer in a file for later use. You can write a second
command procedure to retrieve the saved buffer, reconstitute the MSU, and pass it
to automation.

Another method of creating an MSU for test purposes is to manually compose an
MSU data field. The format of the MSU is available in System Network Architecture
Formats, or by basing your MSU on one that you have already received. You can
then pass the MSU data field to the automation table. Use your MSU to test
MSUSEG-based statements in the automation table.

Implementing Automation Incrementally
To minimize the risk of disrupting your environment, incrementally implement
your automation with checkpoints at each step to confirm correct processing.

One technique for preparing to automate is to have your routines send
notifications to operators or to a log instead of taking actions. The routines state
what actions they would take if you had activated automation. Operators still
perform the actual actions manually, but the notifications help you determine
whether the automation can correctly intercept and automate a message or MSU.
The same technique can also help you identify additional actions that you can
automate.

480 Automation Guide

When you are first introducing automation, notify operators or keep logs of all
automated actions to ensure that the correct actions are being taken. After
operators know that the automation is functioning correctly, you can reduce the
notification level, eventually providing only the information needed for debugging
a problem with the automation if required.

To introduce automation incrementally:
v Verify automation table matches.
v Verify automated action parameters.
v Verify timed commands.
v Check the effect of the automation.
v Ensure that autotasks process command procedures correctly.

Verifying Automation Table Matches
Use automation table usage reports to verify that messages and MSUs are being
matched against automation table statements correctly.

You can add statements to the automation table with the actions commented out.
Generate a detailed usage report for a certain period of time and examine it to
ensure that statements are being compared and matched the correct number of
times. Figure 180 shows an example of an automation table statement with the
actions commented out.

For this method to work correctly, it is important to know how many automated
messages and MSUs should have matched these statements during the time that
usage statistics were being taken. When the statements have been verified, you can
uncomment the actions and reactivate the automation table.

Verifying Automated Action Parameters
When the automation table calls a command or command procedure, it can pass
information to the procedure being called. You can test to verify the information
passed without actually processing the procedures:
v If your automation extracts tokens from a message and passes them to an

automation procedure, write a test procedure that displays all of the tokens in
the message. Use the test procedure in place of the automation procedure and
verify that the information you want to pass is in the tokens you expected.

v Write a test procedure to be called from the automation table in place of the
actual automation procedure. Have the automation table pass the name of the
actual automation procedure and the parameters with which it would have been
started.
Your test command procedure can then do such things as:
– Put a record in the network log or a file showing the parameters.
– Analyze the parameters to see if they are correct.
– Keep data on different possible parameters that each automation procedure

receives.

* Automate message DSI123I
IF MSGID = 'DSI123I' THEN

* EXEC(CMD('CLIST1') ROUTE(ONE AUTO1 *))
* DISPLAY(N)

;

Figure 180. Automation Statement with Actions Commented Out

Chapter 34. Automation Table Testing 481

Verifying Scheduled Commands
After you add timer commands to your automation, you can periodically examine
the network log to determine whether the scheduled commands are being
processed correctly.

For AT, EVERY, and AFTER commands, message DSI208I is issued and can be
written in the network log. That message contains the ID associated with the timer
command and the name of the command or command procedure that is to be
initiated.

For the CHRON command, message BNH549I is issued if NOTIFY RUN=taskname
was specified on the CHRON command. To determine the timer ID and command
name that was initiated, closely examine message BNH549
BNH549 CHRON NOTIFY=eventname BY=issueoper ID=timerid

ROUTE=runoper COMMAND='CHRON text'

Note the following values in message BNH549:
v timerid contains the ID associated with the timer command.
v text field contains the name of the command or command procedure.

You can use the TIMER command to modify a CHRON command, including the
NOTIFY parameter (which is required for message BNH549I to be issued).

You can write a command procedure to add the timer ID and scheduled command
name to a file that is easier to examine than the network log. To do this, add an
automation table statement that extracts the timer ID and the name of the
scheduled command from message DSI208I or BNH549I. Pass the ID and
command name to a command procedure that records them in a file. REXX
command procedures can use EXECIO to write records to a member. PL/I and C
can use CNMSMSG to write records to a sequential log file. Assembler command
processors can use DSIWLS to write records to a sequential log file.

Checking the Effect of Automation
To prevent an unexpected message from interrupting automation while it is
running in a test environment, you can include a test of the environment in the
statements. For example, the automated operator AUTO1 has a common global
variable called TEST that is set to YES if the command lists are to operate in test
mode and is set to NO or null if the command lists are to function normally.

If you want to test the $HASP098 ENTER TERMINATION OPTION message, after which
you want to dump and recycle JES2, use the following automation table entry:
IF JOBNAME = 'JES2' & MSGID = '$HASP098' THEN

EXEC(CMD('$HASP098') ROUTE(ONE *)) DISPLAY(Y) NETLOG(Y);

The REXX command list $HASP098 is shown in Figure 181 on page 483. Note that,
for test mode, a message is sent to the operator (and to the system log) indicating
the action that would have occurred if the TEST common global variable were not
set to YES. You can use a test-case analysis tool to extract the message from the log
and compare your actual results to your expected results.

482 Automation Guide

Ensuring That Autotasks Process Command Procedures
Correctly

Autotasks are important in automation for running commands and command lists
and for scheduling commands. Because autotasks are unattended, identifying
problems with autotasks as quickly as possible is necessary to ensure that
automation procedures are started correctly and promptly.

The following techniques can help verify that autotasks and automated command
procedures are processing as intended:
v During automation testing, turn on command list tracing for command lists that

run under an autotask. The tracing puts command list statements into the
network log as they are processing. You can analyze the log to determine the
cause of any problems. Examples of trace commands that can be used are
TRACE I for REXX, and &CONTROL ALL for the NetView command list
language. After you verify the automation command list, you can turn off the
tracing to avoid cluttering the network log.

v Log on to an autotask’s ID and watch the autotask’s console to ensure that the
correct actions are occurring. While you are logged on to the autotask’s ID, you
can issue an OVERRIDE DISPLAY=YES command to ensure that any messages
sent to the autotask are displayed.

v Look in the network log for message CNM493I, which is written to the log
whenever a command or command procedure is processed by an automation
table statement. You can prevent logging of this message by using the
DEFAULTS command, the CNM493I automation table action, or the OVERRIDE
command. You can determine from the message when a command was
scheduled and what task it was to run on, among other things.

v Look in the network log for message DWO032E, which is written to the log
whenever a command or command procedure should have been processed but
the task that it was to run on was not logged on. This message can also be
automated in the NetView automation table. When testing automation, you can
use this message to determine automated actions that were not correctly
scheduled.

Include some sort of autotask checking to ensure that autotasks remain active and
able to work. When an autotask becomes inactive because it is stuck in a loop, is
waiting indefinitely, or has logged off, the problem can be difficult to recognize
and resolve. The advanced automation sample set (described in Appendix I, “The

/* $HASP098 Command list */
/* - Responds to message $HASP098 ENTER TERMINATION OPTION */
/* - If in 'TEST' mode, doesn't send response */
'GLOBALV GETC TEST HASP098_LASTREPLY' /* Get global variables */
IF HASP098_LASTREPLY = '' | /* If first reply or */

HASP098_LASTREPLY = 'PURGE' THEN /* did purge last time */
REPLY_TEXT = 'DUMP' /* Do a dump this time */

ELSE /* Did dump last time */
REPLY_TEXT = 'PURGE' /* So do a purge this time */

CMD_TEXT = 'MVS R '||REPLYID()||','||REPLY_TEXT /* Build the command*/
HASP098_LASTREPLY = REPLY_TEXT /* Set LASTREPLY for next */
IF TEST = 'YES' THEN /* Are we in 'TEST' mode? */

'WTO TEST OF $HASP098 - 'CMD_TEXT /* Write test results */
ELSE /* 'LIVE' mode... */

CMD_TEXT /* Issue the command */

Figure 181. $HASP098 Command List

Chapter 34. Automation Table Testing 483

Sample Set for Automation,” on page 579), uses a technique to automatically notify
you if a task is inactive for longer than a defined period of time. The technique
uses timer commands to periodically send a command to each autotask and set a
global variable indicating that an acknowledgment is due. If the autotask is
because of be checked again but notification from the last check has not been
received, a message indicating a possible problem is sent to the system operator.
All of the sample set’s autotasks are checked by one master autotask, which in
turn is checked by the PPT. The PPT is active if NetView is running.

Using Debugging Tools
Inherent in the operating system and NetView program are several audit trails and
tools to help you in determining whether automation is doing what you expect it
to do and to assist you if things are not going as you had planned. The following
sections describe the system and network logs, evaluation of unautomated
messages and MSUs, the NetView automation table listing, and NetView
automation table tracing. For more information about logging, see Chapter 35,
“Logging,” on page 489.

Using Logs
The MVS system log is mapped by the IHAHCLOG macro in your SYS1.MACLIB
data set. In the IHAHCLOG macro, an 8-byte field called HCLREQFL contains
installation exit and message processing facility (MPF) request flags. Bit 10 of the
suppression flag (bytes 7 and 8) indicates whether MVS requested automation for
the message. You normally set this bit by having the MPF entry for that message
specify AUTO(YES) or by having an MPF .DEFAULT or .NO_ENTRY statement
that applies to that message specify AUTO(YES). You define MPF entries in the
MPFLSTxx member of SYS1.PARMLIB. The NetView program processes the
message only if the automation-requested flag is on.

If a message is not being automated, one of the first places to look is in the system
log to ensure that the automation-requested flag is on. Bit 1 indicates whether MPF
suppressed a message from display. This flag is of interest when you are trying to
determine how effective your message suppression is.

Every time the automation table generates a command, NetView places a CNM493I
message in the network log, unless message logging has been prevented using the
DEFAULTS command, the CNM493I automation table action, or the OVERRIDE
command. A key parameter in the message is the sequence number, which is taken
from positions 73–80 of the automation table statement. So that the CNM493I
message has value to you, ensure that your automation table entries have sequence
numbers, and maintain the numbering when you update the table.

CNM493I also shows the command that was generated as an operand of the EXEC
portion of the automation table entry. It tells you what was processed and what
parameters were passed to the command list or command processor. However,
your automation command lists and command processors can be called from
places other than the automation table. For example, other command lists and
command processors might call them, or a NetView operator or system operator
might start them.

Therefore, you might want to include a MSG LOG statement at the beginning of
each automation procedure that records in the network log the name of the
procedure being called and the parameters that were passed to it. The advanced
automation sample set demonstrates this technique. You might want to have a

484 Automation Guide

NetView global variable that your command procedures use to check whether they
should be in debug mode. In this case, the command procedures provide
additional information on their execution.

Another tool is the &CONTROL CMD statement in the command list. This tool
causes all commands issued in the command list to be displayed. You might set
&CONTROL ERR inside of command loops. It also causes the message in
Figure 182 to be written to the network log.

Evaluating Unautomated Messages and MSUs
As part of your testing and debugging, you might want to create a list of messages
and MSUs that are not automated by your automation table. You can use the list to
find messages or MSUs that did not trigger automation. You can also use the list to
determine additional messages and MSUs that you can automate.

For example, if you write a command processor named LOGSEQ that records what
is passed to it in a sequential log data set, you can put the statement shown in
Figure 183 as the last statement in your automation table to pass all messages to
the LOGSEQ command processor.

For each message that is processed without finding a match in the automation
table, LOGSEQ writes a record to the sequential log file indicating that the
message was not automated. You can then analyze the sequential log to see if
messages that should be automated are not being automated. You can also use this
technique for MSUs. Note, however, that this technique assumes that you allow
unautomated messages and MSUs, and no others, to reach the bottom of your
table. This situation is not suitable for all tables.

You can also use the same technique in BEGIN-END sections to determine whether
messages or MSUs are being automated as intended. This technique can help you
determine whether you need to add additional statements to the BEGIN-END
section.

You can use this technique with condition items other than MSGID to obtain other
information about unautomated messages and MSUs.

Using NetView Automation Table Listings
You can create a listing of your automation table with the AUTOTEST and
AUTOTBL commands. Syntax errors are indicated in the listing. The listing also
shows all the included automation members and the synonym substitutions,
making it ideal for determining the order of automation statements. It also helps
you prevent of debug logic errors in your automation tables by showing the entire
automation table in one place.

An example of an automation table and its listing is shown in “Example of an
Automation-Table Listing” on page 238.

DSI013I COMMAND LIST cmdlistname COMPLETE

Figure 182. DSI013I Message Written by the &CONTROL CMD Statement

IF MSGID = ANYID THEN
EXEC(CMD('LOGSEQ ' ANYID ' NOT AUTOMATED'));

Figure 183. Statement that Passes Messages to LOGSEQ

Chapter 34. Automation Table Testing 485

Using NetView Automation Table Tracing
You can trace the processing of a message or MSU through the automation table
using the TRACE action. The TRACE action sets a trace tag for the AIFR as well as
an indicator that the AIFR is to be traced as it is processed by the automation
table. Detailed trace information is displayed by message BNH370I for each part of
each automation table statement that is processed.

An example of an automation table with a TRACE action is shown in 486. In this
example, the intent is to determine why operator OPER1 is not receiving the
message that the command is longer than 8 characters and therefore not valid.
Note that when a command is longer than 8 characters, the DSI002I notification
message is displayed as an immediate message rather than as a regular message.
Therefore, HDRMTYPE is checked to determine whether the command name was
longer than 8 characters.
SYN %HDRMTYPE_IMMED% = '''!''';

IF (LABEL:LABEL1) MSGID = 'DSI002I' THEN
TRACE('DSI002_IMMED_TRC');

IF (LABEL:LABEL2) MSGID = 'DSI002I' &
TOKEN(4) = CMDNAME &
HDRMTYPE = %HDRMTYPE_IMMED% THEN
EXEC(CMD('MSG OPER1 COMMAND' CMDNAME ' IS LONGER THAN 8 CHARS'));

IF (LABEL:LABEL3) MSGID = 'BNH370I' THEN
COLOR(YEL);

When message DSI002I is issued for an command that is not valid (SHORTCMD)
and is processed by the preceding automation table segment, the following
messages are produced:
SHORTCMD �1�
BNH370I PASS TRACE MAINTABL INCLTABL LABEL1 DSI002_IMMED_TRC �2�
BNH370I PASS MSGID MAINTABL INCLTABL LABEL2 DSI002_IMMED_TRC �3�
BNH370I PASS TOKEN MAINTABL INCLTABL LABEL2 DSI002_IMMED_TRC �4�
BNH370I PASS AND MAINTABL INCLTABL LABEL2 DSI002_IMMED_TRC �5�
BNH370I FAIL HDRMTYPE MAINTABL INCLTABL LABEL2 DSI002_IMMED_TRC �6�
BNH370I FAIL AND MAINTABL INCLTABL LABEL2 DSI002_IMMED_TRC �7�
BNH370I FAIL MSGID MAINTABL INCLTABL LABEL3 DSI002_IMMED_TRC �8�
DSI002I INVALID COMMAND: 'SHORTCMD' �9�

BNH370I messages indicate the tracing results for trace tag DSI002_IMMED_TRC,
which was specified in the TRACE action in the preceding automation table
segment. The individual messages are explained as follows:

Key Explanation

�1� The command SHORTCMD is entered.

�2� The TRACE action in the LABEL1 statement ran successfully because the
DSI002I message produced matched the conditions for this statement. This
means tracing for this message is now in effect as it continues processing
through the automation tables.

�3� The MSGID conditional matches in the LABEL2 statement. This is
indicated by PASS MSGID.

�4� The TOKEN conditional (used to place the command name that is not
valid into a variable) matches in the LABEL2 statement. This is indicated
by PASS TOKEN.

�5� The logical AND that joins the MSGID and TOKEN conditionals is

486 Automation Guide

successful in the LABEL2 statement. This is indicated by PASS AND. The
logical AND operator is successful because its two operands (MSGID and
TOKEN) were successful.

�6� The HDRMTYPE conditional fails in the LABEL2 statement. This is
indicated by FAIL HDRMTYPE. The HDRMTYPE check fails because the
command was not longer than 8 characters. Message DSI002I is output as a
regular message, rather than an immediate message.

�7� The logical AND operator (that joins HDRMTYPE with the preceding
logical AND operator) fails in the LABEL2 statement. This is indicated by
FAIL AND. The logical AND operator fails because its second operand
(HDRMTYPE) failed.

�8� Because the preceding statement did not result in a match, automation
table processing continues. The MSGID conditional fails in the LABEL3
statement. This is indicated by the FAIL MSGID.

�9� Message DSI002I (just processed through the automation table) is displayed
on the console.

Message BNH370I is issued to the console. You can include automation logic in the
automation table to direct it to the NetView log if desired. Do not specify a TRACE
action for message ID BNH370I, as this causes a loop condition to occur. Note that
BNH370I was automated in the preceding example in order to color the trace
message yellow for easier recognition.

Chapter 34. Automation Table Testing 487

488 Automation Guide

Chapter 35. Logging

This chapter describes logging, which you can do at the system, network, or user
level. The topics are:
v Considerations for logging
v Different kinds of logs
v Logging capabilities provided by NetView
v Differences between data in the MVS system log and data in the network log

Logging Considerations
Data that is to be recorded is usually in message format. However, the data can be
commands, programmed data, or other information, depending on the purpose of
the log in your particular environment. Some common uses of logs are:
v To provide an audit trail of events that have occurred in the system. Audit trails

can be useful for tracking the automation process or when an operational
problem occurs. In those circumstances, all information must be relevant,
readable, and stored in a usable format. An audit trail is not considered a trace.
For more information about using logs to help with problem determination, see
“Using Logs” on page 484.

v To report on the operational characteristics of the system. For example,
management might want a report on the effectiveness of automation in your
system. Such data can be compared to data collected when automation was not
available.

In all cases, the log is only as good as the data put into it. You have considerable
control over the data that is kept and what logs it is written to. Therefore, you
must decide on the logging strategy best suited for your environment. Data that is
not meaningful should not go into the log. Keeping only the data that is useful
ensures that the log is readable and also minimizes the performance overhead of
logging.

NetView writes message CNM493I to the network log each time a successful match
in the automation table results in a command or command procedure being
scheduled. You can prevent logging of this message with the DEFAULTS
command, the CNM493I automation table action, or the OVERRIDE command.

Refer to the IBM Tivoli NetView for z/OS Tuning Guide for guidelines on when to
prevent the logging of message CNM493I. Message CNM493I has the format
shown in Figure 184.

In Figure 184, member is the automation table member for the statement that
scheduled the command or command procedure, seqnum is the sequence number
of the statement (or (NO SEQ), if the statement has no sequence number), and
commandtext is the command or command procedure scheduled, including any
parameters.

You can use message CNM493I to analyze automation use and as an audit trail to
determine if your automation is processing as intended. Message CNM493I

CNM493I member : seqnum : commandtext

Figure 184. Message CNM493I Format

© Copyright IBM Corp. 1997, 2009 489

indicates only that the command or command procedure was scheduled, not that it
was processed. If the task to which the command or command procedure was
routed is not active, the command or command procedure is not processed and
message DWO032E is recorded in the log and sent through the automation table.
Message DWO032E provides the name of the inactive task and the command or
command procedure that was not processed.

Consider what data to record, including the CNM493I message. For example,
consider logging the following types of data:
v Log all messages for which some processing is done, even if only to collect data

as part of a monitoring application.
v Log the command list name and parameter string for each major automation

procedure that runs. Message CNM493I is issued only for the first procedure
that runs as the result of a match in the automation table. Message CNM493I is
not issued for other command lists and command processors that are
subsequently called by that procedure.

v Ensure that a record is logged each time an action is taken that directly
automates an operation previously taken by an operator. Specifically, you might
want to record it in a way that facilitates recognition as an “automated action”
and thus aid the production of management statistics.

The operating system controls logging of system messages. Suppress any
system-message logging at the system level if possible. Messages that are
processed by NetView can be suppressed or directed to the system log, the
network log, or various user-provided logs, in addition to the hardcopy log.

MVS System Log (SYSLOG)
All MVS write-to-operator (WTO) messages, including those suppressed in
MPFLSTxx entries, are recorded in the MVS system log (SYSLOG). Logging to the
system log can be suppressed from a user-written MPF installation exit. NetView
messages can be directed to the MVS system log (see “Network Log”). You can
also use the Message Revision Table, described in “Message Revision Table” on
page 25, to suppress messages.

JES must be active to log messages to the MVS system log.

Note: Messages suppressed by the Message Revision facilities are written to the
MVS SYSLOG. Mentions deleted by the Message Revision facilities are not
written to the MVS SYSLOG.

Network Log
NetView messages are written to the network log as a default. However,
unsolicited messages received from the MVS subsystem interface that are not given
to a task with ASSIGN and have no automation table entry are not written to the
network log.

Use the VTAM start parameter PPOLOG=YES if you plan to record VTAM
messages in the network log. This technique ensures that all VTAM commands,
except START and HALT, entered at an extended multiple console support (EMCS)
console and all VTAM responses are recorded in the network log, regardless of the
DEFAULTS and OVERRIDE specifications for the task that started the subsystem
interface router task.

490 Automation Guide

The network log task (DSILOG) must be active before you can log messages to the
network log. The NetView subsystem address space must be active to receive
system messages before system messages can be recorded in the network log.

You can use the NetView BROWSE command to view the network log. The
commands available through the NetView BROWSE command are similar to those
of the ISPF BROWSE command. BROWSE cannot be used from an EMCS console
associated with an autotask or by a NetView-NetView task (NNT).

The network log function buffers messages before actually writing them to the log.
Using default processing, NetView writes to the network log when the buffer is
full. With an initialization option, you can use deferred write (DFR) instead, but it
makes no significant difference because network log I/O is sequential and there is
no insert or delete processing.

User-Provided Logs
With the sequential access method log support, you can define one or more
sequential log tasks to write variable length records to user-defined logs. You can
send data to a sequential log task from command processors written in assembler
(using DSIWLS), PL/I, or C (using CNMSMSG). Refer to IBM Tivoli NetView for
z/OS Installation: Getting Started for more information.

PL/I and C I/O services are also available if you choose to write command
processors in a high-level language. The services enable you to create logging
schemes and, when used in conjunction with the ALLOCATE and FREE
commands, enable you to easily allocate and free data sets from within NetView.

NetView Logging Capabilities
With NetView, you can specify whether messages go to the MVS system log, the
network log, or various user-provided logs. User-provided logs can be accessed
only from user-written code.

NetView logs messages according to the following rules:
v The NetView DEFAULTS command determines how messages are logged in the

absence of other logging specifications. The DEFAULTS command can be entered
by any NetView user and must therefore be authority-checked to avoid use by
unauthorized operators. Specify values in the CNMSTYLE member to ensure
that the preferred options take effect when NetView is initialized.

v An individual NetView operator can use the OVERRIDE command to set up
defaults for messages directed to a particular operator station task (OST).

v You can specify SYSLOG(Y) and NETLOG(Y) in the automation table to
determine which messages or sets of messages go to the system and network
logs, respectively.
If you specify SYSLOG(Y) for an MVS message that MVS has already written to
the system log data set, NetView does not write an additional copy.

For messages written to the system log as a result of a SYSLOG(Y) specification,
the message text is preceded by three NetView fields: the domain identifier, the
operator identifier, and a message type symbol (for example, a dash designates a
command-facility message). The actual message identifier is the fourth token of the
message text.

Chapter 35. Logging 491

|

Messages generated within NetView can also be logged with the NetView MSG
command. Specifying a destination of LOG causes the message to be written to the
network log, if the log is active, depending on the DEFAULTS and OVERRIDE
settings. Specifying SYSOP writes the message to the system log as well as
displaying it at an EMCS console.

A similar service (DSIWLS) is provided to those users coding command processors
in assembler. The user can code command processors in a high-level language
(specifically, PL/I or C). The high-level language service routine CNMSMSG allows
the user to write messages to the network log, a user-provided sequential log, or
an external log such as SMF. Specifying SYSOP writes a message to the system log
as well as displaying it at an EMCS console.

MVS System Log and NetView Network Log Records
There are several differences between the data logged in the MVS system log and
the data logged in the network log. Both carry the text of the message, but for
MVS WTO messages, the system log also contains information pertaining to the
origin (job number, console) and disposition (such as route codes and MPF actions)
of the message.

The system log also indicates which type of message (such as multiline or
command response) was recorded. The system log indicates the system that
originated the message. The network log indicates the domain on which the
message was first received. Usually the name of the domain and the name of the
system are chosen so that it is easy to associate them.

For a JES3 global processor, the messages from different processors in the complex
all arrive at the global processor. If you are obtaining subsystem interface messages
only from the global processor, identifying the message source in the network log
can be difficult because all of the messages have the same domain and the system
name is not recorded.

For MVS messages, the system log indicates the time that the message was issued.
The network log indicates the time at which automation table processing was done
for that message, which can be much later. For example, if the NetView task that is
processing the automation table is currently awaiting operator input as a result of
an AUTOWRAP NO command, the message is not processed by that task until
normal task processing resumes. This situation also occurs if the NetView task is in
a full-screen application such as the session monitor or a help panel (but not if the
NetView task is in session with the status monitor).

The message is later written to the network log. Similar delays occur for messages
that NetView writes to the system log as a result of automation table processing.
Therefore, messages can be written to the network log in a different chronological
order from that of their causes, which can cause difficulties in problem
determination. You can avoid these difficulties by careful design of the flow of
messages in NetView and by use of ASSIGN commands and ROUTE operands in
the automation table.

492 Automation Guide

Chapter 36. Job Entry Subsystem 3 (JES3) Automation

A job entry subsystem 3 (JES3) complex can consist of several channel-to-channel
(CTC) connected processors that appear to the operator as a single system.
Operational control of the JES3 complex is performed by one processor, the global
processor. The global processor is a central point for entry of jobs, control of
resources needed by jobs, and distribution of work to processors in the complex. If
the complex consists of more than one processor, the other processors are called
local processors.

Because of the number of processors in a complex, operational control can be a
demanding task. The complex is operated from consoles attached to the global
processor, and the messages from all processors appear on those consoles. System
logging is also done at the global processor. Operator commands that control the
processors in the complex are issued from the consoles connected to the global
processor.

The global processor must be the focal point of automation. The NetView program
must run on that processor. Messages from all processors in the JES3 complex
appear on the subsystem interface of the global processor. Commands can be sent
to all processors from the global processor. Therefore, it is possible to automate the
JES3 complex by installing NetView only on the global processor. However, also
consider installing NetView on local processors to automate a recovery procedure.

If operational tasks are automated, it might not be necessary to maintain the same
structure of console usage. Several functions can be consolidated on the same
console if the message traffic is reduced by MPF and automated actions.

Message Flow in a JES3 Complex
The following sections describe the flow of messages that originate on the global
processor and those that originate on the local processor.

Messages That Originate on the Global Processor
All WTO messages issued on the global processor pass through MPF processing on
the global processor, and indicators for suppression, retention, and automation are
set in its work queue element (WQE).
v If the message identifier is listed in MPFLSTxx:

– Specific AUTO, SUP, RET, and USEREXIT specifications are used if they exist.
– If the entry for the message ID does not have specific definitions (that is, for

AUTO and SUP), the .DEFAULT entry is used.
– If no .DEFAULT entry exists, the defaults AUTO(NO) and SUP(YES) are used.

v If no entry exists in MPFLSTxx for the message ID:
– The definition from the .NO_ENTRY statement is used.
– If no .NO_ENTRY statement exists, the system defaults AUTO(YES) and

SUP(NO) are used.
v Next the message is presented to MPF exits. The exits can alter suppression or

automation specifications.
– If an MPF exit was specified for the message ID, the MPF exit routine is

processed.

© Copyright IBM Corp. 1997, 2009 493

– If no MPF exit was specified but an IEAVMXIT exit routine exists, IEAVMXIT
is processed.

After MPF processing is complete, MVS puts the message on the subsystem
interface of the global processor. Each subsystem inspects the message in the order
determined by the subsystem names table. JES3 must be the primary subsystem so
it sees the message first.

JES3 performs MSGROUTE processing on the message and presents it to its exit 57
(IATUX57) and exit 69.

Note: JES3 can affect the display of the message on a multiple console support.
That is, the message might not be suppressed in MPF, but it might be
suppressed by JES3.

After NetView performs any Message Revision processing, if that processing
specified a delete action, then there is no further processing of that message after
the subsystem interface. If a NETVONLY action was specified, then the message is
passed directly to CNMCSSIR for automation, but otherwise is processed as for a
deleted message.

If automation was requested by either the MPF or Message Revision, then NetView
copies the message from the subsystem interface for automation.

Finally, the message flows from the subsystem interface to the multiple console
support for possible display, retention, and hardcopy logging, depending on
routing codes, MPF specifications, Message Revision processing, and the subsystem
interface return code.

Messages That Originate on the Local Processor
All WTO messages issued on a local processor pass through MPF processing on
the local processor, and indicators for suppression, retention, and automation are
set in its WQE.
v If an MPFLSTxx entry exists for a message identifier:

– Its AUTO, SUP, RET, and USEREXIT definitions are used.
– If an entry exists but no definitions exist, the .DEFAULT entry is used.
– If no .DEFAULT entry exists, the defaults AUTO(NO) and SUP(YES) are used.

v If no entry exists in MPFLSTxx for the message ID:
– The definition from the .NO_ENTRY statement is used.
– If no .NO_ENTRY statement exists, the system defaults AUTO(YES) and

SUP(NO) are used.
v Next the message is presented to MPF exits:

– If an MPF exit was specified for this message ID, it is processed.
– If no MPF exit was specified but an IEAVMXIT exit routine exists, it is

processed.

Then the message is broadcast on the MVS subsystem interface of the local
processor. Each subsystem inspects the message in the order determined by the
subsystem names table. JES3 must be the primary subsystem so it sees the message
first.

JES3 performs MSGROUTE processing and presents the message to its exit 57
(IATUX57) and exit 69 (IATUX69)..

494 Automation Guide

NetView performs any Message Revision processing.

If a NetView subsystem is running on the local processor and AUTO(YES) was
specified or defaulted in MPF for the message, NetView copies the message for
automation.

After subsystem interface processing, the message goes to multiple console support
on the local processor for possible display, retention, and hardcopy logging,
depending on the current status of routing codes, suppression and retention
indicators, the subsystem interface return code, and JES3 MSGROUTE specification.

Console support on the local processor copies the message and passes the copied
message across an XCF connection to the global processor. JES3 does not alter the
suppression, automation, or retention indicators of the original message in the local
processor.

Console support on the global processor receives the message from an XCF
connection on the local processor and processes it as follows:
v The message is presented to MPF exits if requested by the JES3 GLOBMPF

parameter.
– If an MPF exit was specified for the message ID, the MPF exit routine is

processed.
– If no MPF exit was specified but an IEAVMXIT exit routine exists, IEAVMXIT

is processed.

After subsystem interface processing, the message goes to multiple support console
for possible display, retention, and hardcopy logging at the global processor,
depending on the routing codes, MPF specifications, and subsystem interface
return code.

Commands in a JES3 Environment
This topic describes several ways of issuing commands in a JES3 environment.

Issuing JES3 Commands from NetView
JES3 commands can be issued from NetView on the global processor. The JES3
identifier (for example, *) is required when entering JES3 commands from
NetView. JES3 commands can be prefixed with MVS when entered from the
NetView program, or entries from NetView sample member CNMS6403 can be
added to the CNMCMD member of DSIPARM to allow JES3 commands to be
entered from the NetView program without the MVS prefix. This allows NetView
operators to issue certain JES3 commands without being authorized to issue the
MVS command. When a JES3 command is issued from NetView without the MVS
prefix, the command must be followed by a space rather than a comma.

JES3 command verbs are subject to security, but keywords and values on the
commands are not. For example, you can protect the *SEND command with
command authorization using either the NetView command authorization table or
a system authorization facility (SAF) product, such as RACF (Resource Access
Control Facility). However, anything sent using this command is not subject to
protection. Refer to the IBM Tivoli NetView for z/OS Security Reference for a
description of command authorization.

JES3 commands issued from NetView on the global processor go onto the
subsystem interface and then to JES3. Messages issued as a result of a JES3

Chapter 36. Job Entry Subsystem 3 (JES3) Automation 495

command issued by NetView go on the subsystem interface where NetView can
access them. The messages are not considered command responses but appear to
NetView as unsolicited messages. JES3 does not issue multiline WTOs (MLWTOs),
so what looks like a group of messages in response to a command is really several
separate unsolicited messages and must be handled as such by NetView
automation.

Most JES3 commands cannot be issued at a local processor. The only JES3
commands that can be issued by NetView on a local processor follow:
v *CALL,DSI
v *CALL,VARYL
v *START,DSI
v *START,VARYL
v *CANCEL,DSI
v *CANCEL,VARYL
v *DUMP
v *RETURN

NetView running on a local processor can send JES3 commands to the global
processor and receive the response using the MVS ROUTE command.

Issuing MVS Commands from NetView in a JES3 Complex
In a JES3 environment, NetView on a local or global processor can issue MVS
commands to be run on that processor.

NetView on the global processor can use the JES3 *SEND command to direct a
system command (that is, an MVS command) to a local processor and receive the
response to that command. The MVS ROUTE command can also be used to send
MVS commands to a local processor and receive the response.

Issuing NetView Commands from Operating System Consoles
in a JES3 Complex

NetView commands can be entered from an MVS console if they are prefixed with
NetView’s subsystem designator character and if an autotask is already associated
with that MVS console (that is, the NetView AUTOTASK command was issued
with the CONS operand identifying the number of the console where the NetView
command is to be entered).

NetView in a JES3 Environment
When NetView automation command procedures are used in a JES3 environment,
these are some additional items to consider:
v For a message on the subsystem interface, NetView Message Revision can alter:

– JES3 logging
– Routing/display of messages for multiple console support consoles
– multiple console support hardcopy logging

If AUTO(YES) is specified in the MPFLSTxx member, the NetView program
makes a copy of the message for automation.

v MPFLSTxx must be set to suppress unnecessary messages on each processor and
to specify automation for every message to be automated. Messages are
propagated to the global processor for automation. The automation NetView
program can issue commands to any processor in the complex.

496 Automation Guide

v Because the automation NetView program can receive messages from several
processors, command lists must check the SYSID() function (REXX) or the
&SYSID control variable (NetView command list language) to check where the
message is coming from and then send commands back to the specific processor
using *SEND or the MVS ROUTE command.
The value of SYSID() or &SYSID is the name defined by the SYSNAME
parameter of the IEASYSxx member (GRS name), as long as JES3 is not active.
When JES3 is active, SYSID() or &SYSID is the name of the JES3 processor from
the MAINPROC statement. Therefore, consider setting them to be identical, or
having an easily recognizable association.

v JES3 does not use multiline messages (MLWTO). JES3 can issue the same
message several times as a response to a command. The command list receives
all those messages as a response, and normally it should wait for all of them.
However, it is difficult to know in advance how many messages a command list
will receive. Possible methods for finding out are:
– First issue a JES3 command to find out the number of elements, for example

the number of jobs in a specific queue. Then issue a more specific command
to know how many messages to expect.

– Include the N operand in your *INQUIRY command to specify the maximum
number of messages you want to receive.

v When you want a command procedure to wait for solicited messages in
response to a JES3 command, the command must always be included:
– On the &WAIT control statement in a command list written in the NetView

command list language
– After the TRAP instruction in a command list written in REXX
– After the TRAP command in a command processor written in a high-level

language (HLL)

Doing so ensures getting the solicited message back. If you put the JES3
command before the &WAIT or TRAP, certain responses might come back so
quickly that the &WAIT or TRAP might not receive them.

v Sometimes repeated JES3 messages trigger an automation command list twice.
One message is an action message with the automation table’s REPLYID
properly set. A second message is not an action message but has the same
message ID; the REPLYID condition item in this case is not set. The automation
command procedure has to test whether the second message is a real action
message. You can get the true reply ID by using:
– The &REPLYID control variable in a command list written in the NetView

command list language
– The REPLYID function in a NetView REXX command list
– The CNMGETA service routine in an HLL command processor

v The network log does not show which processor issued a message. You might
want to have your customization exits include the system ID in messages that
they write to the network log.

Chapter 36. Job Entry Subsystem 3 (JES3) Automation 497

498 Automation Guide

Chapter 37. SNMP Trap Automation

This chapter describes an architecture in which SNMP traps are turned into SNMP
trap automation CP-MSUs that are then passed to NetView automation.

Whenever a complete SNMP trap is received, whether over Transmission Control
Protocol (TCP) or User Datagram Protocol (UDP), an SNMP trap automation task
will build a CP-MSU and pass it to NetView automation. Within the CP-MSU are
GDS variables containing data from the trap.

The SNMP trap automation task
The SNMP trap automation task is a NetView Data Services Task (DST) used for
receiving and automating SNMP traps. The SNMP trap automation task can be set
up as a concurrent server (for SNMP agents that are TCP clients), a datagram
receiver (for SNMP agents that send traps via UDP), or both. An SNMP trap
automation task can be used to receive and automate SNMPv1, SNMPv2c, and
SNMPv3 traps in both IPv4 and IPv6 networks.

In order to distribute the SNMP trap automation workload, multiple SNMP trap
automation tasks can be used. Each SNMP trap automation task within an instance
of NetView must have a unique task name; however, the same DST initialization
member (sample CNMTRAPI) is used for all of them.

An SNMP trap automation task automates an SNMP trap by converting the trap to
a CP-MSU and passing that CP-MSU to NetView automation. The automation of
MSUs is described in Chapter 22, “Automating Messages and Management
Services Units (MSUs),” on page 319. The contents of the CP-MSU that an SNMP
trap automation task builds are described in this chapter.

Configuring an SNMP trap automation task
An SNMP trap automation task is configured by setting common global variables
that are unique to a specific task. These variables are read by an SNMP automation
task. Additional detail on these variables can be found in the IBM Tivoli NetView for
z/OS Administration Reference. These are the common global variables read by an
SNMP trap automation task:

CNMTRAP.taskname.CONFIGFILE
This variable provides the name of a configuration file that contains
SNMPv3 trap handling information.

CNMTRAP.taskname.MAXTCPCONN
This variable provides the maximum number of TCP connections
supported by the SNMP trap automation task.

CNMTRAP.taskname.STACKNAME
This variable provides the name of the TCP/IP stack to which the SNMP
automation task will obtain affinity.

CNMTRAP.taskname.TCPPORT
This variable provides a port number for a concurrent server (TCP) to
which clients may connect and send SNMP traps.

CNMTRAP.taskname.TRACE
This variable enables or disables SNMP automation task tracing.

© Copyright IBM Corp. 1997, 2009 499

|

CNMTRAP.taskname.UDPPORT
This variable provides a port number to which entities can send SNMP
trap datagrams (UDP).

As an example, consider these definitions that configure an SNMP trap automation
task named CNMTRAPD:

COMMON.CNMTRAP.CNMTRAPD.STACKNAME = &CNMTCPN
COMMON.CNMTRAP.CNMTRAPD.TCPPORT = 162
COMMON.CNMTRAP.CNMTRAPD.UDPPORT = 162
COMMON.CNMTRAP.CNMTRAPD.CONFIGFILE =

/usr/lpp/netview/v5r3/cnmtrapd.conf
COMMON.CNMTRAP.CNMTRAPD.MAXTCPCONN = 50

CNMTRAPD would be expected to obtain affinity to a TCP/IP stack whose name
was provided by the value of the &CNMTCPN symbol (typically the value of the
TCPNAME keyword). CNMTRAPD would be expected to “listen” for traps on
TCP port 162 and UDP port 162. UNIX System Services file /usr/lpp/netview/
v5r3/cnmtrapd.conf (described in “SNMP trap automation task configuration file”)
would be expected to contain SNMPv3 trap processing information for the
CNMTRAPD task. Because a CNMTRAP.CNMTRAPD.TRACE common global
variable was not defined in this example, SNMP trap automation tracing would be
disabled for CNMTRAPD.

SNMP trap automation task configuration file
If an SNMP trap automation task receives encrypted SNMPv3 traps, then it is
necessary to provide the applicable pass phrase or key information in an SNMP
trap automation task configuration file so that the SNMP trap automation task can
decrypt and authenticate the trap data.

The SNMP trap automation task assumes an SNMPv3 trap is encrypted if the
message flags field (msgFlags) in the SNMPv3 message header indicates both
encryption (privFlag = 1) and authentication (authFlag = 1); otherwise, no
decryption and no authentication procedures will be performed.

The information for decrypting and authenticating an SNMPv3 trap is provided by
a single statement in the SNMP trap automation task configuration file. Sample
cnmtrapd.conf contains a description of the supported file characteristics, statement
syntax, and examples. The file characteristics and line syntax are as follows:
v The file can have fixed or variable record format, and a logical record length of

at most 2048 bytes.
v A file line is considered a comment if the first column contains an asterisk (*) or

a pound sign (#).
v A non-comment line has the following format (this is contained on a single line,

but because of space constraints, must be displayed over two lines)
ipAddress port protocol snmpVer userName passPhrase

authAlg authKey privAlg privKey

where

ipAddress
Specify the IP address of a source of SNMPv3 traps.

port Specify a valid port number, in the range 1 - 65535. The port number is
not currently used in the decryption and authentication process.

500 Automation Guide

protocol
Specify a valid protocol (transport method), either TCP or UDP, The
protocol is not currently used in the decryption and authentication
process

snmpVer
Specify the SNMP version. You must specify a value of snmpv3 for this
parameter.

userName
Security name (user name in the SNMPv3 user-based security model
being supported). The name may be from 1 to 32 characters, inclusive, in
length.

passPhrase
A password used to generate authentication and decryption (privacy)
keys for the username given above. A hyphen (–) can be specified if the
key(s) are provided in subsequent parameters. Otherwise, the password
can be from 8 to 64 characters, inclusive, in length. If a password is
specified, then any keys provided in subsequent parameters are ignored.

authAlg
Algorithm used to generate a message digest for authenticating the
SNMP trap PDU. Valid values are HMAC-SHA (Simple Hashing
Algorithm 1, SHA-1) and HMAC-MD5 (Message Digest 5). This is also
presumed to describe the algorithm that was used to produce any keys
supplied on the statement, too.

If a passPhrase is supplied, then this algorithm is used to generate the
authentication and/or privacy keys for authenticating and decrypting,
respectively, the SNMP trap PDU.

authKey
Character representation of hex digits representing an authentication key,
presumably produced using the algorithm specified for authAlg. If
authAlg is HMAC-SHA, this parameter should represent a 20-byte key.
If authAlg is HMAC-MD5, this parameter should represent a 16-byte key

privAlg
Encryption/decryption (privacy) algorithm. The valid value is DES (data
encryption standard with cipher block chaining).

privKey
Character representation of hex digits representing a privacy key,
presumably produced using the algorithm specified for authAlg. If
authAlg is HMAC-SHA, this parameter should represent a 20-byte key.
If authAlg is HMAC-MD5, this parameter should represent a 16-byte
key.

If you specify a value for privKey, you must also specify a value for
authKey.

Note:

v Two items are used to find the applicable SNMP trap automation
configuration file record containing decryption and authentication
information: the origin IP address and the user name. The origin IP
address is the connection peer, if the trap was received from a TCP client;
otherwise, it will be the datagram sender, which is not necessarily the
SNMP agent that sent the trap (particularly if an entity forwarded the

Chapter 37. SNMP Trap Automation 501

trap on the agent’s behalf). The user name is extracted from the message
security parameters (the user-based security model is presumed).

v There is no statement continuation. A statement must fit in one logical
record.

v Symbols may be used within the statements. Symbols in a statement are
substituted before the statement is processed.

These are examples:
v Example 1:

10.42.44.25 162 TCP snmpv3 adam adampassword HMAC-SHA - DES -

This would be an entry for SNMPv3 traps originating from IP address
10.42.44.25 (currently applicable to both TCP and UDP and any origin port) and
containing the user name adam in the message security parameters. The phrase
adampassword is the pass phrase that the SNMP trap automation task will use
to generate non-localized keys that are then used to authenticate and decrypt the
trap.

v Example 2:

Note: Because of space limitations in this text, this example extends over more
than a single line; however, it should be construed as a single line.

10.42.44.25 162 UDP snmpv3 usermd5 - HMAC-MD5 67ef017ccb81111ba63b92e429338906
DES 67ef017ccb81111ba63b92e429338906

This would be an entry for SNMPv3 traps originating from IP address
10.42.44.25 (currently applicable to both TCP and UDP and any origin port) and
containing the user name usermd5 in the message security parameters. Here the
keys required for authentication and decryption were provided, instead of a pass
phrase. Notice that the keys are character representations of hexadecimal data,
16 bytes long, because HMAC-MD5 is chosen as the authentication algorithm.

SNMP Trap Automation CP-MSU
The CP-MSU contains GDS variables whose keys are in the range of
context-dependent data to lessen the chance of overlapping with existing CP-MSU
automation in the NetView program. For a description of context-dependent data,
see Systems Network Architecture Management Services Formats, GC31-8302 , Systems
Network Architecture: Formats, GA27-3136, or Systems Network Architecture: Network
Product Formats, LY43-0081.

Each GDS variable within the CP-MSU SNMP trap automation begins with a
2-byte length followed by a 2-byte key. The length value includes the length of the
length and key fields.

The first GDS variable within the CP-MSU contains information about the entity
from which the SNMP trap originated. This GDS variable is always present.

Table 20. GDS variable within the CP-MSU

GDS variable key Description

FFF0 SNMP trap origin

There are additional GDS variables within this GDS variable that describe the
origin:

502 Automation Guide

|
|
|
|
|
|

|

|
|

|

|

|
|

Table 21. GDS variables that describe the origin

GDS variable key Description

FFF1 Origin IP address, standard text presentation form of an IPv4
address or IPv6 address, whichever applies.

FFF2 Origin port number, expressed as a character representation of the
decimal port number.

FFF3 Protocol, IP transport over which the trap was received, may
contain the characters TCP or UDP.

The next GDS variable within the CP-MSU includes all other GDS variables with
data extracted from the trap. The GDS variable key depends on the type of SNMP
trap:

Table 22. GDS variables that describe the type of trap

GDS variable key Description

FFA4 SNMPv1 trap

FFA7 SNMPv2c or SNMPv3 trap

The GDS variables within the GDS variable contain the data as it occurred in the
SNMP trap (without the tag and length). There are some exceptions to this,
designed to assist CP-MSU automation and to allow the variety of data that might
appear in a variable binding.

Agent IP address (SNMPv1 trap only)
The agent IP address is presented in the CP-MSU as a standard text
presentation form of the IP (IPv4) address.

Data of type object ID
To make it easier to test for them and avoid having to perform a relatively
complicated conversion of a BER-encoded object ID within automation, this
is presented as a character representation of an ASN.1 object ID (decimal
sub-identifiers separated by periods)

Data representing numeric quantities
For data types such as integer, counter, gauge, timeticks, and counter64, the
value placed in the CP-MSU GDS variable will always have a length large
enough to represent the maximum value associated with the data type.
That is, integer, counter, gauge, or timeticks data types will always be
represented by a 4-byte value (the 32 bits required to hold the maximum
value supported for the data type), while counter64 data type will be
represented by an 8-byte value. If necessary, the value will be padded on
the left with zeros.

Note that SNMP trap automation does not do additional processing with
constructor data types (for example, SEQUENCE). The value, without the tag and
length, is simply placed as-is in the GDS variable.

The following table shows all of the GDS variables that can be created within an
SNMP trap automation CP-MSU. It also notes the SNMP trap GDS variables in
which the GDS variable might appear. GDS variables appear only once unless
otherwise noted.

Chapter 37. SNMP Trap Automation 503

|

|

|
|

|

|

|

|

|

|
|
|

Table 23. GDS variables that can be created within an SNMP trap automation CP-MSU

Key Description
Applicable SNMP trap GDS
variables

FF00 SNMP version, integer data, always present All

FF01 Community name, octet string data FFA4, FFA7 only when an
SNMPv2c trap

FF02 Enterprise object ID, object ID data FFA4

FF03 Agent IP address FFA4

FF04 Generic trap, integer data FFA4

FF05 Specific trap, integer data FFA4

FF06 Timestamp, timeticks data FFA4

FF07 Request ID, integer data FFA7

FF08 Error status, integer data FFA7

FF09 Error index, integer data FFA7

FF0A Message ID, integer data FFA7 only when an SNMPv3
trap

FF0B Message maximum size, integer data FFA7 only when an SNMPv3
trap

FF0C Message flags, octet string data FFA7 only when an SNMPv3
trap

FF0D Message security model, integer data FFA7 only when an SNMPv3
trap

FF0E Message security parameters
Note: See additional information about key
FF0E in “GDS Variable Notes” on page 504.

FFA7 only when an SNMPv3
trap

FF0F Context engine ID, octet string data FFA7 only when an SNMPv3
trap

FF10 Context name, octet string data FFA7 only when an SNMPv3
trap

FF11 Variable binding container, contains one
name GDS variable X'FF12' followed by its
corresponding value GDS variable X'FF13'

All, one for each variable
binding in the original
SNMP trap (if any)

FF12 Variable name from a variable binding,
object ID data, occurs once for each variable
binding in the trap

All, one for each variable
binding in the original
SNMP trap (if any)

FF13 Variable value from a variable binding, see
note below about the format, occurs once
for each variable binding in the trap and
immediately follows the associated name
GDS variable
Note: See additional information about key
FF13 in “GDS Variable Notes” on page 504.

All, one for each variable
binding in the original
SNMP trap (if any)

GDS Variable Notes:

1. The message security parameters GDS variable, key X'FF0E', contains 4 other
GDS variables, as follows:

FF1E Authoritative engine ID, octet string data

FF2E Authoritative engine boots, integer data

504 Automation Guide

|

|
|

|
|

|

|
|

FF3E Authoritative engine time, integer data

FF4E User name, octet string data
2. The value GDS variable, key X'FF13', has a format that must communicate the

type of data contained within it. Its format is as follows:
....nnnnFF13tttttttthhhhhhhhhhhh...

where tttttttt is a 4-byte field at the beginning of the data in the GDS variable
that communicates the type of data that follows. The value of this field is
essentially the tag data taken from the value within the BER-encoded trap. The
data is placed in the GDS variable subject to the guidelines described following
Table 22 on page 503.

Notes:

1. The maximum size of an individual trap that the SNMP trap automation task
will accept is 32500 bytes.

2. Because of the formatting conventions that are used and the origin information
that is added, it is possible for an SNMP trap smaller than 32500 bytes to yield
a CP-MSU that exceeds the maximum supported size (32600 bytes) of the
CP-MSU. If the size is exceeded, the SNMP trap cannot be automated.

3. If an SNMPv2c or SNMPv3 trap follows the SNMP architecture, there are two
variable bindings present, one for sysUpTime.0 and one for snmpTrapOID.0.
The CP-MSU created by an SNMP trap automation task for such a trap would
have an X'FFA7' GDS variable and two x’FF11’ GDS variables, each one
containing one X'FF12' GDS variable followed by one X'FF13' GDS variable.

For each of the different versions of SNMP traps, here are typical beginnings of
SNMP trap automation CP-MSUs created from them. Note that each GDS variable
within the SNMP trap automation CP-MSU begins with a 2-byte length followed
by a 2-byte key. In these examples, the 2-byte length field is pointed to as the start
of the GDS variable.

This is an example of an SNMPv1 trap. Note the GDS variable value X'FFA4' and
the last byte of the SNMP Version value (X'00') indicates SNMP Version 1.

CP-MSU Origin Origin IP Origin Protocol
│ │MV │Addr GDS Variable │Port │GDS Variable
│ │ │ │GDS Variable │
LLLL12120022FFF0000FFFF1F1F04BF1F04BF1F6F34BF70008FFF2F1F0F2F40007FFF3E3C3D7

SNMPv1 SNMP Community
|Trap │Version │Name GDS Variable
|MV │ │
nnnnFFA40008FF0000000000mmmmFF01hhhhhhhh...

This is an example of an SNMPv2c trap. Both SNMP Version SNMPv2c and SNMP
Version SNMPv3 use a GDS variable value X'FFA7'; the last byte of the SNMP
Version value (X'01') in this example indicates SNMP Version SNMPv2c.

CP-MSU Origin Origin IP Origin Protocol
│ │MV │Addr GDS Variable │Port │GDS Variable
│ │ │ │GDS Variable │
LLLL12120022FFF0000FFFF1F1F04BF1F04BF1F6F34BF70008FFF2F1F0F2F40007FFF3E4C4D7

SNMPv2c SNMP Community
|Trap │Version │Name GDS Variable
|MV | |
nnnnFFA70008FF0000000001mmmmFF01hhhhhhhh...

Chapter 37. SNMP Trap Automation 505

|

|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

This is an example of an SNMPv3 trap. Both SNMP Version SNMPv2c and SNMP
Version SNMPv3 use a GDS variable value X'FFA7'; the last byte of the SNMP
Version value (X'03') in this example indicates SNMP Version SNMPv3.

CP-MSU Origin Origin IP Origin Protocol
│ │MV │Addr GDS Variable │Port │GDS Variable
│ │ │ │GDS Variable │
LLLL12120022FFF0000FFFF1F1F04BF1F04BF1F6F34BF70008FFF2F1F0F2F40007FFF3E3C3D7

SNMPv3 SNMP Message ID
|Trap │Version │GDS Varible
|MV │ │
nnnnFFA70008FF0000000003mmmmFF0Ahh...

Within the X'FFF0' GDS variable, note the trap origin information (IP address and
port in character forms), as well as the name of a transport protocol, which can be
TCP or UDP, over which the SNMP trap came.

In the SNMP version GDS variable, the value that appears for each SNMP version
has been highlighted. Notice that the SNMP trap major GDS variable keys (X'FFA4'
and X'FFA7') have the applicable SNMP trap constructor tag (X'A4' for SNMPv1
and X'A7' for SNMPv2c and SNMPv3) in the key.

For all types of SNMP traps, if no variable bindings exist in a trap, then no X'FF11'
GDS variables are created in the SNMP trap automation CP-MSU. For each
variable binding that does occur, an X'FF11' GDS variable is built as follows.

VarBind Variable Variable
│Con- │"Name" Variable│"Value"
│tainer │GDS Variable │GDS Variable

...LLLLFF11nnnnFF12objectIDmmmmFF13tttttttthhhhhhhh...

With nnnn as the length of the name GDS variable (containing the character
representation of the name; that is, object ID) and mmmm as the length of the value
GDS variable (containing a 4-byte value representing the value’s data type,
followed by the value itself), LLLL is the total length of the variable container, and
LLLL = nnnn + mmmm + 4.

Example of SNMP trap automation
To show a complete SNMP trap automation CP-MSU, consider this SNMP trap
used in the detailed trap-to-alert conversion example in the IBM Tivoli NetView for
z/OS Customization Guide.
*
* Outermost constructor for the trap (tag and length)
*
30820127
* SNMP version (00 = SNMPv1)
020100
* Community name (public)
04067075626C6963
* Trap PDU
A4820118
* Enterprise object ID (1.3.6.1.4.1.12270)
06072B06010401DF6E
* Agent address (10.71.225.20)
40040A47E114
* Generic trap code (6 = enterprise specific)
020106
* Specific trap code (32 in decimal)

506 Automation Guide

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|

|

|

020120
* Timeticks
430402A2D49D
* Variable bindings "container"
308200F9
* Variable binding 1
3015
* Variable 1 (1.3.6.1.4.1.12270.200.2.1.1.1)
060D2B06010401DF6E814802010101
* Value 1 (octet string "1493")
040431343933
* Variable binding 2
3019
* Variable 2 (1.3.6.1.4.1.12270.200.2.1.1.2)
060D2B06010401DF6E814802010102
* Value 2 (octet string "/L20/O50")
04082F4C32302F4F3530
* Variable binding 3
3024
* Variable 3 (1.3.6.1.4.1.12270.200.2.1.1.3)
060D2B06010401DF6E814802010103
* Value 3 (octet string "2005-01-10T16:13:00")
0413323030352D30312D31305431363A31333A3030
* Variable binding 4
3014
* Variable 4 (1.3.6.1.4.1.12270.200.2.1.1.4)
060D2B06010401DF6E814802010104
* Value 4 (octet string "I14")
0403493134
* Variable binding 5
3025
* Variable 5 (1.3.6.1.4.1.12270.200.2.1.1.5)
060D2B06010401DF6E814802010105
* Value 5 (octet string "DIGIN ON OCCURRED")
0414444947494E204F4E202020204F43435552524544
* Variable binding 6
3015
* Variable 6 (1.3.6.1.4.1.12270.200.2.1.1.6)
060D2B06010401DF6E814802010106
* Value 6 (octet string "DI=1")
040444493D31
* Variable binding 7
3025
* Variable 7 (1.3.6.1.4.1.12270.200.2.1.1.7)
060D2B06010401DF6E814802010107
* Value 7 (octet string "RC2 Gas Status Man. ")
04145243322047617320537461747573204D616E2E20
* Variable binding 8
3011
* Variable 8 (1.3.6.1.4.1.12270.200.2.1.1.8)
060D2B06010401DF6E814802010108
* Value 8 (NULL)
0500
* Variable binding 9
3011
* Variable 9 (1.3.6.1.4.1.12270.200.2.1.1.9)
060D2B06010401DF6E814802010109
* Value 9 (NULL)
0500

Suppose that this trap was sent on behalf of an entity from a TCP client at IP
address 3A20:ABCD:70:1AB:10:10:173:7 and port 1038. The SNMP trap automation
task that received this trap would produce an SNMP trap automation CP-MSU like
this (GDS variables shown separately and annotated to show the data from the
original trap to which the GDS variables correspond).

Chapter 37. SNMP Trap Automation 507

|
|

*
* Outermost CP-MSU container
*
026D1212
* Trap origin GDS variable
0033FFF0
* Origin IP address GDS variable (“3A20:ABCD:70:1AB:10:10:173:7”)
0020FFF1F3C1F2F07AC1C2C3C47AF7F07AF1C1C27AF1F07AF1F07AF1F7F37AF7
* Origin port (“1038”, character representation of the port number in decimal)
0008FFF2F1F0F3F8
* Transport (“TCP”)
0007FFF3E3C3D7
* SNMP trap GDS variable (for the SNMPv1 trap)
0236FFA4
* SNMP version GDS variable (00 = SNMPv1)
0008FF0000000000
* Community GDS variable (“public”)
000AFF017075626C6963
* Enterprise object ID GDS variable (“1.3.6.1.4.1.12270”,
* notice EBCDIC character representation)
0015FF02F14BF34BF64BF14BF44BF14BF1F2F2F7F0
* Agent address GDS variable ("10.71.225.20")
0010FF03F1F04BF7F14BF2F2F54BF2F0
* Generic trap GDS variable (enterprise specific trap)
0008FF0400000006
* Specific trap GDS variable (32 in decimal)
0008FF05000000020
* Timestamp GDS variable
0008FF0602A2D49D
* Variable binding GDS variable 1
0031FF11
* Variable name 1 (1.3.6.1.4.1.12270.200.2.1.1.1)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF1
* Variable value 1 (00000004 = octet string, data = “1493”,
* notice unchanged ASCII data)
000CFF130000000431343933
* Variable binding GDS variable 2
0035FF11
* Variable name 2 (1.3.6.1.4.1.12270.200.2.1.1.2)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF2
* Variable value 2 (00000004 = octet string, data = “/L20/O50”)
0010FF13000000042F4C32302F4F3530
* Variable binding GDS variable 3
0040FF11
* Variable name 3 (1.3.6.1.4.1.12270.200.2.1.1.3)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF3
* Variable value 3 (00000004 = octet string, data = “2005-01-10T16:13:00”)
001BFF1300000004323030352D30312D31305431363A31333A3030
* Variable binding GDS variable 4
0030FF11
* Variable name 4 (1.3.6.1.4.1.12270.200.2.1.1.4)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF4
* Variable value 4 (00000004 = octet string, data = “I14”)
000BFF1300000004493134
* Variable binding GDS variable 5
0041FF11
* Variable name 5 (1.3.6.1.4.1.12270.200.2.1.1.5)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF5
* Variable value 5 (00000004 = octet string, data = “DIGIN ON OCCURRED”)
001CFF1300000004444947494E204F4E202020204F43435552524544
* Variable binding GDS variable 6
0031FF11
* Variable name 6 (1.3.6.1.4.1.12270.200.2.1.1.6)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF6
* Variable value 6 (00000004 = octet string, data = “DI=1”)
000CFF130000000444493D31
* Variable binding GDS variable 7

508 Automation Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0041FF11
* Variable name 7 (1.3.6.1.4.1.12270.200.2.1.1.7)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF7
* Variable value 7 (00000004 = octet string, data = “RC2 Gas Status Man. “)
001CFF13000000045243322047617320537461747573204D616E2E20
* Variable binding GDS variable 8
002DFF11
* Variable name 8 (1.3.6.1.4.1.12270.200.2.1.1.8)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF8
* Variable value 8 (00000005 = NULL, no data following the data type)
0008FF1300000005
* Variable binding GDS variable 9
002DFF11
* Variable name 9 (1.3.6.1.4.1.12270.200.2.1.1.9)
0021FF12F14BF34BF64BF14BF44BF14BF1F2F2F7F04BF2F0F04BF24BF14BF14BF9
* Variable value 9 (00000005 = NULL, no data following the data type)
0008FF1300000005

Notice that object IDs are presented as EBCDIC character representations of their
ASN.1 formats (decimal sub-identifiers separated by periods). This makes
automation tests for them considerably easier.

Chapter 37. SNMP Trap Automation 509

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

510 Automation Guide

Part 8. Appendixes

© Copyright IBM Corp. 1997, 2009 511

512 Automation Guide

Appendix A. Planning for Migration to New Automation
Capabilities in the NetView Program

This appendix includes general information in quick-reference form to help you
plan for, and migrate to, the new automation capabilities provided by NetView.
Some of these new capabilities result from automation improvements within
NetView only, and some result from the NetView automation improvements
working in conjunction with automation improvements in other products.

This appendix highlights the automation improvements for the various versions of
the IBM Tivoli NetView for z/OS product.

NetView for z/OS V5R4 Program
Table 24 shows the items (components, functions, services, and support) that
contribute to expanded and improved automation with the Tivoli NetView for
z/OS V5R4 program.

Table 24. Automation Enhancements of the NetView for z/OS V5R4 Program

Enhancement Description For More Information, See

NetView MVS Command
Revision

You can use the MVS Command Revision function to
examine, modify, or delete (cancel) MVS commands. You
can make complex changes, requiring a transfer to the
NetView address space, that include getting a response
to a WTOR, obtaining responses to other MVS
commands, and reading files.

The existing MVS Command Management function is
still supported for migration purposes only, but is
considered deprecated.

v Chapter 14, “The
Command Revision
Table,” on page 137

v IBM Tivoli NetView for
z/OS Installation:
Migration Guide

NetView for OS/390 V1R4 Program
Table 25 shows the items (components, functions, services, and support) that
contribute to expanded and improved automation with the Tivoli NetView for
OS/390 V1R4 program.

Table 25. Automation Enhancements of the NetView for OS/390 V1R4 Program

Enhancement Description For More Information, See

Policy Services Overview NetView Policy Services is a set of functions that enable
dynamic policy-based management and automation of
your resources. Policy Services includes:
v Policy Engine APIs
v Automation Policy Engine
v Timer APIs

Chapter 16, “Policy Services
Overview,” on page 263

© Copyright IBM Corp. 1997, 2009 513

|

|
|
|

||

|||

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|

Table 25. Automation Enhancements of the NetView for OS/390 V1R4 Program (continued)

Enhancement Description For More Information, See

MVS Command
Management

The MVS Command Management function enables you
to examine, modify, or reject most MVS commands. You
can specifically include or exclude commands from
processing by command or by console names.

The MVS Command Management function is still
supported for migration purposes only, but is considered
deprecated. The MVS Command Revision function
replaces MVS Command Management.

v “Condition Items” on
page 158

v IBM Tivoli NetView for
z/OS Installation:
Migration Guide

514 Automation Guide

|
|
|
|

Appendix B. Sample Project Plan

This appendix provides a sample of an automation project plan for you to use as a
model when you develop your own plan. The plan given here is only an example;
it is not intended to apply to all environments.

The automation plan follows the four-phase approach used elsewhere in this book.
Table 26 lists the phases and summarizes the activities involved in each phase.
Although the phases are generally sequential, you might need to start one phase
before you complete all parts of the preceding phase. That is, some tasks within a
phase could depend on the completion of a task in a different phase. For example,
you might need to complete the resource-definition task of the design phase
(task 2.03) before you can perform the cost-justification task of the definition phase
(task 1.13). Also, install automation on the test system (task 3.04) before you track
and compare performance on the test system (task 2.05).

Table 26. Phases of the Project (Sample Project Plan)

Phase Phase Name Summary of Activities

1 Definition Set up a planning team to manage and perform activities.

Identify goals and objectives.

Define short- and long-range goals for the automation project.

Document the current operating environment and practices.

Create a project plan for automation.

2 Design Set up a design team to manage and perform activities.

Design an implementation plan for automation and ensure that the plan meets
your short-range and long-range goals and objectives.

3 Implementation Set up an implementation team to manage and perform activities.

Develop the procedures to automate operations in the areas identified, following
the plan from the design phase.

Code and test these procedures on a test system.

4 Production Set up a production team to manage and perform activities.

Install and test your automation procedures on production systems.

Track system performance and revise procedures as necessary.

Gather data to plan for the next stage of automation.

If you implement automation in stages, rather than all at once, you will perform
the tasks in your automation plan repeatedly throughout the automation process.
Experience and data gathered from one stage can help you improve your plan for
the next stage.

An operating environment is dynamic. As you work on your automation plan,
your organization might add new software and hardware to its systems and
networks. Be prepared to accommodate the changes. Allow time in your schedules

© Copyright IBM Corp. 1997, 2009 515

to analyze changes, to evaluate automation with regard to new products, and to
incorporate new products into the automation process.

If your organization has a thorough set of operating procedures, policies, and
reports, you can accomplish many of the information-gathering tasks simply by
collecting existing documentation.

Project Definition
Table 27 lists some tasks and subtasks for defining an automation project. For
general information about the project-definition phase, see Chapter 3, “Defining an
Automation Project,” on page 41.

Table 27. Definition Phase

Task Task Action Subtask Activities

1.01 Hold an initial
proposal session.

Conduct an initial proposal session for the project.

Secure upper management commitment for the planning process.

Identify who in management is responsible for automation project definition.

Identify who in management is responsible for automation design, implementation,
and production.

Identify a project manager.

Identify members of the project-definition team.

1.02 Hold an orientation
session.

Conduct an orientation session with members of the project-definition team and the
Tivoli branch-office systems engineer.

Educate team members about automated operations.

Establish a reporting process for project status.

Investigate existing automation applications that can be purchased.

1.03 Analyze the
organization’s
business
environment.

Review business objectives.

Review data processing objectives.

Review the operations structure.

Review operations-management disciplines.

Identify tasks and objectives of each system-management discipline.

Identify problem-resolution processes in operations areas.

516 Automation Guide

Table 27. Definition Phase (continued)

Task Task Action Subtask Activities

1.04 Identify operating
problems.

Interview operators.

Analyze messages and MSUs.

Analyze commands.

Review service-level agreements.

Analyze operator procedure books.

Analyze problem-management reports and procedures.

Analyze help-desk logs.

Interview users.

Interview management.

Take measurements for tracking the success of automation.

1.05 Establish goals for
automation.

Define measurable long-range and short-range goals.

Quantify the benefits of automation to the organization.

Set objectives.

1.06 Inventory operation
resources.

Gather data about hardware.

Gather data about software.

Understand and document system and network configurations.

Identify hardware and software to be installed.

1.07 Interview users. Identify the number and operating requirements of users.

Identify operator tasks that users could perform for themselves.

Identify messages that could be distributed to users.

1.08 Establish a
change-control
group.

Establish a group to monitor change in the organization and in the operating
environment.

Establish a reporting procedure for this group.

1.09 Organize a design
team.

Identify people to perform the design phase.

Conduct education seminars that outline automated operations and the objectives of
the design team.

1.10 Identify the roles of
management in
automation.

Identify the roles of management in the automated environment.

Define the problem-resolution process for the automated environment.

1.11 Define the roles of
personnel in
automation.

Identify the roles of personnel in the automated environment.

Identify job descriptions and major tasks for each role.

1.12 Establish education
requirements for
personnel.

Outline the education needs of personnel for the automated environment.

Establish requirements for personnel training.

1.13 Justify automation. Perform a cost justification for automation, using information gathered by both the
planning team and the design team.

Appendix B. Sample Project Plan 517

Table 27. Definition Phase (continued)

Task Task Action Subtask Activities

1.14 Develop a proposal. Develop a proposal for automation.

Prepare a final report that summarizes the design-team activities, findings, and
recommendations.

Present the proposal and the report to management.

Design
Table 28 lists some tasks and subtasks for designing an automation project. For
general information about the project-design phase, see Chapter 4, “Designing an
Automation Project,” on page 51.

Table 28. Design Phase

Task Task Action Subtask Activities

2.01 Hold an initial
design session.

Conduct a session with the planning team and the design team.

Identify the roles of design-team members.

Establish a reporting process for the design phase.

Establish an approval process for automation design.

Teach designers about automated operations.

2.02 Devise a high-level
design for
automation.

Review the findings of the project-definition team.

Identify the future configuration of systems.

Identify the operating procedures to automate.

Identify the order in which systems and networks should be automated.

Identify the order in which various programs should be automated.

2.03 Define resources for
automation.

Define resources needed now and in the future:
People
Hardware and software products
Facility support

2.04 Approve procedures
before placing them
on the test system.

Review and approve automated procedures before they are placed on a test system.

2.05 Track the
performance of
automation on the
test system.

Analyze measurements of automation on the test system.

Compare the results to measurements obtained in task 1.04.

2.06 Track the
performance of
automation on
production systems.

Analyze measurements of automation on production systems.

Compare the results to measurements obtained before automation.

Implementation
Table 29 on page 519 lists some tasks and subtasks for implementing an
automation project. For general information about the implementation phase, see
Chapter 5, “Implementing an Automation Project,” on page 61.

518 Automation Guide

Table 29. Implementation Phase

Task Task Action Subtask Activities

3.01 Hold an initial
implementation
session.

Conduct a session with members of the other teams.

Teach the implementation-team members about automated operations.

Establish a reporting process for project status.

3.02 Attend training
seminars.

Attend training seminars about automated operations.

Learn established procedures for documenting automated procedures.

Learn any new skills that are necessary to develop automated procedures, such as
how to write command lists.

3.03 Install necessary
products.

Install any products required to develop and test automation.

3.04 Perform the
implementation plan.

Put the implementation plan created by the design team into use.

Produce automation functions and procedures, following the guidelines established
by the design team.

3.05 Install automation on
the test system.

Install the automation on the test system.

3.06 Test the procedures. Test the automation on the test system.

3.07 Measure and track
performance.

Measure and track the performance of the test system with automation. Use the
AUTOCNT command to generate an automation table usage report. Use the
TASKUTIL command to monitor task performance and CPU utilization.

3.08 Review and tailor
procedures.

Tailor procedures if necessary.

Test the procedures again.

Measure and track the performance of the test system again.

3.09 Approve the
procedures.

Formally review and approve the automated procedures, based on testing and system
performance. The group that approves the procedures should contain members from
all of the automation teams.

3.10 Support the
production team.

Assist in installing new products.

Assist in tailoring automated procedures to the production systems.

Monitor the results on production systems.

Assist in testing any procedures that are tailored to production systems.

Production
Table 30 on page 520 lists some tasks and subtasks for the production of an
automation project. For general information about the production phase, see
Chapter 5, “Implementing an Automation Project,” on page 61.

Appendix B. Sample Project Plan 519

Table 30. Production Phase

Task Task Action Subtask Activities

4.01 Hold an initial
production session.

Conduct a session with members of the other teams.

Identify the roles of production-team members.

Teach members of the installation team about automated operations.

4.02 Install necessary
products.

Install automation products on the appropriate systems.

Conduct tests on the systems.

4.03 Migrate automation
procedures.

Migrate automation functions and procedures, such as command lists and automation
tables, to production systems.

4.04 Tailor the
procedures.

Tailor and test all procedures to meet the requirements of each system. Use the
AUTOCNT and AUTOTEST commands to generate an automation table usage report.
Use the TASKMON and TASKUTIL commands to monitor task performance and CPU
utilization.

4.05 Install program
updates and
enhancements.

Install and test any program updates and enhancements to automation products.

4.06 Tailor the
enhancements.

Tailor and test any software or hardware enhancements to meet the requirements of
the systems.

4.07 Review the
procedures and train
operators.

Periodically review automation and implement a plan for teaching operators about
the automated environment.

Compare measurement results to measurements taken before automation.

Planning Charts
You can use the following charts to calculate the time required to complete tasks in
each phase of the plan.

520 Automation Guide

Table 31. Planning Chart for Project Definition (Phase 1)

Task

Estimated Dates
or Hours for
Completion

Actual Dates or
Hours for
Completion Person Responsible Comments

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

1.14

Total

Table 32. Planning Chart for Design (Phase 2)

Task

Estimated Dates
or Hours for
Completion

Actual Dates or
Hours for
Completion Person Responsible Comments

2.01

2.02

2.03

2.04

2.05

2.06

Total

Appendix B. Sample Project Plan 521

Table 33. Planning Chart for Implementation (Phase 3)

Task

Estimated Dates
or Hours for
Completion

Actual Dates or
Hours for
Completion Person Responsible Comments

3.01

3.02

3.03

3.04

3.05

3.06

3.07

3.08

3.09

3.10

Total

Table 34. Planning Chart for Production (Phase 4)

Task

Estimated Dates
or Hours for
Completion

Actual Dates or
Hours for
Completion Person Responsible Comments

4.01

4.02

4.03

4.04

4.05

4.06

4.07

Total

522 Automation Guide

Appendix C. Sample Progress Measurements

This appendix contains examples of objectives and indicators that you can
measure. You can use these objectives and indicators to estimate the value of
automation for comparison with the costs of automation. You can also use these
objectives and indicators to measure the progress of your project.

Table 35 presents groups of indicators and measurements under several general
objectives, such as the general objectives of “Improved operator productivity” and
“Decreased complexity of operator tasks”. The table includes columns for
estimating costs, but you might not be able to assign costs to some of the
indicators and measurements. Also, some of the indicators and measurements
overlap; therefore, you should not try to total all of the costs that you might enter.
You should choose objectives and indicators that relate to your organization’s
goals.

Note that all listed items may not apply to your system.

Table 35. Indicators and Measurements for Estimating the Value of Automation

Indicator or Measurement Related to a Goal
Before
Automation Cost

After
Automation Cost

Improved Operator Productivity
Number of operators required
Number of operators per system and subsystem
Recovery time
Number of console operators that monitor the system
Number of system operations performed by operators

Decreased Complexity of Operator Tasks
Hours of manpower training required
Number of consoles required
Number of messages displayed
Number of alerts displayed

Decreased Human Error
Number of procedure errors
Number of console errors
Number of outages

Reduced Console Message Traffic
Number of messages suppressed
Number of messages automated
Number of messages distributed
Number of messages displayed

Reduced Hardware Monitor Alert Traffic
Number of alerts blocked (ESREC or AREC filters)
Number of alerts automated
Number of alerts displayed by the hardware monitor

© Copyright IBM Corp. 1997, 2009 523

Table 35. Indicators and Measurements for Estimating the Value of Automation (continued)

Indicator or Measurement Related to a Goal
Before
Automation Cost

After
Automation Cost

Number of alerts displayed

Reduced Problem Response Time
Time from notification to corrective action

Increased System Availability
Number of outages
Average outage time
Average outage time by component
Number of minutes recovery time
Number of network restarts

Centralized Operator Control
Number of consoles required
Response time for problem notifications
Number of operators required for each system

Centralized Reporting Process
Number of logs
Number of problem-management personnel
Number of inconsistencies in logs
Number of redundancies in logs

Improved Management Control
Number of procedure errors
Number of incorrect responses
Outage time in recovery
Changes in service level agreements
Number of errors in operation audit trails

Fewer Constraints to Growth
Number of console operators for a workload
Number of consoles required
Hours of manpower training required
Number of operators required per system
Time to install a new system
Number of new procedures for a new system
Time to connect new system to present environment

524 Automation Guide

Appendix D. MVS Message and Command Processing

This appendix documents information that is diagnostic, modification, and tuning
information provided by NetView.

Attention: Do not use this diagnosis, modification, and tuning information as a
programming interface.

Much of automated operations deals with the processing of messages issued by
systems and their applications and subsystems such as IMS, CICS, JES2, and JES3.
Similar considerations apply to the way commands are issued, whether they are
issued from MVS, NetView, or other applications. This appendix helps you
understand how messages and commands are handled by NetView using MVS.

Message Flow in MVS
In MVS, a normal message to the operator is created when a program issues one of
the following requests:
WTO Write to operator
WTOR Write to operator with reply

These requests are processed by the WTO processor, which is part of the MVS
supervisor. MVS creates a control block called a WQE (work queue element) for
each message. The WQE contains the message text and all related information
available for that message from the WTO parameter list and relevant information
about the system at the time the WTO was issued.

Message Processing Facility
MPF allows an installation to influence how messages are to be handled. The
important features of MPF are:
v Message suppression
v Exits
v Action message handling
v Automation

MPF carries out the message processing specifications expressed in the active MPF
list (member MPFLSTxx of SYS1.PARMLIB). The statements in that member specify
two kinds of rules:
v The rules to be followed when MVS console support handles a message:

– Display suppression
– Action message retention
– The display attributes for the message descriptor codes

v The rules by which automation facilities are driven by a message:
– MPF installation exit selection
– Automation subsystem selection

Processing done in an MPF installation exit occurs synchronously, in line with the
WTO processor and the program that issued the WTO. Processing done in the
automated subsystem in NetView occurs asynchronously to the WTO processor,
and in parallel with the program that issued the WTO.

© Copyright IBM Corp. 1997, 2009 525

In MPF, the message is inspected to see if it should be marked for hardcopy log
only by checking the SUP keyword for that message identifier. If the message is
marked for hardcopy log only, it is not displayed at any multiple console support
console. The marking is done by checking the AUTO and RETAIN® keywords for
that message identifier.

Finally, the message is inspected to see if it should be passed to an installation exit
routine. If so, the routine is loaded and control is passed to it. The WQE contains
fields to indicate the results of MPF processing. The installation exit routine can
update some fields.

Subsystems in Message Processing
Following MPF processing, the message is broadcast to all active subsystems. The
message is presented to each subsystem in turn. Each subsystem can inspect the
message and perform appropriate subsystem processing. The subsystem can alter
the message text or other characteristics (WQE fields). The WQE contains fields to
carry special job-related information supplied by the job entry system when it
processes each message. Typical MVS subsystems include JES2, JES3, NetView,
OPC/ESA, CICS, and IMS.

If a primary job entry subsystem (JES2 or JES3) is active, that subsystem is always
the first to process a message, regardless of the subsystem’s position in the
IEFSSNxx member of SYS1.PARMLIB, which is referred to as the subsystems
names table (SSNT). Following that, messages go to each subsystem according to
the order specified in the SSNT. IMS is an exception to this rule. If IMS runs as an
MVS subsystem, it has special code to ensure that it is the last subsystem on the
subsystem interface.

Note: For JES2, if secondary job entry subsystems exist, their definitions should
precede the definition for NetView in the list of subsystems in IEFSSNxx.

If you are using the subsystem interface for messages and an active NetView
subsystem address space is present, it receives the WQE on the subsystem
interface. The NetView subsystem selects messages to be passed to the NetView
application and copies pertinent data from the WQE into its “message.” The WQE
is not modified by NetView and passes on to the next subsystem, if any. The
NetView subsystem queues the new messages in its own address space before they
are dequeued by the NetView application. Messages are passed to the NetView
application only while it is running and while an active subsystem interface router
task is in that application.

If extended multiple console support (EMCS) consoles are being used by NetView,
MVS facilities use cross-memory transfers to send messages directly to NetView
tasks, which are defined as EMCS consoles.

The NetView subsystem checks to determine whether the message was marked for
automation processing during MPF processing. If it was, the message text and
selected attributes from the WQE are copied and queued into the NetView
subsystem address space.

To direct a message for NetView automation, set the AUTO keyword for that
message to AUTO(YES) or AUTO(token) in the MPF table. If you also want to
suppress the message so it is not displayed for an operator, you can set the SUP
keyword in the message processing facility (MPF) table to SUP(YES). However, if
you do not direct a message for NetView automation and you also suppress the

526 Automation Guide

message, the message is stopped at the MPF table and is effectively lost. Therefore,
do not use both AUTO(NO) and SUP(YES) for the same message, unless you want
to completely stop the message from passing through MPF.

EMCS consoles that are acquired by NetView cannot solicit messages by route code
if the messages are marked with SUP(YES) in the MPF table.

Messages marked AUTO(YES) or AUTO(token) in the MPF table, or which are
subject to NETVONLY or REVISE(″1″ AUTOMATE) revision table actions or
similar, can be received on an EMCS console. By default, these messages are
received by the CNMCSSIR task.

Note: JES2, JES3, and NetView allow you to have two or more copies of their
subsystems active. Each copy requires a unique name in the SSNT, and each
is called under its own subsystem name for a message. Under those
circumstances, each NetView subsystem can select the message and queue it
for processing by separate NetView applications.

Multiple Console Support
After a message is broadcast to all active subsystems, it is passed to multiple
console support . If the message is not marked for the hardcopy log only, it is
displayed at all multiple console support consoles with a matching routing code.
Also, the RETAIN indicator is checked if it is considered by MVS as an action
message or write-to-operator with reply (WTOR) message, and the MPF
specifications for screen display colors are acted upon.

The message is then written to the hardcopy log, usually the system log data set.
Writing the message to the system log data set can be prevented, within the MPF
installation exits, but that is not usually done.

When using the subsystem interface for MVS message delivery in a sysplex
environment, NetView avoids processing messages from other systems in the
sysplex. This prevents duplicate automation if you run the NetView program on
more than one system in the sysplex.

When using EMCS consoles for MVS message delivery in a sysplex environment,
you can set the MSCOPE value for an EMCS console to enable a particular EMCS
console to receive MVS system messages. These system messages can be from the
console’s own system, from all systems in the sysplex, or from a list of selected
systems in the sysplex. By default, the EMCS consoles in use by NetView receive
messages from all systems in the sysplex. The CNMCSSIR task is an exception to
the default. This task receives messages only from its own system.

Command Flow
Commands issued from an multiple console support console are also broadcast on
the subsystem interface. Commands are handled in a way that is similar to the
way messages are handled. The command is inspected by each of the active
subsystems, with the job entry subsystem first, followed by the others in the order
they are specified in the SSNT.

Processing Determination
Each subsystem examines the command and determines whether to process it. For
example, JES2 determines whether the first character is a dollar sign ($), assuming
a typical use of JES2. If it is, JES2 accepts the command as one to be processed

Appendix D. MVS Message and Command Processing 527

within its address space and passes it on to its command processor. It also marks
the command as having been processed by a subsystem, so that an error message
for an unidentifiable command is not issued.

In a similar way, JES3 looks for an asterisk (*) or an eight (8), and the NetView
program, by default, looks for a percent sign (%). NetView, like most subsystems,
uses that identifying first character to distinguish its commands. If you run with
two JES subsystems, you can direct commands to each individually by specifying a
different character for each. If you specify the same character for each, both JES
subsystems accept and process the command. The same is true of NetView.
NetView also checks to see if an automation task (autotask) is in the NetView
application address space associated with the console from which the command is
issued. If that association exists, the command is copied and queued by the
NetView subsystem address space. When it is subsequently dequeued by the
NetView application, it is routed to the associated automation task.

Finally, if none of the subsystems have marked the command as having been
processed, it is treated as an MVS command and the appropriate command
processor is processed. If one does not exist, an error message is issued.

Commands Issued from a Console
When a command is issued from a console, the control block associated with the
command (CSCB) indicates which console. That data is therefore available to the
command processor and is usually used to issue a response message (using WTO)
to the console that issued the command. NetView commands issued from a
multiple console support console are processed by an autotask associated with that
multiple console support console by reason of its console name.

A NetView autotask or operator can enter commands to MVS using the NetView
MVS command, which causes an SVC 34 to be issued. To ensure that the responses
are directed back to the issuer only, the NetView MVS command processor ensures
that an MVS console has been obtained for the task that issues the MVS command.

Subsystem-allocatable consoles and EMCS consoles are not physical consoles.
Instead, they are virtual consoles used by programs (such as JES2 and NetView) to
selectively enter commands and retrieve output. When a NetView task enters an
MVS command, an MVS console is obtained for the task unless the task already
has an MVS console. The task retains the console as long as the task is active,
unless you release the console using other NetView commands.

Note: Certain MVS or subsystem commands that do not issue responses using the
console identifiers can produce unsolicited messages when solicited
messages might be expected. These command responses are not delivered
back to the issuer of the command because the command violates multiple
console support designs.

NetView Interfaces with MVS
NetView is ideal as the focal point for automated operations because it has
interfaces to all of the system, subsystem, and network components that create
messages and to which commands are directed. NetView also provides
programming capabilities to process messages through the automation table, a
command list capability, and installation exits.

528 Automation Guide

NetView consists of two address spaces. The NetView subsystem address space
contains the program that interfaces to the MVS subsystem interface. It acts as a
service address space for the NetView application address space. The NetView
application address space contains the more familiar NetView programs, such as
those that handle operators and process command lists.

Messages Issued as WTOs to Be Displayed or Processed by
NetView

Messages issued as MVS WTOs can be processed using the subsystem interface or
using EMCS consoles.

WTO Processing with the Subsystem Interface
Any number of NetView subsystems can be in an MVS system, each associated
with a NetView application. The NetView subsystem receives messages from MVS
WTO processing. If the message is marked AUTO(YES) or AUTO(token) in the MPF
table, or the message is a command response, the NetView subsystem passes the
message to the NetView application. Otherwise, message processing continues
normally.

WTO Processing with EMCS Consoles
When EMCS consoles are used, MVS delivers system messages directly to EMCS
consoles. The subsystem interface is not involved. Use the default EMCS console
attributes. Let the CNMCSSIR task receive all system messages and let other EMCS
consoles receive only command responses.

You can change attributes for the EMCS console by using the RACF OPERPARM
segment or the MVS VARY command. For example, you can specify that a specific
EMCS console is to receive messages with certain route codes. However, changing
the attributes of the EMCS consoles can result in duplicate automation of system
messages.

MVS Commands Issued by NetView
NetView defines its commands using CMDDEF definition statements in its
parameter library member named CNMCMD. Among the commands defined in
the product sample CNMCMD is one called MVS. When the MVS command is
issued by a NetView operator ID, the entire command operand string is sent to
MVS as the text of an operator command from an MVS console assigned to that
operator ID by the NetView MVS command processor.

If the subsystem interface is used, command response messages issued from MVS
to the console that issued the command are selected by the NetView subsystem
and routed back to the issuing operator ID. If EMCS consoles are used, command
response messages are sent directly to the NetView operator task.

NetView Commands Issued as Subsystem Commands from an
MVS Console

To issue NetView commands from an MVS console, three conditions must be met:
v The NetView subsystem must be active to recognize the command prefix

character for NetView commands, which indicates that the remainder of the
command text is to be passed to the NetView application for processing. The
default command prefix character is the percent sign (%).

v The CNMCSSIR task in the NetView application must be running.

Appendix D. MVS Message and Command Processing 529

v An autotask must be running that was started with both a NetView operator ID
and an associated MVS console.

NetView Commands Issued with MODIFY (F) Command from
an MVS Console

To issue NetView commands from an MVS console using the MODIFY command,
an autotask must be running that was started with both a NetView operator ID
and an associated MVS console name.

Messages and Commands through VTAM Interfaces
The following sections describe how messages and commands are processed
through various VTAM interfaces.

Terminal Access Facility
NetView uses the terminal access facility (TAF) operator control session to connect
a NetView operator ID with VTAM applications that support LU1 sessions such as
CICS and IMS. Messages from the application programs are packaged by TAF as
NetView message buffers queued to the operator ID that owns the TAF operator
control session. Similarly, the NetView SENDSESS command causes command text
to be sent to the application program from the operator ID.

Interfaces
When the NetView primary program operator interface task (PPT) is active and
defined as a VTAM application with AUTH=PPO, unsolicited VTAM messages are
directed to NetView across the VTAM program operator interface (POI). If the POI
is not active, unsolicited VTAM messages are issued by using WTO and are
available to NetView across the MVS subsystem interface. When NetView submits
commands to the VTAM program across the POI, the responses are correlated with
the ID of the NetView operator that issued the command.

Communication Network Management Interface
Alerts can be received into NetView from VTAM as unsolicited data on the VTAM
communication network management interface (CNMI). Also, MVS can send alert
data to NetView with hardware monitor local-device records, whether VTAM is
active or not. Finally, the GENALERT command processor in NetView can be
issued to generate an alert for the hardware monitor to process, again regardless of
whether VTAM is active.

Filters
When NetView receives alert data, the hardware monitor filters, set by NetView
SRF commands, determine how that data is to be processed. One filter option can
be used to format data from selected alerts into the text of NetView message
BNJ146I. That message is then subject to all the usual NetView routing and
automation processing.

Communication Network Management
VTAM communication network management (CNM) data can be received by
NetView only when the NetView DSICRTR task is active and is defined as a
VTAM application with an APPL name of DSICRTR and AUTH=CNM. VTAM’s
global routing table determines only one AUTH=CNM application to receive
unsolicited data buffers of a given type. In that table, all alert data is routed to a
single APPL named DSICRTR. Only a single NetView program per system can
receive hardware monitor local-device records from the operating system. If your

530 Automation Guide

system is running more than one NetView program, only one of the NetView
programs can receive hardware monitor local-device records, and only one can
open the CNM APPL named DSICRTR.

For more information about running two NetView programs in the same system,
see Chapter 32, “Running Multiple NetView Programs Per System,” on page 457.

To process the alerts from GENALERT in the NetView application that does not
have the VTAM CNMI, you must:
1. Specify DSTINIT FUNCT=OTHER in the DSICRTTD initialization member for the

DSICRTR task for handling NetView program-generated alerts.
2. Start the AUTH=CNM application in NetView by specifying a statement such

as the one in Figure 185.

3. Start the other NetView application programs by specifying the statement
shown in Figure 186.

Console Operations
MVS operator consoles are locally attached, system-allocatable devices, directly
allocated to the system COMMTASK. They are usually 3270 display stations used
to display WTO messages from operating system components, the job entry
subsystem, the application subsystems, and the application programs that run in
the system or local complex of systems.

Console operators enter system commands, subsystem commands, and program
responses from those consoles. When the VTAM program is running under MVS,
interfaces with the system MODIFY, REPLY, DISPLAY, VARY, and HALT
commands allow system operators to issue those commands to VTAM from system
consoles. VTAM messages are issued as WTO messages when no NetView PPT is
available to receive them.

NetView consoles are 3270 display stations connected to NetView through VTAM
logon processing. Using a NetView console, a network operator can log on using
an assigned ID and password or password phrase. Through NetView’s use of the
VTAM POI, VTAM messages are displayed to network operators and VTAM
commands are received from them. Messages issued from within the NetView
program are displayed and NetView commands are received.

Using MVS Operator Consoles to Issue Commands and
Command Lists as Subsystem Commands

From a system console, NetView looks similar to an MVS subsystem. Any NetView
command or command list can be accepted by a NetView subsystem and passed to
its associated NetView application if all of the following conditions are met:
v The subsystem name is defined to MVS.

// EXEC PGM=BNJLINTB

Figure 185. Statement to Start the AUTH=CNM Application

// EXEC PGM=DSIMNT

Figure 186. Statement to Start Other NetView Application Programs

Appendix D. MVS Message and Command Processing 531

|

In SYS1.PARMLIB, a subsystem names table member IEFSSNxx that is
referenced in the system parameter SSN=(xx) contains a definition of valid
subsystem names (refer to the MVS library).

v The NetView subsystem is active.
A START command to activate the NetView subsystem is added to
SYS1.PARMLIB member COMMNDxx when NetView is installed.

v The command prefix character defined in the PARM field of the NetView start
procedure is used as the first character of the command entered at the MVS
console.
The default command prefix character specified in the sample start procedure
provided with NetView is the percent sign (%). To change the prefix character,
follow the directions in IBM Tivoli NetView for z/OS Installation: Getting Started.

v The NetView application with a job name (used in the START command) that
begins with the 4-character subsystem name is currently active with a fully
started CNMCSSIR task.
The TASK statement to define the CNMCSSIR task is supplied in the
CNMSTYLE member and should be used without change.
The NetView command STARTCNM ALL can be driven by specifications made
in the CNMSTYLE member. Information about the CNMSTYLE member can be
found in the IBM Tivoli NetView for z/OS Installation: Getting Started.

v An AUTOTASK command has been entered to associate a multiple console
support console with the NetView program.
If a NetView command is issued from a console that has no autotask, an error
message is returned from the NetView subsystem, indicating that the console is
not authorized to use the NetView subsystem. An AUTOTASK statement in the
CNMSTYLE member starts an autotask for AUTO2 and an MVS console. Add a
similar statement to the CNMSTYLE member to associate a valid OPID with
each MVS console that you want to issue NetView commands.
Refer to the NetView online help for more information about the AUTOTASK
command.

Using MVS Operator Consoles to Issue Commands and
Command Lists as MODIFY (F) Commands

From a system console, NetView appears as an MVS subsystem. Any NetView
command or command list can be accepted by a NetView subsystem and passed to
its associated NetView application if an AUTOTASK command has been entered to
associate a multiple console support console with the NetView program.

If a NetView command is issued from a console that has no autotask, an error
message is returned from the NetView subsystem, indicating that the console is not
authorized to use the NetView subsystem. An AUTOTASK statement in the
CNMSTYLE member starts an autotask for AUTO2 and an MVS console. Add a
similar statement to the CNMSTYLE member to associate a valid OPID with each
MVS console that you want to issue NetView commands.

Refer to the NetView online help for more information about the AUTOTASK
command. Refer to the IBM Tivoli NetView for z/OS Installation: Getting Started for
more information about the CNMSTYLE member.

Multiple Console Support Operator Use of Command Lists
One simple application of NetView automation is to provide the operators with
command lists that they can run from an multiple console support console. To do

532 Automation Guide

|
|

|
|
|

|
|
|

|
|
|

this, all you need is an autotask associated with the console and a set of command
lists to be processed. For example, an operator wanting to bring a set of DASD
online that requires specific mount attributes must enter a sequence of commands
such as the ones in Figure 187.

With a large number of volumes to mount, the sequence could be very long.
However, you can provide a command list that issues all of the necessary MVS
commands from NetView. The operator can then bring the DASD online just by
entering the NetView designator character and the name of the command list.

Issuing an MVS Command from a NetView Operator ID
To issue an MVS operator command from any NetView operator ID, enter the
command MVS, followed by a space, followed by the MVS operator console
command, just as you enter it at an MVS operator console. Note that if NetView
uses command authorization, it must permit the operator ID to issue the
command. Refer to the IBM Tivoli NetView for z/OS Administration Reference.

Using EMCS Consoles
With EMCS consoles, you can define NetView consoles by operator name and give
them various security and authority classes using MVS, the NetView program, and
definitions in a system authorization facility (SAF) product, such as RACF
(Resource Access Control Facility).

When you issue an MVS command, and do not already have an EMCS console,
NetView attempts to obtain an EMCS console with your operator ID as the console
name.

Use the GETCONID command to obtain an EMCS console if a naming conflict
exists. There is no defined limit on the number of EMCS consoles.

Use the SETCONID command to assign a console name without actually allocating
it.

M 350,VOL=(SL,VOL001),USE=STORAGE
M 351,VOL=(SL,VOL002)...

Figure 187. Commands Used to Bring DASD Online

Appendix D. MVS Message and Command Processing 533

534 Automation Guide

Appendix E. VTAM Message and Command Processing

This appendix documents information that is diagnostic, modification, and tuning
information provided by the NetView program.

Attention: Do not use this diagnosis, modification, and tuning information as a
programming interface.

VTAM messages provide information to the VTAM operator. But message volumes
can be high, adversely affecting system performance and possibly causing an
operator to miss a vital piece of information. To help you control message rates,
VTAM offers several message suppression mechanisms. This appendix describes
the VTAM message and command flow, and the message suppression mechanisms.

Message and Command Flow in VTAM
VTAM messages can be either solicited or unsolicited. Solicited messages are
issued in response to a command such as DISPLAY and are normally returned to
the operator who entered the command. Unsolicited messages are issued by VTAM
during the course of normal operations to give status information about system
components.

When a NetView operator submits commands to VTAM across the program
operator interface (POI), the solicited responses are correlated with the NetView
operator ID that issued the command. When the NetView primary POI task (PPT)
is defined as a VTAM application with AUTH=PPO, unsolicited VTAM messages
are directed to NetView across the VTAM POI. If the PPT is not defined as a
VTAM application with AUTH=PPO, NetView receives unsolicited VTAM
messages across the MVS subsystem interface.

Because VTAM messages do not always get through the operating system to
NetView, the message processing facility (MPF) is not always driven by VTAM
messages. This means that VTAM messages identified in MPF as messages to be
suppressed are suppressed only if the NetView-VTAM POI interface is not
available. For that reason, VTAM message suppression should be accomplished
with the VTAM message flooding prevention table (see “Message Flooding
Prevention Table” on page 535) or the automation table.

Special considerations must be taken into account when two NetView programs
exist in one system when defining the POI and service point operations (SPO). See
Chapter 32, “Running Multiple NetView Programs Per System,” on page 457 for
more information.

Message Flooding Prevention Table
The VTAM message flooding prevention table assists with situations in which a
large number of messages are repeated frequently or are issued following an
underlying event or condition. The table is a list of messages identified as potential
sources of message flooding. Such messages are suppressed if they recur with
variable fields unchanged within a certain time span (the default is 30 seconds).
The following suppression rules for message flooding prevention are consistent
with the VTAM MODIFY SUPP command:

© Copyright IBM Corp. 1997, 2009 535

v The message is recorded in the VTAM internal trace table.
v The message is constructed but not transmitted to the operator. It might be

routed to other areas (for example, the network log).
v If the first line of a multiline write-to-operator (MLWTO) message group is

suppressed, all lines in the group are also suppressed.
v Unformatted system services (USS) messages are not suppressed.

A message resulting from an operator command can be suppressed if the message
is a member of the message flooding prevention table and the operator issues the
same command within the designated time span.

If the header of an MLWTO message group is suppressed, all messages in the
group are also suppressed. This is true even if the information is different from the
last occurrence. For more information, refer to the VTAM library.

Suppressing VTAM messages can affect AON/SNA automation. Do not code any
VTAM message in the message suppression table that is also trapped in the
automation table DSITBL01.

VTAM Message Suppression Criteria
One of the first tasks in deciding whether to implement any of the suppression
techniques is to measure the rate of unsolicited VTAM messages and determine if
that rate is too high. You can count the number of messages issued over a given
time and compare that with an established threshold. Because different systems
have different characteristics, you must consider those rates relative to your
environment. If the rate is excessive, you should look at automatic message
suppression. By means of automation tables and command lists, you can monitor
the volume of message traffic and automatically perform selective suppression.

Identifying Events with the Automation Table
The primary way to recognize an event is through the NetView automation table,
which is searched each time a message arrives. If the search argument (which can
be anywhere in the message) is not found, the message is returned for normal
processing by NetView; that is, it is displayed on the console. If the search is
successful, the message can be held or deleted from the console. The message can
also drive a command processor or command list to take further action.

Most VTAM messages are contained in USS tables, the main one being ISTINCNO,
and are defined by means of the USSMSG macro. Messages can be modified by
that macro, although it is generally preferable to create new tables rather than
modify the ones that are supplied by IBM.

Understanding Suppression Levels
The SUPP parameter on the USSMSG macro is used to assign a message class that
works in conjunction with the message suppression level to determine whether a
message is displayed. The classes are, in increasing order of severity:
SUPP=INFO Informational
SUPP=WARN Warning
SUPP=NORM Normal
SUPP=SER Serious

536 Automation Guide

|

In addition to these four classes, a message can be defined with SUPP=ALWAYS or
SUPP=NEVER, which are independent of the suppression level in force at the time.
For a description of all the standard VTAM operator messages and suppression
classes, refer to the VTAM library.

The message suppression level is set by means of the SUPP parameter on the
VTAM START command or the MODIFY SUPP command. In either case, the SUPP
parameter is one of the preceding four classes. If any one of these four levels of
suppression classes is affixed to a message, that level and those above it are
suppressed.

Finally, you can specify SUPP=NOSUP to negate any suppression. In that case,
only those messages defined as SUPP=ALWAYS are suppressed.

Identifying Unsuppressable Messages
Messages defined as SUPP=NEVER are not suppressed, regardless of the
suppression level set. They are known as unsuppressable messages and include:
v Error messages resulting from an abnormal end of a task
v Messages requiring operator response (suffix A action messages)
v Messages resulting from a DISPLAY or START command

You cannot suppress individual lines of multiline WTO messages. If the header line
is suppressed, all lines in the group are suppressed.

To automate message processing, you must first initialize NetView for routing of
messages to specific operators for processing. If you use the NetView ASSIGN
command, you can route unsolicited messages directly to the specific operator
station task (OST) that is to handle the messages. The automation table then runs
under that task. If messages are not assigned, they must be routed through the
automation table, and processing delays can occur because all the message are
queued to one task.

Appendix E. VTAM Message and Command Processing 537

538 Automation Guide

Appendix F. Detailed NetView Message and Command Flows

This appendix documents information that is diagnostic, modification, and tuning
information provided by NetView.

Attention: Do not use this diagnosis, modification, and tuning information as a
programming interface.

This appendix contains diagrams and descriptions that show the flow of messages
and commands through NetView. The descriptions indicate where each numbered
exit (DSIEX01, DSIEX02A, and so on) occurs and how it is processed in relation to
commands. Information on the sequence and context of message processing is
particularly useful when you automate messages using the automation table,
ASSIGN command, and other message processing facilities.

Flow Diagrams
The diagrams in this section illustrate the flow of messages and commands within
the NetView product. The numbered tags in the diagrams correspond to the
numbered topics in “Flow Descriptions” on page 548.

NetView command writes
messages to NetView
operator or automation

OST/NNT
DSIPSS

1

17

Figure 188. Flow Diagram for NetView Command Entry (VTAM Terminal)

© Copyright IBM Corp. 1997, 2009 539

Cross-domain command

NetView operator enters cross-domain command:

NetView command
entry-VTAM

terminal

OST/NNT
DSIPSS

Cross-domain
messages Domain 1

Domain 2

Domain 1

2

1

17

9

Figure 189. Flow Diagram for Cross-Domain Commands

540 Automation Guide

VTAM (POI) command entry

NetView operator enters VTAM command:

NetView command
entry - VTAM

terminal

Solicited VTAM
(POI) messages

OST/NNT
DSIPSS

DSIPSS for
PPT

OST/NNT
DSIPSS

3

1 12

17 14 17

Figure 190. Flow Diagram for VTAM (POI) Command Entry

Appendix F. Detailed NetView Message and Command Flows 541

Solicited system
(subsystem interface)

message

NetView operator enters MVS system command:

PPT message
queue

processing

OST/NNT
message

queue
processing

4

13 15

Figure 191. Flow Diagram for Solicited System (Subsystem Interface) Messages

NetView command entry -
MVS system console

System operator enters NetView command:

PPT message
queue

processing

OST/NNT
message

queue
processing

5

13 15

Figure 192. Flow Diagram for NetView Command Entry (MVS)

542 Automation Guide

Replies to NetView WTOR

6

System operator replies to NetView WTOR:

Figure 193. Flow Diagram for Replies to NetView WTOR

Appendix F. Detailed NetView Message and Command Flows 543

Unsolicited VTAM (POI) messages

Unsolicited VTAM Messages:

DSIPSS for PPT

OST/NNT
message

queue
processing

OST/NNT
message

queue
processing

OST/NNT
message

queue
processing

OST/NNT
DSIPSS

OST/NNT
DSIPSS

OST/NNT
DSIPSS

SYSOP
message

queue
processing

SYSOP
message

queue
processing

SYSOP
message

queue
processing

Cross-domain
messages

Cross-domain
messages

OST/NNT
DSIPSS

Domain 3

Domain 2

Domain 1

2

14

15

15

15

17

17

17

16

16

16

9

9

17

Figure 194. Flow Diagram for Unsolicited VTAM (POI) Messages

544 Automation Guide

Unsolicited MVS
system messages

Unsolicited messages:

SYSOP message
queue

processing

OST/NNT
message

queue
processing

8

15 16

Figure 195. Flow Diagram for Unsolicited System (SSI or MVS Extended Console) Messages
(CNMCSSIR)

Cross-domain messages

OST/NNT
DSIPSS

9

17

NNT sends messages to its OST:

Figure 196. Flow Diagram for Cross-Domain Messages (NNT to OST)

Appendix F. Detailed NetView Message and Command Flows 545

PPT, MVS, ISCF,
or TAF OPCTL session

PPT message
queue

processing

10

13

Operator is PPT:

Figure 197. Flow Diagram for Messages (Operator is PPT)

OST/NNT, MVS, ISCF,
or TAF OPCTL session

OST/NNT
message

queue
processing

11

15

Operator is OST/NNT:

Figure 198. Flow Diagram for Messages (Operator is OST/NNT)

546 Automation Guide

EMCS console
messages

OST/NNT
DSIPSS

MVS sends messages to EMCS consoles:

18

17

Figure 199. Flow Diagram for Solicited and Unsolicited System MVS Extended Console
Messages for OST, NNT, or Autotask

Appendix F. Detailed NetView Message and Command Flows 547

Flow Descriptions
This section describes the flow of messages and commands within the NetView
program. Each flow description contains the following information:
Cause The condition or event that initiates a particular

flow
Originating Task The task in which the condition or event occurred
Process Flow The sequence of message processing

1. NetView Command Entry (VTAM Terminal)
Cause: A NetView operator enters a line-mode command, or a NetView-NetView
task (NNT) receives a command from an OST. The command could be routed by
MVS, ISCF, or TAF.

Originating Task: OST or NNT

Process Flow:

1. DSIEX01 is called (TVBINXIT=ON).
If the exit deletes the command, it is not processed further.

2. The command processor is called and processing continues as follows:
v Immediate commands are run from the asynchronous input exit and have

TVBINXIT=ON.
v Regular commands are run from the normal task process, with

TVBINXIT=OFF.

Extended MCS console
messages

DSIPSS
for PPT

19

14

MVS sends messages to extended MCS consoles:

Figure 200. Flow Diagram for Solicited and Unsolicited System MVS Extended Console
Messages for PPT

548 Automation Guide

v Commands can issue DSIPSS. See “17. OST or NNT DSIPSS” on page 557.

2. Cross-Domain Commands (OST to NNT)
Causes:

v NetView ROUTE command (DSIRTP)
v NetView VTAM command (DSIVTP) with implicit or explicit cross-domain

routing

Originating Task: OST or NNT

Process Flow:

1. DSIEX07 is called.
If the exit deletes the command, it is not processed further.

2. The command is sent to the NNT.
See “1. NetView Command Entry (VTAM Terminal)” on page 548.

3. VTAM (POI) Command Entry
Cause: An operator or command list enters a VTAM command using a NetView
command processor whose associated CMDDEF definition specifies DSIVTP.

Originating Task: OST, NNT, or primary program operator interface (POI) task
(PPT)

Process Flow:

1. If it is an OST or NNT and is an implicit or explicit cross-domain VTAM
command:
a. DSIEX07 is called. If the exit deletes the command, it is not processed

further.
b. The command is sent to the NNT and runs under the NNT in the other

domain, with one level of explicit routing removed, as needed. See “1.
NetView Command Entry (VTAM Terminal)” on page 548.

2. Otherwise:
a. DSIEX05 is called. If the exit deletes the command, it is not processed

further.
b. The command is sent to VTAM.
c. Messages are returned asynchronously. See “12. Solicited VTAM (POI)

Messages” on page 554.

4. Solicited System Messages
Cause: An MVS command is entered from the NetView program, and MVS issues
a WTO using the console name or number. If the console name or number is not
used, the messages are unsolicited and appear unsolicited to NetView.

Note: MVS/ESA Version 4 Release 3.0 and subsequent releases allow suppression
of command responses. If an MVS command is issued from a console
owned by NetView and the response is marked AUTO(YES) and SUP(YES),
the message is automated under the tCNMCSSIR task. The message is
treated as an unsolicited MVS system message.

Appendix F. Detailed NetView Message and Command Flows 549

Originating Task: OST, NNT, or PPT. NetView ignores any subsystem interface
messages from any NetView program if the messages were checked against an
automation table, whether the messages were actually automated or not.

Process Flow: DSIEX17 is called after the message is converted into an automation
internal function request (AIFR).

DSIEX17 is called for both messages and delete operator message (DOM)
commands. The message is sent to the associated task. See “13. PPT Message
Queue Processing” on page 554 and “15. OST or NNT Message Queue Processing”
on page 556.

5. NetView Command Entry (MVS System Console)
Causes: The system operator enters commands with the NetView subsystem
designator, and the following are true:
v The NetView subsystem is active.
v The CNMCSSIR task is active.
v One of the commands shown in Figure 201 was issued in NetView to associate a

NetView autotask with this system console.

Originating Task: CNMCSSIR

Process Flow: The command is sent with HDRMTYPE=HDRTYPET to an OST,
NNT, or PPT.

See “13. PPT Message Queue Processing” on page 554 and “15. OST or NNT
Message Queue Processing” on page 556.

6. Replies to NetView WTOR
Cause: The operator enters a system reply command for a NetView WTOR
(message numbers DSI802A and DSI803A).

Originating Task: DSIWTOMT

Process Flow:

1. The operator replies to the WTOR.
2. The NetView main task calls DSIEX10.

If the exit deletes the input, it is not processed further.
3. The main task processes CLOSE, REPLY, or MSG commands.
4. REPLY commands (commands with IFRCODCR on) go on to the PPT for

processing.
The NetView PPT calls DSIEX03. If the exit deletes the command, it is not
processed further. Otherwise, the command runs under the PPT.

7. Unsolicited VTAM (POI) Messages
Cause: VTAM sends unsolicited messages to the NetView PPT, the application that
has AUTH=(PPO).

AUTOTASK OPID=operid,CONSOLE=number
AUTOTASK OPID=operid,CONSOLE=name

Figure 201. Commands to Associate an Autotask with a System Console

550 Automation Guide

Originating Task: PPT

Process Flow:

1. If the VTAM MSGMOD option is active:
v The PPT logs the message with MSGMOD (for diagnostics).

The DSIEX04 exit is called during log processing. DSIEX04 specifies whether
the message is sent to the hardcopy, network, or system logs, or is deleted or
replaced.

v The PPT removes the MSGMOD identifier to make the message consistent
with automation.

v The PPT continues as if MSGMOD were not active.
2. If the message is used by the status monitor to update network status, it is

processed by the status monitor.
3. The PPT calls DSIEX11. If the exit deletes the message, it is not processed

further.
4. If the message is a PPOLOG message, PPT logs the message.

DSIEX04 is called during log processing. By placing a return code in register 15,
DSIEX04 determines whether the message is sent to the hardcopy, network, or
system logs.
No other processing is done for a PPOLOG message.

5. Otherwise, an authorized receiver is the destination for PPT messages. PPT
issues DSIPSS TYPE=OUTPUT to send messages to an authorized receiver. See
“14. DSIPSS for PPT or NetView Authorized-Receiver Messages” on page 554.

8. Unsolicited MVS System Messages
Cause: MVS WTOs are routed through the NetView subsystem to the CNMCSSIR
task, or messages are received by the extended multiple console support (EMCS)
consoles obtained by the CNMCSSIR task.

Originating Task: Any task in any address space that issues WTO for a console
that is not assigned to a NetView operator either for AUTOTASK command output
or for entering MVS commands from NetView.

Process Flow: DSIEX17 is called after the message is converted into an automation
internal function request (AIFR). DSIEX17 is called for both messages and delete
operator message (DOM) commands. The processing is parallel to OST or NNT
DSIPSS and PPT DSIPSS processing. Compared to “14. DSIPSS for PPT or NetView
Authorized-Receiver Messages” on page 554, CNMCSSIR does not search for the
authorized receiver. If it did, all system messages would be routed
indiscriminately.
1. If ASSIGN PRI was specified for the message, the message is sent to the

specified operator.
See “15. OST or NNT Message Queue Processing” on page 556 and “16.
NetView Console Output or SYSOP Message Queue Processing” on page 556.
ASSIGN SEC messages are never processed by the automation table in this
NetView domain. When sent to another NetView domain, they are eligible for
processing by DSIEX02A, the automation table, and DSIEX16.

2. For all other messages:
a. DSIEX02A is called.

Appendix F. Detailed NetView Message and Command Flows 551

If the message is deleted by the exit, no further processing occurs.
DSIEX02A is called only once for each unique message in a NetView
domain.
After that, any copies of the message made by the ASSIGN command or the
automation table do not result in a call to DSIEX02A in this NetView
domain. Sending a copy of the message to another NetView domain can
result in a call to DSIEX02A in that domain.

b. The automation table is checked. Command and display actions can be
selected by the table.
The automation table is called only once for each unique message in a
NetView domain. After that, any copies of the message made by the
ASSIGN command or the automation table do not result in a call to the
automation table in this NetView domain.
Sending a copy of the message to another NetView domain can result in a
call to the automation table in that domain.

c. DSIEX16 is called at this point.
d. The actions indicated up through DSIEX16 are performed. Buffer structure

determines the actions that occur.
DSIEX16 is called only once for each unique message in a NetView domain.
After that, any copies of the message made by the ASSIGN command or the
automation table do not result in a call to DSIEX16 in this NetView domain.
Sending a copy of the message to another NetView domain can result in a
call to DSIEX16 in that domain.

Note: Compared to “14. DSIPSS for PPT or NetView Authorized-Receiver
Messages” on page 554, CNMCSSIR discards the message if no action
is specified up to this point. In that case, the message is neither
logged nor displayed.

See also “15. OST or NNT Message Queue Processing” on page 556 for
automation table routed messages.
Automation table entries can be specified without a ROUTE keyword.
When that is done for the CNMCSSIR task, CNMCSSIR routes the resulting
commands or messages as follows:
v If CNMCSSIR was started by the INIT=Y operand of the TASK statement,

the message is discarded.
v If CNMCSSIR was started by a START command (INIT=N was specified

on the TASK statement), the task that started CNMCSSIR receives the
messages.

Having an autotask start CNMCSSIR is a good way to allow an autotask to
monitor the status of CNMCSSIR. Doing so also provides the default
destination for automation processing (for when the ROUTE option is
omitted from the automation statements).

9. Cross-Domain Messages and Commands (NNT to OST)
Cause: An NNT sends all messages it receives to the OST that started the
OST-NNT session (using the START DOMAIN command). A command can be sent
from an NNT to its associated OST by a DSIPSS TYPE=OUTPUT of a HDRTYPEX
buffer. Refer to the DSIPSS macro in IBM Tivoli NetView for z/OS Programming:
Assembler for more information.

Originating Task: NNT

552 Automation Guide

On the originating NNT, any information delivered to EMCS consoles is not sent to
the OST.

Process Flow:

At the receiving OST:
1. If the received buffer is a command and has a HDRMTYPE of HDRTYPEI and

an IFRCODE of IFRCODAI (an AIFR) and if the buffer pointed to by
IFRAUTBA has a HDRMTYPE of HDRTYPEX, bits IFRAUPHI and IFRAUPLO
are used to set the priority at which the received command is requeued to the
OST message queues.
If neither IFRAUPHI nor IFRAUPLO is on, the defaults of HIGH (for
TYPE=IMMED and TYPE=BOTH commands) or LOW (for other types of
commands) are used. The value in field IFRAUTBA is moved to the
IFRAUCMB field and the IFRAUCMD bit (indicating a command is pointed to
by IFRAUCMB) is turned on. All of the automation flags in the received buffer
are reset except BEEP, DISPLAY, and HOLD.

2. If the buffer is a message (that is, if IFRAUTBA is not a HDRTYPEX buffer), the
priority is set to HIGH.

3. The AIFR is queued to the OST message queue corresponding to the priority
previously determined, with the exception of some TYPE=IMMED messages
related to cross-domain logon.
These messages are not queued. They are displayed through the DSIPSS macro
immediately upon receipt.

See “15. OST or NNT Message Queue Processing” on page 556 for further
processing.

10. PPT as the MVS, ISCF, or TAF OPCTL Operator
Causes:
v An MVS command was issued by the PPT.
v The PPT was identified as the ISCF operator.
v A BGNSESS OPCTL command was run on the PPT.

Originating Task: PPT

Process Flow: All solicited or unsolicited messages are received from MVS, ISCF,
or TAF OPCTL sessions on the PPT’s message queue. See “13. PPT Message Queue
Processing” on page 554.

11. OST or NNT as MVS, ISCF, or TAF OPCTL Operator
Causes:
v An MVS command was issued by an OST or NNT.
v The OST or NNT was identified as the ISCF operator.
v A BGNSESS OPCTL command was run on the OST or NNT.

Originating Task: OST or NNT

Process Flow: All solicited or unsolicited messages are received from MVS, ISCF,
or TAF OPCTL sessions on the OST or NNT’s message queue. See “15. OST or
NNT Message Queue Processing” on page 556.

Appendix F. Detailed NetView Message and Command Flows 553

12. Solicited VTAM (POI) Messages
Cause: The CMDDEF definition of a VTAM command specifies module DSIVTP.

Originating Task: OST, NNT, or PPT

Process Flow:

1. If the VTAM MSGMOD option is active:
v The message is logged with MSGMOD (for diagnostics). DSIEX04 is called

during log processing. By placing a return code in register 15, DSIEX04
determines whether the message is sent to the hardcopy, network, or system
logs.

v The MSGMOD identifier is removed to make the message consistent with
automation.

v Processing continues as if MSGMOD were not active.
2. If the message is used by the status monitor to update network status, it is

processed by the status monitor.
3. DSIEX06 is called. If the message is deleted, no further processing takes place.
4. DSIPSS TYPE=OUTPUT is issued to send the message.

See “14. DSIPSS for PPT or NetView Authorized-Receiver Messages” and “17.
OST or NNT DSIPSS” on page 557.

13. PPT Message Queue Processing
Causes:
v Messages from the MSG command
v Automation-table directed messages and commands
v General cross-task messages through DSIMQS macro
v Terminal access facility (TAF) operator control

Originating Task: Any

Process Flow:

1. If HDRMTYPE=HDRTYPEI or HDRMTYPE=HDRTYPET (message is an
internal function request), the requested functions are performed.
v If HDRMTYPE=HDRTYPEI and IFRCODE=IFRCODUS (user internal

function request), the PPT calls DSIEX13 to process the message buffer and
frees the buffer (with DSIFRE) upon return.

v Otherwise, if HDRMTYPE=HDRTYPET or HDRMTYPE=HDRTYPEI and
IFRCODE=IFRCODCR, the PPT calls DSIEX03 to process command input. If
DSIEX03 deletes the command, processing of the command is ended.
Otherwise, the command processor runs.

2. Otherwise, the PPT does message processing:
v The message is processed by DSIPSS TYPE=OUTPUT. See “14. DSIPSS for

PPT or NetView Authorized-Receiver Messages.”

14. DSIPSS for PPT or NetView Authorized-Receiver Messages
Causes:

v DSIPSS issued in PPT
v Message sent to PPT
v DSIMQS to authorized receiver
v Unsolicited VTAM (POI) messages

554 Automation Guide

v Messages received from ISCF if the PPT is the ISCF operator
v Messages received from a TAF OPCTL session started by the PPT using the

BGNSESS command

Originating Task: Any

Process Flow:

1. If ASSIGN PRI was specified for the message, the message is sent to the
operator specified by the ASSIGN command.
See “15. OST or NNT Message Queue Processing” on page 556 and “16.
NetView Console Output or SYSOP Message Queue Processing” on page 556.
The following types of messages cannot be assigned in this step:
v Messages previously routed using the ASSIGN command
v WTOs from an NetView address space in this system
ASSIGN SEC messages are never processed by the automation table in this
NetView domain. When sent to another NetView domain, they are eligible for
processing by DSIEX02A, the automation table, and DSIEX16.

2. Otherwise, the message is sent to one of the following authorized receivers, if
active:
v An operator logged on to a POS terminal

If more than one POS terminal is defined, the first one defined has first
priority.

v An operator that is not defined as a POS
If more than one such operator is defined, the first one defined has first
priority.

v A cross-domain operator
If more than one cross-domain operator is defined, the first one defined has
first priority.

v An autotask operator
If more than one autotask was started, the first one started has first priority.
Use the ASSIGN command if an autotask is to be the receiver of unsolicited
messages.

3. If neither 1 nor 2 preceding is true:
a. DSIEX02A is called. If the message is deleted by the exit, no further

processing occurs.
b. The automation table is checked. Command and display actions can be

selected by the table.
c. DSIEX16 is called with the results to this point, even if the table deletes the

message.
d. DSIEX02, the automation table, and DSIEX16 are called only once for each

unique message in a NetView domain.
After that, any copies of the message made by the ASSIGN command or the
automation table do not result in a call to DSIEX02, the automation table, or
DSIEX16 in this NetView domain. When a message is sent to another
NetView domain, a call can result in that domain.

e. PPT logs the message if logging was not suppressed.
If the message is one that the status monitor uses to update network status,
it is processed by the status monitor.

f. The message is sent to the system console (SYSOP) if no other action was
indicated or the actions indicated up through DSIEX16 are carried out.

Appendix F. Detailed NetView Message and Command Flows 555

Messages originating from the subsystem interface in NetView are not
written to any system console. See also “15. OST or NNT Message Queue
Processing” for automation table routed messages.

15. OST or NNT Message Queue Processing
Causes:
v Messages from the MSG command
v Authorized-receiver routed messages
v ASSIGN PRI, SEC, COPY messages
v Automation-table directed messages and commands
v General cross-task messages through DSIMQS macro
v MVS messages if this operator is an MVS operator
v ISCF if this operator is the ISCF operator
v Messages from terminal access facility (TAF) operator control (console)

Originating Task: Any

Process Flow:

1. If HDRMTYPE=HDRTYPEI or HDRMTYPE=HDRTYPET (message is an
internal function request), the requested functions are performed.
v If HDRMTYPE=HDRTYPEI and IFRCODE=IFRCODUS (user internal

function request), DSIEX13 is called to process the message buffer.
v If HDRMTYPE=HDRTYPET or HDRMTYPE=HDRTYPEI and

IFRCODE=IFRCODCR, the OST or NNT calls DSIEX03 to process command
input. If DSIEX03 deletes the command, processing of the command is
ended. Otherwise, the command processor runs.

2. Otherwise, the OST or NNT does one of the following:
v If HDRMTYPE=HDRTYPEM, the OST or NNT calls DSIEX13 to process the

message buffer and frees the buffer (with DSIFRE) upon return.
v Otherwise, the OST or NNT processes the message with DSIPSS

TYPE=OUTPUT. See “17. OST or NNT DSIPSS” on page 557.

16. NetView Console Output or SYSOP Message Queue
Processing

Causes:

v NetView issues DSIWCS to send the message to the system console.
v The NetView authorized receiver routes the message to the system console if no

other destination is specified or available.
v The NetView PPT routes the message to the system console if no other

destination is specified or available.
v Messages are queued to SYSOP.
v ASSIGN PRI, SEC, COPY messages are routed to SYSOP.

Messages originating from the subsystem interface which are processed by
NetView can be redisplayed on a system console. Descriptor code 13 is turned
on for these messages to prevent a potential looping condition.

Originating Task: Any

Process Flow:

1. DSIWCS writes the buffer to the logs, and both of the following occur:

556 Automation Guide

v DSIWLS macro processing calls DSIEX04 if DSIEX02A was not called. By
placing a return code in register 4, DSIEX04 determines whether the message
is sent to the hardcopy, network, or system logs.

v DSIWLS writes the message to the logs according to the DEFAULTS and
OVERRIDE commands.

Note: Messages originating from the subsystem interface in this NetView
program are not written to the system log.

2. DSIWCS macro processing calls DSIEX09 if DSIEX02A was not called. If
DSIEX09 deletes the message, it is not written to the console.

3. DSIWCS writes the message to the system console.

Note: ASSIGN PRI=SYSOP bypasses DSIPSS processing, and such messages are
not subject to automation.

17. OST or NNT DSIPSS
Cause: DSIPSS

Originating Task: OST, NNT

Process Flow:

1. DSIEX02A is called. If the exit deletes the message, the processing ends.
2. &WAIT and WAIT search is called.

If the message is suppressed by &WAIT and WAIT processing, it is marked
with force flags to not be displayed or logged. However, processing continues
to allow exit DSIEX16 to account for such messages.

3. Automation table processing begins.
Table actions are reflected in the buffer structure given to DSIEX16.

4. DSIEX16 is called.
5. DSIEX16, DSIEX02A, and the automation table are called only once for each

unique message in a NetView domain.
After that, any copies of the message made by the ASSIGN command or the
automation table do not result in a call to DSIEX16 in this NetView domain.
When a message is sent to another NetView domain, it can result in a call to
DSIEX16 in that domain.

6. Logging, display, routing, and command actions are processed as specified in
the automation internal function request (AIFR) buffer in combination with the
current DEFAULTS and OVERRIDE command settings.
Buffer structure determines the actions that occur.
See also “15. OST or NNT Message Queue Processing” on page 556 for
automation-table routed messages.

7. If the message is displayed, the ASSIGN COPY service is performed.
ASSIGN COPY messages are never processed by the automation table in this
NetView domain. When sent to another NetView domain they are eligible for
processing by DSIEX02A, the automation table, and DSIEX16.
Messages are sent to the OST or NNT message queue. See “15. OST or NNT
Message Queue Processing” on page 556 and “16. NetView Console Output or
SYSOP Message Queue Processing” on page 556.

Appendix F. Detailed NetView Message and Command Flows 557

8. If this is an OST, the message is displayed to the NetView terminal (VTAM) or
to the system console (AUTOTASK OPID=name, CONSOLE=number). Messages
originating from the subsystem interface in NetView are not written to any
system console.

9. If this is an NNT, the message is sent cross-domain to the OST. See “9.
Cross-Domain Messages and Commands (NNT to OST)” on page 552. When
received in the next domain, DSIEX02A, automation table, and DSIEX16
processing are permitted, even for ASSIGN SEC and ASSIGN COPY messages.

18 Solicited and Unsolicited System MVS Extended Console
Messages for an OST, NNT, or Autotask

Cause: NetView is configured to use EMCS consoles for MVS/ESA system
messages. The OST, NNT, or autotask is configured to receive EMCS console
messages.

Originating Task: OST, NNT, or autotask

Process Flow:

1. DSIEX17 is called for both messages and DOMs. If the message or DOM is
deleted, no further processing occurs.

2. DSIPSS is issued for the message or DOM. See “17. OST or NNT DSIPSS” on
page 557.

MVS system messages that are received on EMCS consoles in use by NetView
tasks (except the CNMCSSIR task) are considered solicited by NetView. Therefore,
these messages are not subject to the ASSIGN command PRI and SEC processing.

MVS/ESA Version 4 Release 3 and subsequent releases support command
response suppression. If an MVS command is issued from a NetView console and
the response is marked AUTO(YES) and SUP(YES), the message is automated
under the CNMCSSIR task. The message is treated as an unsolicited MVS system
message.

19 Solicited and Unsolicited System MVS Extended Console
Messages for the PPT

Cause: NetView is configured to use EMCS consoles for MVS/ESA system
messages. The PPT is configured to receive EMCS console messages.

Originating Task: PPT

Process Flow:

1. DSIEX17 is called for both messages and DOMs.
If the message or DOM is deleted, no further processing occurs.

2. DSIPSS is issued for the message or DOM.
See “14. DSIPSS for PPT or NetView Authorized-Receiver Messages” on page
554.

MVS system messages that are received on an EMCS console in use by the PPT are
considered solicited by NetView. However, unlike other NetView tasks that receive
solicited messages, the PPT enables ASSIGN command PRI and SEC processing.

558 Automation Guide

Appendix G. NetView Message Type (HDRMTYPE)
Descriptions

This appendix documents information that is diagnostic, modification, and tuning
information provided by the NetView program.

Attention: Do not use this diagnosis, modification, and tuning information as a
programming interface.

This appendix lists the NetView message types, which are arranged in alphabetical
order. Message types apply to commands, messages, and MSUs. To examine a
message type in the automation table, use the HDRMTYPE keyword. Message type
is stored in the HDRMTYPE field of the BUFHDR control block.

HDRTYPAC (A)
Is not used in NetView for MVS V1R2 and later releases. This message
type is replaced by the automation IFR (HDRMTYPE=HDRTYPEI,
IFRCODE=IFRCODAI). You can receive this message type during a
cross-domain session with an earlier release of NetView.

HDRTYPDT (D)
Indicates a non-message data type.

HDRTYPEA (T)
Is not used in NetView for MVS V1R2 and later releases. Indicates a
solicited message from TCAM in the network communications control
facility (NCCF). You might receive this message type on a cross-domain
session with a TCAM NCCF.

HDRTYPEB (?)
Indicates a command or command list buffer that has display and logging
suppressed. Used to suppress display and logging of commands entered
with a suppression character as defined in the CNMSTYLE member.
Information about the CNMSTYLE member can be found in IBM Tivoli
NetView for z/OS Installation: Getting Started. HDRTYPEB is also used to
suppress display and logging of command list statements that are preceded
by this same suppression character.

HDRTYPEC (C)
Indicates a command or message from a command list. Becomes
HDRTYPEB for suppressed command list statements.

HDRTYPED (!)
Indicates a message from an immediate command processor. Usually sent
to the screen using DSIPSS TYPE=IMMED. When this type of message is
displayed in the immediate message area on the screen, the HDRMTYPE
and DOMAIN name are not displayed. When received cross-domain, this
type of message is in the normal output area, along with its domain name
and type prefix. DSIPSS TYPE=IMMED does not enforce or set
HDRTYPED.

HDRTYPEE (E)
Indicates a message from the operating system. This type is not used for
title-line mode multiline write-to-operator (MLWTO), system action, or
WTOR messages. See also HDRTYPEK and HDRTYPEY for other forms of
operating system messages.

© Copyright IBM Corp. 1997, 2009 559

|
|
|

HDRTYPEF (F)
Indicates a VSAM record. Not displayed on the operator’s screen. Used
within the data services task (DST).

HDRTYPEG (G)
Indicates a CNMI record. Not displayed on the operator’s screen. Used
within the DST.

HDRTYPEI (I)
Indicates an internal function request. This buffer is a formatted interface
within and between tasks. The IFR contains a function number (IFRCODE)
that determines the format and function of the buffer. For more
information, refer to IBM Tivoli NetView for z/OS Programming: Assembler.

HDRTYPEJ (’)
Indicates a title-line multiline write-to-operator (MLWTO) message
originating from NetView itself. These buffers must be in a sequence and
include a description of control, label, data, and end designators. NetView
for MVS V1R2 and later releases treat these sequences of buffers as a single
message for presentation and automation.

HDRTYPEK (″)
Has the same meaning as HDRTYPEJ, but for messages originating in IBM
routines that are not supplied with the NetView program.

HDRTYPEL (=)
Has the same meaning as HDRTYPEJ, but for messages originating in
non-Tivoli routines.

HDRTYPEM (M)
Indicates a message from the NetView message command processor.

HDRTYPEN (-)
Indicates a regular single-buffer message from NetView.

HDRTYPEP (P)
Indicates a message from the PPI.

HDRTYPEQ (Q)
Indicates a message from the VTAM POI that is a single-buffer unsolicited
message. See also HDRTYPEV, HDRTYPEY, and HDRTYPEK for other
VTAM POI messages. This message type is not set for messages from
VTAM received on the operating system interface.

HDRTYPER (R)
Indicates that an operator entered the VTAM REPLY command in response
to NetView WTOR number DSI802A. This message type is logged but does
not appear on NetView consoles.

HDRTYPES (S)
Is used in some installation-exit interfaces to indicate a swapped buffer.

HDRTYPET (*)
Indicates a command issued to NetView from a NetView terminal. This
message type indicates that the buffer is a command rather than a
message.

HDRMTYPE=HDRTYPEI with IFRCODE=IFRCODCR is similar in that the
buffer represents a command to be processed. Notice that IFRCODCR
generally implies an internally formatted command, such as between
operator station tasks (OSTs) and DSTs. HDRTYPET generally implies a

560 Automation Guide

|
|

command buffer as if an operator had typed the command. IFRCODCR
buffers can contain non-printable data. HDRTYPET buffers should contain
no non-printable text.

HDRTYPEU (U)
Is reserved for non-Tivoli users. Cannot be used for action messages,
WTOR, or title-line (MLWTO) messages.

HDRTYPEV (HEX(’40’))
Indicates a message from the VTAM POI that is a single-buffer solicited
message. See also HDRTYPEQ, HDRTYPEY, and HDRTYPEK for other
VTAM POI messages. This message type is not set for messages from
VTAM received on the operating system interface.

Note: This message type is the value X'40', a character space.

HDRTYPEW (+)
Indicates a non-NetView, Tivoli-written single-line message. This message
type is similar to HDRTYPEN and HDRTYPEU.

HDRTYPEX (X)
Indicates a cross-domain (NNT to OST) command. Allows reverse-direction
commands, because commands are normally routed from the OST to the
NNT, for example, with the ROUTE command.

Code running in an NNT can issue DSIPSS TYPE=OUTPUT for a
HDRTYPEX buffer, and the corresponding command is processed in the
OST that started the session with that NNT. This is useful for sending
non-formatted (hexadecimal) data from the NNT to an OST for full-screen
or other formatting. The data is limited to 256 bytes and not displayed on
the operator’s screen.

HDRTYPEY (>)
Indicates a single-buffer action or WTOR. For NetView for MVS V1R2 and
later releases, it can be a message from the operating system interface as
well as from the VTAM POI. For NetView for MVS V1R2 and later
releases, these messages remain on the NetView command facility screen
until an action is taken or the reply is entered. The operator can delete
these messages by overstriking the greater-than (>) character and pressing
ENTER. The message disappears the next time the screen wraps over the
text. Installation exits can set this message type to force a message to be
held.

When the HDRTYPEY flag is set and the IFRAUWQE flag is not set,
NetView looks for a 3-character reply ID immediately preceding the
message number in the message text. If the reply ID exists, the message is
a VTAM WTOR. Otherwise, the message is treated as a held message (if
IFRAUWQE is zero). If IFRAUWQE is set to 1, the IFRAUWQD data is
checked to see if the work queue element (WQE) data indicates a WTOR or
action message. If a WTOR is indicated, a reply ID (consisting of 2–4
characters) immediately precedes the message ID. If a reply ID exists, it is
delimited from the message ID by one space.

HDRTYPEZ (Z)
Is similar to HDRTYPEN, but specifically indicates a message from a data
services task (DST).

HDRTYPE$ ($)
Indicates a message that contains data that cannot be printed.

Appendix G. NetView Message Type (HDRMTYPE) Descriptions 561

HDRTYPE1 (V)
Is similar to HDRTYPEV, but indicates a PPOLOG message.

HDRTYPE2 (Y)
Is similar to HDRTYPEY, but indicates a PPOLOG message.

HDRTYPFB (HEX’FB’)
Indicates a message to flush the buffer.

HDRTYPLS (s)
Indicates a user-substituted command.

HDRTYPLT (L)
Indicates a trace record, not a message buffer. This message type is used
exclusively for NetView Internal Trace and must not be used in any
message buffer.

HDRTYPOR (HEX ’4F’)
Indicates a pipeline-generated message.

HDRTYPQC (HEX’50’)
Indicates that a command was specified with a double suppression
command. Both the command echo at the operator console and any
synchronous messages output as a result of the command are suppressed.
Asynchronous messages are not suppressed.

HDRTYPWB (B)
Indicates a command issued from the NetView Web browser. This message
type indicates that the buffer is a command rather than a message.

HDRTYPWT (W)
Indicates a message that matched a WAIT condition and was displayed.
The W appears in the message type field on the screen and in the logs but
is not in the HDRMTYPE field in the buffer. The HDRMTYPE field in the
buffer contains the original message type.

HDRTYP10 (HEX’10’)
Indicates a management services unit (MSU) buffer. The MSU buffer might
have an associated MSU HIER buffer.

HDRTYP11 (HEX’0B’)
Indicates a remote data transfer message.

562 Automation Guide

Appendix H. MVS Command Management (Deprecated)

The MVS Command Management function is deprecated and is replaced by the
MVS Command Revision function. For additional information, see Chapter 14,
“The Command Revision Table,” on page 137. The MVS Command Management
function is only supported for migration purposes. For information on migrating to
the MVS Command Revision function, see the IBM Tivoli NetView for
z/OS Installation: Migration Guide.

With MVS Command Management you can examine, modify, or reject most MVS
commands. You can specifically include or exclude commands from processing by
command or by console names.

After MVS command management is activated, all MVS commands are passed to
the NetView MVS command exit. Most MVS commands are sent to the NetView
program for processing unless they are not included or specifically excluded. In the
NetView program, the CNMEMCXY REXX command list is called with the MVS
command under the DSIMCAOP autotask. You can add logic to this command list
to examine, modify, or reject MVS commands. If an MVS command is not rejected,
it is returned to MVS for processing. RACF checking is performed after the
command is processed by the NetView MVS command exit.

Figure 202 on page 564 shows the logic flow of MVS command management. To
enable this command management requires changes to the MVS and NetView
environments.

© Copyright IBM Corp. 1997, 2009 563

|

|

|
|
|
|
|
|

Enabling MVS Command Management in the NetView Environment
To enable MVS command management in the NetView environment:
1. Define a new NetView operator DSIMCAOP in DSIOPF or an SAF product. If

you use an operator name other than DSIMCAOP, use the following statement
in the CNMSTUSR or CxxSTGEN member, and add your operator ID. For
information about changing CNMSTYLE statements, see IBM Tivoli NetView for
z/OS Installation: Getting Started.
function.autotask.mvsCmdMgt=operid

If this statement is not included in the CNMSTYLE member, DSIMCAOP is the
default operator ID.

2. Protect DSIMCAP, CNMEMCXX, and CNMEMCXY from unauthorized use.

Note: If you are using an SAF product such as RACF for operator definitions
and command authorization, make the equivalent updates to these
definitions.

3. Verify that the tower statement in the CNMSTYLE member does not specify an
asterisk (*) preceding the MVScmdMgt tower.

Figure 202. MVS Command Management Flow

564 Automation Guide

|
|
|
|

|

|

Enabling the MVS Command Exit on MVS
The MVS command exit uses the NetView program-to-program interface (PPI).
Ensure that the NetView subsystem address space program (SSI) is started before
enabling the exit.

To enable the MVS command exit for processing on MVS:
1. Ensure the load module DSIMCAEX is in a load library in the MVS LINKLST

concatenation. If required, issue the following command to enable it:
F LLA,REFRESH

2. Update an MPFLSTxx member in PARMLIB by adding the following statement:
.CMD USEREXIT(DSIMCAEX)

To activate the change, issue the following command:
SET MPF=xx

where xx is the suffix of the MPFLST member.
3. Unless a command inclusion/exclusion list is provided, most commands are

sent to the NetView program. To restrict commands from being sent to the
NetView program, use a command inclusion/exclusion list. The NetView
program provides a sample list CNMCAU00. You can use this sample or create
your own and place it in the logical PARMLIB.
To activate the change, issue the following command:
SET CNMCAUT=yy

where yy is the suffix of the CNMCAU member in PARMLIB. This also enables
the inclusion/exclusion list in normal mode. If no inclusion/exclusion list is to
be used, specify a value of ON for yy.
You can then set the inclusion/exclusion list to test mode by issuing the
following command:
SET CNMCAUT=TEST

When your test is successful, issue either of the following commands to reset
the test mode:
SET CNMCAUT=yy
SET CNMCAUT=ON

4. After testing, you can add an entry to the MPFLSTxx member to suppress
message IEE295I, which is issued every time a command is modified.
Otherwise, you receive the following messages for every command that is
processed by the exit:

IEE295I COMMAND CHANGED BY EXIT 043
ORIGINAL: command ' '
MODIFIED: command

Suppressing additional command echoes and IEE295I messages
When all of these conditions are in place, a command will be echoed in the system
log multiple times:
v The NetView MVS Command Management function is active
v The command is sent to NetView for processing
v The command is not rejected by CNMEMCXY for execution

IEE295I messages will also be logged in the system log. You can suppress the
additional command echoes by specifying the TRACKING.ECHO statement and you
can suppress the IEE295I message by specifying the ISSUE.IEE295I statement in the
logical PARMLIB member CNMCAUaa.

Appendix H. MVS Command Management (Deprecated) 565

|

|
|
|
|
|

|
|
|
|

The syntax of the TRACKING.ECHO statement is
TRACKING.ECHO = Y | N

The default of the TRACKING ECHO command is
TRACKING.ECHO = Y

The syntax of the ISSUE.IEE295I statement is
ISSUE.IEE295I = Y | N

The default of the ISSUE.IEE295I is
ISSUE.IEE295I = Y

These statements can be coded anywhere in the logical PARMLIB member
CNMCAUaa.
v A specification of TRACKING.ECHO = Y indicates that additional command echoes

are to be logged in the system log.
v A specification of TRACKING.ECHO = N indicates that additional command echoes

are not to be logged to the system log. Note that if TRACKING.ECHO = N is coded,
there will not be an indication in either the system log or in the NetView log if
the command is changed by CNMEMCXY. The command response can be for an
entirely different command than the one that is entered originally. If you want to
know when the command is changed by CNMEMCXY, specify TRACKING.ECHO =
Y or else add code to CNMEMCXY to log the command before and after it is
changed.

v A specification of ISSUE.IEE295I = Y indicates that the IEE295I messages are to
be logged in the system log.

v A specification of TRACKING.ECHO = N indicates that the IEE295I messages are
not to be logged to the system log.

If multiple TRACKING.ECHO or ISSUE.IEE295I statements are specified in the
CNMCAUaa member, the last valid value will be used. If no statement is coded or
if a statement is not valid, the default will be used.

Example: Assume that the MVS command D T is entered. Assume further that the
command is not excluded and neither TRACKING.ECHO or ISSUE.IEE295I is coded (or
that these statements have been specifically coded with a value of Y). These
statements are logged in the in the system log:

1. D T
2. D T ' '
3. IEE295I COMMAND CHANGED BY EXIT 314
4. ORIGINAL: D T ' '
5. MODIFIED: D T
6 D T
7. IEE136I LOCAL: TIME=14.34.45 DATE=2009.103 UTC: TIME=18.34.45 DATE=2009.103

A specification of TRACKING.ECHO = N prevents lines 2 and 6 from being logged. A
specification of ISSUE.IEE295I = N prevents lines 3, 4, and 6 from being logged.

If the statements were specified in CNMCAUaa as
TRACKING.ECHO = N
ISSUE.IEE295I = Y

then these statements are logged in the system log:

566 Automation Guide

|

|

|

|

|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

1. D T
2. IEE295I COMMAND CHANGED BY EXIT 423
3. ORIGINAL: D T ' '
4. MODIFIED: D T
5. IEE136I LOCAL: TIME=14.39.44 DATE=2009.193 UTC: TIME = 18.34.45 DATE=2009.103

If the statements in CNMCAUaa are coded as
TRACKING.ECHO = Y
ISSUE.IEE295I = N

then these statements are logged in the system log:
1. D T
2. IEE295I COMMAND CHANGED BY EXIT 423
3. ORIGINAL: D T ' '
4. MODIFIED: D T
5. IEE136I LOCAL: TIME=14.39.44 DATE=2009.193 UTC: TIME = 18.34.45 DATE=2009.103

If the statements in CNMCAUaa are coded as
TRACKING.ECHO = N
ISSUE.IEE295I = N

then these statements are logged in the system log:
1. D T
2. IEE136I LOCAL: TIME=14.39.44 DATE=2009.193 UTC: TIME = 18.34.45 DATE=2009.103

The following command can change the value of TRACKING.ECHO or
ISSUE.IEE295I:
SET CNMCAUT=aa

If CNMCAUaa is loaded and processed successfully, and if TRACKING.ECHO and
ISSUE.IEE295I statements are coded, the values specified are in effect. If the
statements are not coded, the default values will be used. If CNMCAUaa is not
loaded or is not processed successfully, the values specified for the statements are
not changed. The values for the statements will default to
TRACKING.ECHO = Y
ISSUE.IEE295I = Y

The following commands will not change the value of TRACKING.ECHO or
ISSUE.IEE295I:
SET CNMCAUT=OFF
SET CNMCAUT=TEST

Exclusion or Inclusion Lists
You can use MVC Command Management to control
v Whether input from a specific console is included or excluded by specifying a

CONSOLE EXCLUSION LIST or a CONSOLE INCLUSION LIST, both of which
are described in “Console Exclusion List and Console Inclusion List” on page
568.

v Whether a specific command is included or excluded by specifying a
COMMAND EXCLUSION LIST or a COMMAND INCLUSION LIST, both of
which are described in “Command Exclusion List and Command Inclusion List”
on page 569.

v Whether certain other types of commands that do not fit typical formats are
included or excluded by specifying a CMDTEXT EXCLUSION LIST or a

Appendix H. MVS Command Management (Deprecated) 567

|
|
|
|
|

|

|
|

|

|
|
|
|
|

|

|
|

|

|
|

|
|

|

|
|
|
|
|

|
|

|
|

|
|

|

|

|
|
|
|

|
|
|
|

|
|

CMDTEXT INCLUSION LIST, both of which are described in “CMDTEXT
Exclusion List and CMDTEXT Inclusion List” on page 570

Each of these lists is defined in a Logical Parmlib member CNMCAUaa, where aa
must be alphanumeric. You can have more than one CNMCAUaa member in the
logical PARMLIB, but only one can be active at any time.

Logical PARMLIB Member - CNMCAUaa
EXCLUSION and INCLUSION lists for consoles and commands are defined in the
PARMLIB member CNMCAUaa.

Exclude these commands from automation processing.
COMMAND EXCLUSION LIST
The following are internally-issued DB2 commands:
S DSNAMSTR
S DSNAIRLM
S DSNADBM1
S DSNADIST
S DSNASPAS

The following are internally-issued MQ Series commands:
S MQM1MSTR
S MQM1CHIN

Syntax for CNMCAUaa Statements
These syntax rules apply for CNMCAUaa statements:
v A forward slash (/) in column 1 followed by an asterisk (*) in column 2

indicates comments.
v Columns 73–80 are ignored.
v Only comments, CONSOLE EXCLUSION LIST, CONSOLE INCLUSION LIST,

COMMAND EXCLUSION LIST, COMMAND INCLUSION LIST, console names
and commands are recognized.

v For non-comment statements, column 1 must be a blank or an asterisk (*).
v The wildcard character (*) is supported in console name and command text.
v An asterisk (*) in column 1 is an indicator that there is a wildcard match (0 to n

characters match) at the beginning of the console name or the command text.

Console Exclusion List and Console Inclusion List
These rules apply to either a Console Exclusion List or a Console Inclusion List
v The CONSOLE EXCLUSION LIST (or the CONSOLE INCLUSION LIST) must

start in column 2.

Note: Do not add extra blanks between words.
v All excluded console names must follow the line CONSOLE EXCLUSION LIST

(or CONSOLE INCLUSION LIST).
v Column 1 is reserved for the wildcard character (*).

If no wildcard character (*) is specified, column 1 must be blank.
v There must be only one console name per line, starting at column 2.
v Each console name is assumed to be 8 characters long (including blanks).
v A wildcard character (*) can be specified at the beginning or at the end of the

console name, but not both.

568 Automation Guide

|
|

|
|
|

– An asterisk (*) in column 1 indicates that wildcard matching is selected at the
beginning of the console name.

– An asterisk (*) at the end of the console name indicates that wildcard
matching is selected at the end of the console name.

– If an asterisk (*) is the only character entered for the console name, it is
treated as a regular character, not as a wildcard character.

Command Exclusion List and Command Inclusion List
These Command Exclusion List rules apply:
v The COMMAND EXCLUSION LIST (or the COMMAND INCLUSION LIST)

starts in column 2.

Note: Do not add extra blanks between words.
v All excluded commands must follow the line COMMAND EXCLUSION LIST (or

COMMAND INCLUSION LIST).
v Each command can be from 1 to 122 characters long.
v Column 1 is reserved for the wildcard character (*).

If no wildcard character (*) is specified, column 1 must be blank.
v The command must start at column 2 and can run to column 71 (if wildcard

matching does not occur at the beginning of the command).
v Column 72 is the continuation column.

Column 72 must be blank if no continuation is desired. The continuation
character is not included in the string.

v Columns 73 through 80 are ignored.
v Extra blanks must not be entered in the command.
v The continuation line must start in column 2.
v Trailing blanks are deleted if column 72 is blank.
v A wildcard character (*) can be specified at the beginning or at the end of the

command text, but not both.
– An asterisk (*) in column 1 indicates that wildcard matching is selected at the

beginning of the command text.
– An asterisk (*) at the end of the command text indicates that wildcard

matching is selected at the end of the command text.
– If an asterisk (*) is the only character entered for the command text, it is

treated as a regular character, not as a wildcard character.

Usage Notes for COMMAND EXCLUSION LIST:

v If you are using a COMMAND EXCLUSION LIST, add all internally issued
START DB2 commands to this list.
To see how these commands look in your environment, look in your SYSLOG
right after the START DB2 command has been issued. DB2 internally issues a
number of subsequent START commands to start-up its subordinate address
spaces. It is these commands that you want to add to the command exclusion
list.
At the present time, a DB2 subsystem consists of at least five address spaces
with names such as:

Appendix H. MVS Command Management (Deprecated) 569

DSNAMSTR
DSNAIRLM
DSNADBM1
DSNADIST
DSNASPAS

v If you are using a COMMAND EXCLUSION LIST, add all internally issued MQ
START commands to this list. To see what these commands look like in your
environment, look in your SYSLOG right after the MQM1 START OMGF
command has been issued. MQ internally issues a number of subsequent START
commands to start-up its subordinate address spaces. It is these commands that
you want to add to the command exclusion list. At the present time, an MQ
subsystem consists of at least two address spaces with names like:
MQM1MSTR
MQM1CHIN

v For additional information see “General Processing of CONSOLE and
COMMAND Inclusion and Exclusion Lists” on page 574.

Usage Notes for COMMAND INCLUSION LIST:

v If you are using a COMMAND INCLUSION LIST, do not add internally issued
DB2 START commands to this list.

v If you are using a COMMAND INCLUSION LIST, do not add internally issued
MQ START commands to this list.

v For additional information see “General Processing of CONSOLE and
COMMAND Inclusion and Exclusion Lists” on page 574.

CMDTEXT Exclusion List and CMDTEXT Inclusion List
Some commands might not have the same command format described in
“Command Exclusion List and Command Inclusion List” on page 569. For
example, some NetView commands can have a blank instead of a comma as a
keyword or value delimiter. For those commands that do not conform to the
previously described command format, the CMDTEXT EXCLUSION LIST and the
CMDTEXT INCLUSION LIST provide similar function. These rules apply to the
CMDTEXT EXCLUSION LIST and CMDTEXT INCLUSION LIST:
v Both the CMDTEXT EXCLUSION LIST and the CMDTEXT INCLUSION LIST

must start in column 2.
v All excluded command strings must follow the line CMDTEXT EXCLUSION

LIST and all included command strings must follow the line CMDTEXT
INCLUSION LIST.

v All the rules listed under COMMAND EXCLUSION LIST and COMMAND
INCLUSION LIST regarding wildcard characters and continuation characters are
applicable to the CMDTEXT EXCLUSION LIST and CMDTEXT INCLUSION
LIST.

v CMDTEXT EXCLUSION LIST and CMDTEXT INCLUSION LIST are mutually
exclusive; that is, only one can be defined.

A distinction must be made between the COMMAND INCLUSION (or
EXCLUSION) LIST and the CMDTEXT INCLUSION (or EXCLUSION) list. If a
command is contained in the COMMAND INCLUSION (or EXCLUSION) LIST, a
blank character separates the command from any additional keywords or values. If
a second blank character occurs, all information following the second blank
character is discarded. However, for the CMDTEXT INCLUSION (or EXCLUSION)
LIST, all information contained in the command entered is compared to the detail
in the CMDTEXT INCLUSION (or EXCLUSION) list. In creating any of these lists
-- the CONSOLE INCLUSION LIST, the CONSOLE EXCLUSION LIST, the

570 Automation Guide

|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

COMMAND INCLUSION LIST, the COMMAND EXCLUSION LIST, the
CMDTEXT INCLUSION LIST, or the CMDTEXT EXCLUSION LIST -- you can be
as specific as necessary, or, you can use wildcard characters to describe consoles or
commands. For example, a list can contain a specific command
START MYPROC,INT1=USER,PARM='ANY PARM

in which case the entire command and its keywords and values must be contained
in the list to be included (or excluded). Or, a list can contain only a command such
as
START *

in which case the START command, regardless of additional keywords and values
is included (or excluded).

Order of matching
This is the sequence in which consoles and commands are matched to any of the
lists described. Once a match is found in any of these sequential steps, the
matching process completes and further matching steps end.
1. CONSOLE EXCLUSION LIST (or CONSOLE INCLUSION LIST)
2. COMMAND EXCLUSION LIST (or COMMAND INCLUSION LIST)
3. CMDTEXT EXCLUSION LIST (or CMDTEXT INCLUSION LIST)

However, within each logical grouping, follow these guidelines:
v Do not specify both a CONSOLE EXCLUSION LIST and a CONSOLE

INCLUSION LIST.
v Do not specify both a COMMAND EXCLUSION LIST and a COMMAND

INCLUSION LIST.
v Do not specify both a CMDTEXT EXCLUSION LIST and a CMDTEXT

INCLUSION LIST.

Starting MVS Command Management
After the NetView command exit is defined in the MPF member and the NetView
autotask and Optional Task are defined to NetView, you can start MVS Command
Processing by:
1. Activating MVS command exit
2. Starting MVS Command Processing

MVS Command Management will be deactivated whenever SET MPF=xx is
entered and processed, even if the MPFLSTxx member defines DSIMCAEX as an
MVS command exit. If MVS Command Management has been deactivated by the
SET MPF=xx command, you must restart it by entering either SET
CNMCAUT=ON or SET CNMCAUT=xx after the NetView MVS Command Exit
DSIMCAEX has been activated again.

Activating the MVS Command Exit

To activate the MVS command exit, issue this MVS command:
SET MPF=xx

where xx is the suffix of MPFLSTxx. MPFLSTxx must have the statement:
.CMD USEREXIT(DSIMCAEX)

Appendix H. MVS Command Management (Deprecated) 571

|
|
|
|

|

|
|
|

|

|
|

|

|
|
|

|

|

|

|

|
|

|
|

|
|

Starting MVS Command Processing
To start MVS Command Processing, issue this command:

SET CNMCAUT=ON or SET CNMCAUT=aa

Where aa is the suffix for CNMCAUaa member (except ON).

Displaying the MVS Command Management Setting
To find out the name of the active CNMCAUaa member, the TRACKING ECHO
statement, the ISSUE.IEE295I, and the CNMCAUT setting, issue this command:
DISPLAY CNMCAUT or
D CNMCAUT

To find out the contents of CNMCAUaa, issue:
D CNMCAUT=TABLE or
DISPLAY CNMCAUT=TABLE

Stopping MVS Command Management

Stopping MVS Command Management and Keeping the
CNMCAUaa Member

To stop MVS command management and keep the active CNMCAUxx PARMLIB
member in storage, issue this command from any MVS console:
SET CNMCAUT=OFF

This will not change the TRACKING.ECHO or the ISSUE.IEE295I setting. When
the command CNMCAUT=ON is issued, the CNMCAUxx PARMLIB member is
active again.

Stopping MVS Command Management and Deleting the
CNMCAUaa Member

To delete the CNMCAUaa PARMLIB member and stop MVS Command
Management, issue this command from any MVS console:
SET CNMCAUT=DELETE

This stops MVS commands from being sent to NetView. NetView MVS Command
Exit still gets control for every MVS command. Deleting the CNMCAUaa member
will also change the setting of TRACKING.ECHO to Y and also change the setting
of ISSUE.IEE295I to Y. These are the default values.

Stopping the MVS Command Exit from Being Invoked
To stop NetView MVS Command Exit from being invoked, issue this command
from any MVS console:
SET MPF=yy

The yy is a MPFLSTyy member which does not have the .CMD
USEREXIT(DSIMCAEX) statement. Or you can enter a SET MPF=NO command to
stop MPF processing.

Note: Use SET MPF=NO only as a last resort because it stops all MPF processing.

572 Automation Guide

Deactivating the MVS Command Exit
To deactivate the MVS command exit, issue one of these commands from an MVS
console:

MVS Command Management will be deactivated when SET MPF=xx is entered,
event if the MPFLSTxx member defines DSIMCAEX as an MVS command exit. You
can restart MVS Command Processing by entering either SET CNMCAUT=ON or
SET CNMCAUT=xx.

Note: Use SET MPF=NO only as a last resort because it stops all MPF processing.
or
SET MPF=NO

or
SET MPF=yy

where yy is the suffix of a MPFLSTyy member that contains the same statements as
MPFLSTxx, except the CMD USEREXIT (DSIMCAEX) statement.

MVS Command Management is made unavailable whenever a SET MPF=xx is
entered, even though the MPFLISTxx member defines DSIMCAEX as an MVS
command exit. In order to restart MVS Command Management, enter
SET=CNMCAUT=ON or SET CNMCAUT=xx.

If you want information about... Refer to...

MPFLSTnn z/OS library

Testing MVS Command Management
To test MVS command management, issue this command from an MVS console:

SET CNMCAUT=TEST

In TEST mode, each command is processed as if CNMCAUT=ON. The MVS
command is processed by MVS immediately after the command exit processing is
completed, before it is processed by NetView. NetView does not send the
command back to MVS.

To turn off TEST mode, enter:

SET CNMCAUT=OFF

The TEST mode is turned off when a SET CNMCAUT=ON or SET CNMCAUT=xx
command is completed successfully. Issuing SET CNMCAUT=TEST and SET
CNMCAUT=OFF will not change the setting of either the TRACKING.ECHO
statement or the ISSUE.IEE295I statement.

Appendix H. MVS Command Management (Deprecated) 573

Starting the Exclusion or Inclusion List
To start the EXCLUSION or INCLUSION list issue this command from any MVS
console:

SET CNMCAUT=aa

Where aa is the suffix of PARMLIB member CNMCAUaa.

Changing the Exclusion or Inclusion List
To change the EXCLUSION or INCLUSION list, you can either start a new
CNMCAUaa member, or change the existing member and re-enter the SET
CNMCAUT=aa command.

General Processing of CONSOLE and COMMAND Inclusion and
Exclusion Lists

You can use console and command inclusion and exclusion lists in any
combination. This Command List Chart describes the logic used:

COMMAND LIST
EXCLUSION INCLUSION

match no match match no match

exclusion match |IGNORE| IGNORE | IGNORE |IGNORE
Console exclusion no match|IGNORE|-->NetView|-->NetView|IGNORE
List --

inclusion match |IGNORE|-->NetView|-->NetView|IGNORE
inclusion no match|IGNORE| IGNORE | IGNORE |IGNORE

v A match in a CONSOLE EXCLUSION list results in the command being
IGNORED.
A non-match in the list results in the command being tested against the
COMMAND list.

v A match in a COMMAND EXCLUSION list results in the command being
IGNORED.
A non-match in the list results in the command being sent to NetView for
processing.

v A match in a COMMAND EXCLUSION list results in the command being
IGNORED.
A non-match in the list results in the command being sent to NetView for
processing.

v A non-match in a COMMAND INCLUSION list results in the command being
IGNORED.
A match in the list results in the command being sent to NetView for processing.

Commands Excluded by NetView Command Exit
These commands are not sent to NetView by the MVS command exit (DSIMCAEX)
even if they are included in the CNMCAUaa member:

Any command that has a single quotation mark as the first character of the
command
CONTROL E,SEG
CONTROL E,PFK
CONTROL E,N

574 Automation Guide

CONTROL E,F
CONTROL E
CONTROL V
CONTROL T
CONTROL S
CONTROL D
CONTROL C
CONTROL A
CONTROL E,nn
CONTROL
K E,SEG
K E,PFK
K E,N
K E,F
K E
K V
K T
K S
K D
K C
K A
K
MOUNT
LOGON
RO T=nnn,dest,mvscmd or ROUTE T=nnn,dest,mvscmd except when dest starts
with an asterisk (*) as in *ALL or *OTHER, or when dest starts with a left
parenthesis as in (sysnamelist).
S INIT.INIT
SET MPF=NO
START INIT.INIT
T MPF=NO

Restrictions
v Using MVS Command Management to pass START commands to NetView for

processing might cause problems for some uses of the START command because
the return codes (R15) and ASID (R0) that are returned by MGCRE are not
accurate as the result of using this function.

Note: This is known to cause a problem for START commands that are
internally issued by DB2 and MQ Series.

Exclude internally issued DB2 and MQ START commands from any command
automation processing, either by adding these commands to a command
exclusion list or by specifically keeping them out of a command inclusion list.

v Whenever a TSO end-user logs on, MVS Command Management specifically
excludes LOGON commands that are issued internally.
The LOGON command also returns an ASID and return code (like the START
command).

Appendix H. MVS Command Management (Deprecated) 575

v MVS Command Management specifically excludes MOUNT commands that are
issued by operators to manually request a tape mount.
The MOUNT command also returns an ASID and return code (like the START
command).

v MVS Command Management specifically excludes various K (CONTROL)
commands that are issued by operators to control real extended multiple console
support (EMCS) consoles.
The K command processor makes assumptions that are not compatible with the
command automation code.

v Strings to the right of an equal sign (=) in REXX cannot exceed 250 characters.
Command text is passed into the REXX exec CNMEMCXY in printable
hexadecimal form (to prevent REXX from parsing the command). Only
commands of 123 characters or less can be processed (4 characters are used to
convey the command length in printable hexadecimal form).

Note: Do not code wait processing in CNMEMCXY because that can delay the
handling of MVS commands, which remain queued until the wait ends.

Wait processing, in this case, includes REXX and PIPE waits, WTORs, and
Parse Pull types of commands.

v Because of the current mechanism that is used to ″tag″ commands so that they
are processed only once, the maximum command length that can be handled is
further reduced to 122 characters.
The only commands that are known to approach these limits are internally
issued SEND command that are used to notify TSO end users when jobs have
complete or NJE file transmissions have occurred. These commands are currently
exempted from processing by use of a console exclusion list specifying a console
name of INTERNAL and INSTREAM.

MVS Command Management Processing on NetView
The line CONSOLE EXCLUSION LIST starts in column 2.

Note: Do not add extra blanks between words.

After MVS command management processing is activated, every MVS command
that is not excluded is sent to NetView for further processing. On the NetView
side, the optional task DSIMCAT receives the MVS command from the PPI and
invokes a REXX CLIST CNMEMCXY. When CNMEMCXY runs, it receives these
parameters:

Note: Do not code wait processing in CNMEMCXY because that can delay the
handling of MVS commands, which remain queued until the wait ends.

Wait processing, in this case, includes REXX and PIPE waits, WTORs, and
Parse Pull types of commands.

MODE=mode mode is T (test), or O (on)

ISYN=isyn isyn is the issuing system name in hexadecimal.
The isyn is 16 hexadecimal digits long.

CNNM=consname consname is the issuing console name in
hexadecimal. The consname is 16 hexadecimal
digits long.

576 Automation Guide

C4ID=consid consid is the issuing console ID in hexadecimal. The
consid is 8 hexadecimal digits long.

TOKN=token token is the users’s command token in hexadecimal.
The token is 8 hexadecimal digits long.

AUTH=auth auth is the user’s command authorization in
hexadecimal. The auth is 4 hexadecimal digits long.

ASID=asid asid is the user’s ASID in hexadecimal. The asid is
4 hexadecimal digits long.

TRNM=termname termname is the user’s terminal name in
hexadecimal. The termname is 16 hexadecimal
digits long.

CLNM=conclass conclass is the console class name in hexadecimal.
The conclass is 16 hexadecimal digits long.

CART=cart cart is the command and response token in
hexadecimal. The cart is 16 hexadecimal digits
long.

OCID=ocid ocid is the originating console ID in hexadecimal.
The ocid is 16 hexadecimal digits long.

UTKN=utoken utoken is the user token in hexadecimal. The utoken
is 160 hexadecimal digits long and cannot be
modified. It must be returned to MVS unchanged.

CTXT=cmdtext cmdtext is the command text in hexadecimal. The
cmdtext is up to 250 hexadecimal digits long. The
first 4 digits are the length of the command.

Note: All input to CNMEMCXY is in hexadecimal, except MODE. To examine
input, convert it to character format by using the REXX function X2C.

After examining the command, you send a return code to the invoking REXX
CLIST to indicate you want the command returned to z/OS for further processing.

These are return codes that you can return and their meaning:

0 Continue processing. The command is not changed. The MVS command is
sent back to MVS.

4 Command text changed. The changed command must be sent to MVS.

If a return code of 4 is returned, the modified MVS command must be
saved in a SAFE named MVSCMD.

8 The command must not be returned to MVS.

If MODE=T is specified, the MVS command is not returned to MVS, regardless of
the return code.

If the length of a command is changed, update the Length field (the first 4 bytes of
the command text) accordingly. (The maximum length of the command text is 122
characters.)

Note: Do not code wait processing in CNMEMCXY because that can delay the
handling of MVS commands, which remain queued until the wait ends.

Appendix H. MVS Command Management (Deprecated) 577

Wait processing, in this case, includes REXX and PIPE waits, WTORs, and
Parse Pull types of commands.

Protecting MVS Command Management Processing
To prevent an operator from executing an unauthorized MVS command, the
NetView command DSIMCAP must be protected from all NetView operators,
except DSIMCAOP or the NetView operator defined in the following CNMSTYLE
statement:

Function.autotask.mvsAuto=opid

Ensure that this is the only task that can be permitted to issue DSIMCAP,
CNMEMCXX, or CNMEMCXY.

DSIMCAOP or the defined autotask used by MVS Command Management
Processing must be protected so that other NetView operators cannot send
commands to the autotask for execution if AUTHCHK=TARGETID is used.

578 Automation Guide

Appendix I. The Sample Set for Automation

NetView includes a set of samples to help you get started with automated
operations. These samples are referred to as the sample set for automation. The
sample set for automation is designed to show examples of automation techniques;
it is not intended to be a drop-in solution to automation.

The sample set for automation consists of the following sample sets:

Message suppression
This set contains two MVS message-suppression lists (one conservative and
one aggressive).

Basic automation
This set contains automation table entries, command lists, and start-up
procedures that demonstrate how routine operator actions can be
automated.

Advanced automation
This set includes automation table entries and command lists that
demonstrate how to initialize, recover, and shut down subsystems and
applications using automation techniques discussed in this manual.

Log analysis program
This set contains a log analysis program for JES2 and JES3 that can be
modified for use in analyzing other logs. The analysis program helps you
identify frequently issued messages that you might want to suppress or
automate.

Setup samples
This set contains samples to help you rename the samples in the other
parts of the sample set for automation.

You can identify the samples in the sample set for automation by their names.
Samples with names beginning in CNMS62, CNMS64, CNME62, or CNME64
belong to the sample set for automation. Descriptions of all of the samples
included in the sample set for automation are contained in “Cross-Reference
Listing of Command Lists and Samples” on page 611.

Using the Sample Set for Automation
To use the sample set for automation as examples of automated operations, you
can follow these steps:
1. Rename all of the samples in the sample set for automation.
2. Begin using parts of the message suppression sample set for examples of

message suppression. Message suppression is described in Chapter 19,
“Suppressing Messages and Filtering Alerts,” on page 301.

3. Use the log analysis program to help suppress messages and automate
NetView. The log analysis program identifies common messages that are likely
candidates for automation.

4. Prepare for communication between NetView and MVS. This step is a
prerequisite for activating the basic and advanced sample sets.

© Copyright IBM Corp. 1997, 2009 579

5. Use the basic automation sample set for examples of message automation, a
technique discussed in Chapter 22, “Automating Messages and Management
Services Units (MSUs),” on page 319. Activate parts of this sample set that are
appropriate to your environment.

6. Use the advanced automation sample set for example of coordinated
automation, a technique discussed in Chapter 23, “Establishing Coordinated
Automation,” on page 357. Activate parts of the advanced automation sample
set that are appropriate to your environment.

Locating and Renaming the Sample Set for Automation
The following sections describe how to locate and rename the sample set for
automation on an MVS system.

The following table shows the names and locations of the samples after you have
installed them as part of the NetView installation process.

Table 36. Locations of the Sample Set for Automation on MVS Systems

Sample Set Sample Type Library Member Names

Message Suppression Sample MPFLSTxx
Members

SYS1.CNMSAMP CNMS6201-
CNMS6202

Basic Automation Miscellaneous
NetView Samples

SYS1.CNMSAMP CNMS6205-
CNMS6206

Sample Procedures SYS1.CNMSAMP CNMS6211-
CNMS6214

Sample Parameters SYS1.CNMSAMP CNMS6221-
CNMS6224

Sample Command
Lists

SYS1.CNMCLST CNME6201-
CNME6205

Advanced
Automation

Miscellaneous
NetView Samples

SYS1.CNMSAMP CNMS6401-
CNMS6410

Sample Panels SYS1.CNMSAMP CNMS64P0-
CNMS64P5

Sample Command
Lists

SYS1.CNMCLST CNME6400-
CNME6440

Log Analysis Sample Analysis
Program

SYS1.CNMSAMP CNMS6207

Sample JCL SYS1.CNMSAMP CNMS62J2

Setup Renaming JCL SYS1.CNMSAMP CNMS62J1

Use sample CNMS62J1 to rename the samples supplied in the sample set for
automation. Rename the samples before you can run them, because they refer to
each other by the new names. Take the following steps to rename the samples:
v Examine CNMS62J1 to ensure the symbolics set in the PROC statement are

appropriate to your environment and to ensure the OUTDD DD statement for
each step contains the data set where you want to store the samples. The JCL
supplied in CNMS62J1 copies the renamed samples into new data sets. If you
prefer to use existing data sets, update the sample JCL contained in CNMS62J1
accordingly.

v If you change the library where the PARMLIB members are stored, update
samples CLRSMF (CNMS6212) and LGPRNT (CNMS6213) to point to the new
library.

580 Automation Guide

v Because the data set that contains the PROCLIB samples must be a valid
PROCLIB data set, include that data set as one of the DD statements on the
PROC00 DD in your JES procedure.

v Include the data sets containing the renamed DSIPARM and DSIPRF samples in
the appropriate DD statements in the NetView start procedure. You must stop
and restart NetView for the changes made to the NetView start procedure to
take effect. If you are using the samples provided with the NetView program,
that NetView start procedure is CNMPROC (CNMSJ009).

v Submit CNMS62J1, which runs as a batch job, into the system input stream for
processing using either the TSO SUBMIT command or the NetView SUBMIT
command.

v If desired, create a second copy of the renamed samples. Then, if you change
some of the samples, you have a backup copy already renamed.

Using the Message Suppression Sample Set
Use the message suppression sample set to begin suppressing messages, or you
can incorporate parts of the sample set into your existing message suppression. See
Chapter 19, “Suppressing Messages and Filtering Alerts,” on page 301 for
information.

Using the Log Analysis Program
The log analysis program does not perform automation but is a tool to help you
create automation of your own. See “Log Analysis Program” on page 465 for
information.

Setting Up Communication between NetView and MVS
Before you can activate the basic or advanced sample set on the MVS system,
NetView must be defined to send commands to the operating system and receive
MVS system messages. Define NetView to MVS as a subsystem (with IEFSSNxx)
and ensure that messages are forwarded to NetView. Check your MPFLSTxx
PARMLIB member and ensure that you are not suppressing a message that one of
the sample sets requires.

“Preparing MVS for System Automation” on page 293 describes defining NetView
as a subsystem and forwarding messages from MVS to NetView.

Using the Basic Automation Sample Set
The following sections describe the functions provided by the basic automation
sample set, how the sample automation table provides those functions, and how
the basic automation sample set is activated.

Functions Performed by the Basic Automation Sample Set
The samples in the basic automation sample set demonstrate how routine operator
actions can be automated using the automation facilities described in Part 4,
“NetView Automation Facilities,” on page 109.

The samples include automation table entries, command lists, and start-up
procedures. The command lists are written in both the NetView command list
language and REXX. If they are run on a system that has NetView REXX capability,
the command lists run in REXX. If they are run on a system that has no NetView
REXX capability, they run in the NetView command list language.

Appendix I. The Sample Set for Automation 581

The samples in the basic automation sample set contain a small subset of the
automated actions that can be performed. The samples demonstrate how simple,
routine responses to events occurring in the environment can be automated using
the NetView automation facilities. The samples included in the basic automation
sample set provide the following automated actions:
v Clear the SYS1.LOGREC data set
v Print the SYS1.LOGREC data set
v Vary a channel online
v Reply to a GTFTRACE parameter request
v Issue the MVS START command for the SMF dump task
v Print the network log after the DSILOG task switches from the primary to the

secondary or vice versa
v Monitor JES2 spool utilization and purge held files older than 24 hours when

utilization exceeds 70%

Automation Table Used in the Basic Automation Sample Set
This section describes the automation table used in the basic automation sample
set and the ways in which the functions are provided. Figure 203 shows the
automation table.

* (C) COPYRIGHT IBM CORP. 1989 *
* IEBCOPY SELECT MEMBER=((CNMS6205,ACOTABLE,R)) *
* LAST CHANGE: 08/25/89 *
* *
* DESCRIPTION: *
* DESCRIPTION: SAMPLE DSIPARM - MSG AUTOMATION DEFS FOR BASIC *
* AUTOMATION SAMPLE SET *
* *
* CNMS6205 CHANGED ACTIVITY: *
* CHANGE CODE DATE DESCRIPTION *
* ----------- -------- --*

*
IF MSGID = 'IFB040I' �1�
THEN EXEC(CMD('MVS S CLRLOG') ROUTE(ONE AUTO1));

*
IF MSGID = 'IFB060E' �2�
THEN EXEC(CMD('MVS S LGPRNT') ROUTE(ONE AUTO1));

*
IF MSGID = 'IOS150I' & TOKEN(3) = DEVICE �3�
THEN EXEC(CMD('MVS VARY ' DEVICE ',ONLINE') ROUTE(ONE AUTO1));

*
IF MSGID = 'AHL125A' & TEXT(1) = REPLYID . �4�
THEN EXEC(CMD('MVS REPLY ' REPLYID ',U')
ROUTE(ONE AUTO1));

*
IF MSGID='DSI556I' & TOKEN(2) ='DSILOG' & TOKEN(6) = 'CLOSE'' & �5�

TEXT = . 'DDNAME = '' LOGID ''' RETURN CODE =' .
THEN EXEC(CMD('MVS S DSIPRT,NAME='LOGID) ROUTE(ONE AUTO1));

*
IF (MSGID = 'IEE362A' | MSGID = 'IEE362I') & TEXT = STRNG �6�
THEN EXEC(CMD('IEE362A ' STRNG) ROUTE(ONE AUTO1));

*
IF MSGID = '$HASP646' & TEXT = STRNG �7�
THEN EXEC(CMD('$HASP646 ' STRNG) ROUTE(ONE AUTO1));

Figure 203. Basic Automation Sample Set Automation Table Entries

582 Automation Guide

Figure 204 lists the messages automated by the Basic Automation Sample Set
Automation Table.

Issuing Commands: Statement �1� in Figure 203 on page 582 issues a system
command directly from the automation table. The statement automates message
�A� in Figure 204.

When NetView receives message �A�, it issues the MVS START command for the
sample procedure CLRLOG, which clears the SYS1.LOGREC data set. CLRLOG
goes to the autotask AUTO1 for processing. MVS is a NetView command processor
that enables the entry of the MVS system, subsystem, and application commands
from NetView. The command you issue can also be a NetView or VTAM
command, which you can issue directly from the automation table without any
preceding command processor.

In statement �1�, the command to be processed is routed to only one operator and
goes to the autotask AUTO1. Because no action is taken if AUTO1 is not active,
you can specify the statement in Figure 205.

In the ROUTE command in Figure 205, opid1, opid2, and opid3 are other autotasks
or operator IDs. In that case, the command is routed to the first one on the list that
is active or logged on.

Statement �2� in Figure 203 on page 582, uses the same techniques to print the
SYS1.LOGREC data set upon receipt of message ID IFB060E, message �B� in
Figure 204.

Assigning a Value to a Variable: Statement �3� in Figure 203 on page 582, varies
a channel online upon receipt of the message for message ID IOS150I, message �C�
in Figure 204.

Statement �3� captures the information in token 3 (ddd, the device number), and
passes it to the command as a variable called DEVICE. The fact that DEVICE has
no single quotation marks around it indicates that it is a variable rather than a
comparison item. The variable DEVICE is then used in the action to be processed.
Again, MVS is the NetView command processor allowing the VARY command to
be issued from NetView, and the command is to be routed to the autotask AUTO1
for processing.

Statement �4� in Figure 203 on page 582, passes a variable to a command or
command procedure to reply to a WTOR. Statement �4� responds to message
AHL125A, message �D� in Figure 204. Message AHL125A requests that you
respecify trace options for the Generalized Trace Facility (GTF), or reply U to
continue initialization. In message AHL125A, xx is the reply ID. Statement �4�

IFB040I SYS1.LOGREC AREA IS FULL,hh.mm.ss �A�
IFB060E SYS1.LOGREC NEAR FULL �B�
IOS150I DEVICE ddd NOW AVAILABLE FOR USE �C�
xx AHL125A RESPECIFY TRACE OPTIONS OR REPLY U �D�
DSI556I DSILOG : VSAM DATASET 'CLOSE' COMPLETED,DDNAME='ddname' �E�

RETURN CODE=X'code',ACB ERROR FIELD=X'code'.
IEE362n SMF ENTER DUMP FOR SYS1.MANx ON ser �F�
$HASP646 xx PERCENT SPOOL UTILIZATION �G�

Figure 204. Messages Automated by the Basic Automation Sample Set Automation Table

ROUTE(ONE AUTO1 opid1 opid2 opid3)

Figure 205. Specifying Multiple Autotasks and Operators on the ROUTE Command

Appendix I. The Sample Set for Automation 583

captures the reply ID as the variable REPLYID. TEXT(1) indicates the text
beginning in position 1. The period (.) is a placeholder that means that only the
text before the next blank should be used for REPLYID. Thus, the variable
REPLYID obtains the text from position 1 to the first blank. The automation table
can then pass the REPLYID variable to the command specified in the EXEC
statement. If you left out the period, all the text to the end of the message would
go into the REPLYID variable.

The rest of statement �4� replies U to the request for GTFTRACE parameters. This
causes the MVS command REPLY to be issued for the appropriate reply ID, under
the autotask AUTO1.

Statement �5� in Figure 203 on page 582, for message ID DSI556I, message �E� in
Figure 204 on page 583, parses part of the message text and uses that in the MVS
START command that is issued from the automation table. That command prints
the primary or secondary network log upon receipt of the DSI556I message.

Statement �5� has three comparison items plus the assignment of the variable
LOGID. The automation table initiates action only if all of the following
comparison conditions are met:
v The message ID must be DSI556I.
v The second token must be DSILOG.
v The sixth token must be 'CLOSE'.

If these conditions are met, then:
v The message text is parsed, assigning the text to the variable named LOGID,

which follows the string DDNAME = ' and precedes the string ' RETURN CODE
=.

v The MVS START command is issued for the sample procedure DSIPRT, which
prints the log for either the primary or secondary log, whichever has just been
closed.

Wherever a single quotation mark (') appears in the text of a message and must be
indicated as part of a comparison condition, it is represented as two consecutive
single quotation marks (''). Of the three single quotation marks that surround
CLOSE in the automation table statement, the outside quotes indicate the text that
must be contained in TOKEN(6) for the comparison condition to be met. Without
the single quotation marks, the text would be assigned to a variable. The
remaining single quotation marks reduce to the ones that enclose CLOSE in the
message itself.

Invoking Command Lists and Command Processors: Statements �1� through �5�
in Figure 203 on page 582 have issued commands directly from the automation
table. All the commands are MVS system or subsystem commands, but they can be
application commands, or NetView or VTAM commands. Statement �6� in
Figure 203 on page 582 (for message ID IEE362A or IEE362I, message �F� in
Figure 204 on page 583) illustrates the use of NetView automation facilities when
more complex actions than a single command are required. In those cases, the
automation table statement can invoke a NetView command list (written in the
NetView command list language or REXX) or command processor (written in PL/I,
C, or assembler).

Statement �6� looks for the message ID IEE362A or IEE362I, both of which have
the text shown in message �F�.

584 Automation Guide

Statement �6� specifies that, if either of the message IDs is received, the entire text
of the message is captured as a variable named STRNG and passed to the
command list IEE362A for automation processing. The command list parses the
message string to determine the value of x in the message and uses that value
when issuing the MVS START command to start the sample procedure CLRSMF.

You generally use a command list or command processor when the action you are
automating involves issuing more than one command or when the process of
extracting information from the message is too complex for the automation table.
Also, multiline write-to-operator (MLWTO) messages require special message
processing that must be done in a command list or command processor.

Statement �7� in Figure 203 on page 582, for message ID $HASP646, message �G�
in Figure 204 on page 583, is part of a monitoring sample for JES2 spool utilization.
To monitor the spool utilization, set a NetView timer to issue the $D SPOOL
command at certain intervals. In the samples provided, the NetView command
EVERY is issued in the initial command list whenever the autotask AUTO1 is
initialized, and the $D SPOOL command is scheduled to be issued every 24 hours.

When the $D SPOOL command runs, the message $HASP646 results. When the
automation table receives message $HASP646, it passes the message text to the
NetView command list $HASP646. That command list checks the spool utilization
percentage. If the spool utilization is greater than 70%, the command list cancels all
held jobs more than 24 hours old. In addition, the command list sets a second
timer that drives the $DSPOOL2 command list every hour. That command list
monitors the spool space until spool utilization goes below 20%.

The technique of issuing query commands at regular intervals and taking actions
based on the status is called proactive monitoring. The basic automation sample
set uses a very basic example of proactive monitoring. See “Proactive Monitoring”
on page 589.

Activating the Basic Automation Sample Set
If you elect to pattern your automation after the sample set for automation, you
can activate the basic automation sample set. To activate samples from the basic
automation sample set, you must:
v Ensure that the necessary messages are forwarded to NetView
v Define command synonyms for the command lists
v Prepare and activate the sample automation table
v Activate the AUTO1 autotask
v Test the basic automation sample set

The following sections describe the steps in activating the basic automation sample
set.

Defining Command List Synonyms: For the basic automation sample set to
work, you must define the necessary command synonyms by combining the
command definitions contained in CNMS6206 with the existing CNMCMD.

CNMS6206 contains one entry for each basic automation sample set command list.
The command synonyms are used throughout the basic automation sample set. If
any of those synonyms conflicts with a synonym already defined in your system,
you might have to change the basic automation sample set command synonym. If
so, be sure to change it in all of the samples that refer to that command synonym.

Appendix I. The Sample Set for Automation 585

Preparing and Activating the Sample Automation Table: The sample automation
table for the basic automation sample set is ACOTABLE (CNMS6205). To run
ACOTABLE:
v Prepare the NetView automation table for use.
v Test the syntax of the table.
v Activate the table.

Preparing the Sample Automation Table: You should become familiar with what is in
the basic automation sample set automation table, ACOTABLE (CNMS6205) and
decide which samples to use. If you decide not to activate all of the basic
automation sample set samples, you must remove the ACOTABLE entries that
drive the samples you do not want to use.

The automation table supplied with the basic automation sample set, ACOTABLE
(CNMS6205), can be used as a standalone NetView automation table or can be
combined with an existing table, perhaps one that you are already using in
production. If you are already using an automation table, you can copy the entries
that drive the samples you want to use from ACOTABLE into your existing
automation table. Alternatively, you can leave the entries in a separate file and
include them in your table with a %INCLUDE statement.

Ensure that the ACOTABLE entries do not conflict with existing entries in your
automation table. For example, if you have duplicate message IDs without
CONTINUE(Y), only the first statement in the table is driven when the message is
received, because the automation table is processed sequentially. If there are
conflicts, edit the table to resolve the conflicts. After including the ACOTABLE
entries, reorganize your table for processing efficiency. See “Design Guidelines for
Automation Tables” on page 232 for a list of principles to follow.

Testing the Syntax of the Sample Automation Table: When you have prepared an
automation table by combining the one from the basic automation sample set with
your existing automation table, test the syntax by issuing command �1� in
Figure 206, in which automem is the name of the member containing the automation
table. If the syntax is correct, you see the message CNM501I, message �2� in
Figure 206.
Otherwise, correct the syntax and perform the test again.

Activating the Sample Automation Table: After a successful test of the automation
table, you can activate it. It is not necessary to stop and restart NetView to change
which automation table is active. Activate your automation table using the
AUTOTBL command in Figure 207.

The table you specify is the active automation table until you stop and restart
NetView, deactivate that automation table, or activate another automation table.

To activate the table automatically every time NetView comes up, specify the table
in the CNMSTYLE member.

Activating the Autotask AUTO1: Ensure that your initial command list starts the
autotask AUTO1, which is used by the basic automation sample set. If you are

AUTOTBL MEMBER=automem,TEST �1�
CNM501I TEST OF MESSAGE AUTOMATION FILE "automem" WAS SUCCESSFUL. �2�

Figure 206. Testing Your Automation Table

AUTOTBL MEMBER=automem

Figure 207. Activating Your Automation Table

586 Automation Guide

|

using CNME1034, the initial command list shipped with NetView, the AUTO1
autotask is already started for you. If you are using another initial command list,
ensure it contains command �1� in Figure 208.

If you want to use the JES2 spool utilization monitoring and recovery samples,
schedule the $D SPOOL command for processing at regular intervals. Do that by
running the AUTO1IC command list under AUTO1. You can run the AUTO1IC
command list under AUTO1 by entering command �2� in Figure 208 from an
authorized operator’s console.

To automatically schedule the $D SPOOL command for repeated processing
whenever AUTO1 logs on and runs its initial command list, call the AUTO1IC
command list from the initial command list for AUTO1. The initial command list
for AUTO1 is specified in member DSIPROFC (CNMS1026) of DSIPRF in the
NetView samples as being LOGPROF2 (CNME1032). Therefore, if you are using
the NetView samples, add a line to LOGPROF2 to call the AUTO1IC command list.

Testing the Basic Automation Sample Set: Before putting the basic automation
sample set into production, verify that the NetView automation table entries result
in the actions you anticipate. For information about testing automation, see
Chapter 34, “Automation Table Testing,” on page 473.

Using the Advanced Automation Sample Set
The advanced automation sample set contains samples that show how you might
use NetView to automate functions such as initialization, monitoring, recovery, and
shutdown of subsystems and applications. It is not intended to be a drop-in
solution to automation but an example of the coordinated automation technique
described in Chapter 23, “Establishing Coordinated Automation,” on page 357.

The advanced automation sample set includes command lists, several full-screen
panels that display the status of the automation, and some network definition
samples, such as automation table entries. The command lists are written in both
the NetView command list language and REXX. If they are run on a system that
has NetView REXX capability, the command lists run in REXX. If they are run on a
system that has no NetView REXX capability, they run in the NetView command
list language.

Note: In this section, the term product refers to a subsystem or application that is
automated using the advanced automation sample set. “Cross-Reference
Listing of Command Lists and Samples” on page 611 contains a
cross-reference listing of all samples contained in the advanced automation
sample set.

Functions Performed by the Advanced Automation Sample Set
The advanced automation sample set demonstrates how you can automate the
initialization, monitoring, recovery, and shutdown of specific products on a system
using the techniques discussed in Chapter 23, “Establishing Coordinated
Automation,” on page 357. The sample set also demonstrates the use of an
operator interface tailored to the automated environment using VIEW panels as
discussed in “Creating Full-Screen Panels” on page 366. The advanced automation
sample set includes command lists that automate the operation of the products

AUTOTASK OPID=AUTO1 �1�
EXCMD AUTO1 AUTO1IC �2�

Figure 208. Activating Autotask AUTO1

Appendix I. The Sample Set for Automation 587

listed in Table 37.

Table 37. Processes Automated by the Advanced Automation Sample Set for Each Product

Product Initialization Monitoring Recovery Shutdown

JES2 * * * *

JES3 * * * *

VTAM * * *

TSO * * *

IMS * * * *

CICS * * * *

Initialization: The advanced automation sample set demonstrates how to
automate the initialization of an entire system and of specific products. The
advanced automation sample set accomplishes an orderly initialization of a system
by first processing command list AOPIVARS (CNME6400), the central command
list of the advanced automation sample set. AOPIVARS initializes the automation
global variables, loads the automation table to be used, and logs on autotask
AUTOMGR, which is the central advanced automation sample set autotask.

The initial command list of AUTOMGR, AOPIMGIC (CNME6402), provides an
orderly start-up of all automated products that were initialized in AOPIVARS by
logging on an autotask for each automated product and by processing the timer
command that periodically triggers the proactive monitoring command list
AOPMACT. The initial command list of each autotask that AUTOMGR starts,
AOPIGNIC (CNME6403), starts the product for which the autotask is responsible,
making sure that all other products upon which that product is dependent are
active.

The start command list for each product issues the command to start the product
and waits for the message that indicates the product has successfully initialized.
The initial command list of each autotask also issues a timer command to
periodically run command list AOPMCHEK to check the autotask status. To
initialize a specific product, process the start command list for the product.

The initialization portion of the advanced automation sample set uses passive
monitoring. The initialization-completion messages for each product are routed to
the product autotask from the automation table.

Monitoring: The advanced automation sample set uses passive monitoring of
messages for its product initialization, shutdown, and recovery. The advanced
automation sample set uses proactive monitoring to periodically check the status of
automated products and autotasks.

Passive Monitoring: The basic automation sample set contains examples of passive
monitoring of system-related operations. Entries are contained in the automation
table for messages requiring simple, routine responses by the operator. Once a
message and its appropriate automation procedure are added to the table, the
response to the message becomes automatic, replacing the need for the operator to
respond to the message.

In the advanced automation sample set, the samples provide automation of
system-operations-related passive monitoring in more complex situations. Instead

588 Automation Guide

of focusing on responding to a single event, the samples focus on what is required
to perform processes such as initialization, recovery, or shutdown of subsystems
and applications within a single system.

An Example of Passive Monitoring: Suppose that you are an operator on a system
with no automation installed. CICS runs on your system, and you want to keep it
running at all times. If CICS ends abnormally for any reason, the message in
Figure 209 is displayed.

Unless you notice the message when it appears, you find out about the failure only
if a user calls to complain or if you browse the log and see the failure message.

With passive monitoring, it is not necessary to know about the problem, because it
is corrected automatically. The automation table contains an IF statement that
watches for the DFH0606 termination message, traps it, and invokes the command
list DFH0606 to restart the application upon receipt of the message. For example,
the automation table supplied with the advanced automation sample set automates
the DFH0606 action with the statement in Figure 210.

As soon as the failure message is received, this statement detects it and restarts the
application. No action on your part is required.

Proactive Monitoring: Proactive monitoring involves querying the system and
network to monitor the status of the environment. It is implemented in the
advanced automation sample set by using timer commands to process command
lists at regular intervals. Proactive monitoring is controlled by autotask
AUTOMGR, which is the central automation autotask used in the advanced
automation sample set. Two components in the proactive monitoring samples are
supplied with the advanced automation sample set:
v An active-monitor command list, AOPMACT (CNME6439), which ensures that

automated products remain active after initialization.
v An autotask-monitor command list, AOPMCHEK (CNME6440), which

periodically checks all autotasks supplied with the advanced automation sample
set to ensure that they remain active.

AOPMACT issues query commands to the automated products that you have
defined to automation, actively soliciting information on the current status of those
components. The status information returned by the components is compared to
the desired state of the components as defined in global variables. Where the
desired state and the current actual state do not match, messages are sent to notify
personnel of a potential problem.

AOPMCHEK periodically sends messages to all advanced automation sample set
autotasks and waits for a response. Global variables are used to keep track of the
status of the autotasks. The PPT is used to check autotask AUTOMGR, and

+DFH0606 ABEND xxxx HAS BEEN DETECTED
$HASP395 CICS ENDED

Figure 209. CICS Abend Message

IF MSGID = '+DFH0606' THEN
EXEC(CMD('DFH0606') ROUTE (ONE AUTOMGR))
DISPLAY(Y) NETLOG(Y);

Figure 210. Passive Monitoring in the Advanced Automation Sample Set

Appendix I. The Sample Set for Automation 589

AUTOMGR is used to check all other advanced automation sample set autotasks.
If an autotask does not respond, a message is sent to inform the system operator of
a potential problem.

Autotasks are a powerful tool in automation. However, the fact that autotasks
generally run unattended without an associated console means that a failed or
unresponsive autotask can go unnoticed. The result might be that all new work for
an autotask either is queued and not processed or, if the autotask is logged off, is
never received.

The advanced automation sample set uses the following method to minimize the
amount of time an autotask failure goes unnoticed:
1. A timer command schedules processing of the autotask-monitor command list,

AOPMCHEK (CNME6440), for each autotask from the autotask’s initial
command list. In the advanced automation sample set, AOPMCHEK is
scheduled to be processed periodically. The time period for AOPMCHEK to be
called is set in AOPIVARS. To monitor autotask AUTOMGR, which controls the
other autotasks, AOPMCHEK is processed under the PPT. AOPMCHEK is
processed under autotask AUTOMGR for all other autotasks in the advanced
automation sample set. The autotask operator ID and a status of CHECK are
passed as parameters to AOPMCHEK.

2. When AOPMCHEK is processed with the string of CHECK, the status of the
autotask in question is checked to see if it is already set to CHECK. If it is, an
acknowledgment was never sent to AOPMCHEK from the last autotask check,
and an error message is sent to the system operator, indicating that the
autotask is unresponsive. If the status of the autotask is not already set to
CHECK, the status is set to CHECK, and a message is sent to the autotask
requesting a response.

3. The message sent to an autotask requesting a response is intercepted by the
automation table and turned into a command to process command list
AOPMCHEK to generate an acknowledgment.

4. If the autotask is responding, AOPMCHEK is processed to generate an
acknowledgment. AOPMCHEK then changes the status of the autotask from
CHECK to ACTIVE.

An Example of Proactive Monitoring: This section discusses how proactive
monitoring works for the AUTOJES autotask. AOPIGNIC is the initial command
list for AUTOJES. AOPIGNIC issues command �1� in Figure 211, assuming the
time period to check autotasks is set to 5 minutes in AOPIVARS.

Command �1� is a check to be performed by AUTOMGR on the status of
AUTOJES every 5 minutes. When command list AOPMCHEK is called, the
autotask is identified (AUTOJES), and the type of processing to be performed is
identified (CHECK).

When AOPMCHEK is processed with a check requested and the current status of
AUTOJES is ACTIVE, the status is set to CHECK, and command �2� in Figure 211
is issued.

EXCMD AUTOMGR,EVERY 5,ID=JESCHK,AOPMCHEK AUTOJES CHECK �1�
MSG AUTOJES CHECKING AUTOTASK - AUTOJES �2�
DSI039I MESSAGE FROM AUTOMGR : CHECKING AUTOTASK - AUTOJES �3�

Figure 211. Proactive Monitoring for the AUTOJES Autotask

590 Automation Guide

As a result, message DSI039I, message �3� in Figure 211 on page 590, is generated
and sent to AUTOJES.

The message is intercepted by the automation table statement in Figure 212:

When message DSI039I is received and the ninth token is an autotask name, the
command in Figure 213 is sent to autotask AUTOJES.

The command in Figure 213 calls command list AOPMCHEK under autotask
AUTOMGR (to acknowledge that AUTOJES is active).
v If AUTOJES is responding, the command is processed, causing command list

AOPMCHEK to change the status of AUTOJES from CHECK to ACTIVE.
v If AUTOJES is not responding, the command is not processed and the status of

AUTOJES remains CHECK.

When AOPMCHEK is processed with a check requested and the current status of
AUTOJES is CHECK, the autotask has not responded to the last check sent to it.
That results in an error message being sent to the system operator, indicating that
AUTOJES is not responding.

Recovery: The advanced automation sample set demonstrates how to recover
automated products upon receipt of a message indicating an abnormal termination
of the product. The function is equivalent to an operator’s attempting to restart a
product after receiving a console message indicating an abnormal termination.

When certain messages are received by the automation table, a restart of the failing
product is attempted by processing a command list. The command list sets a timer
command that, if processed after a certain period of time, indicates that the
recovery attempt has failed. The recovery command list then processes the start
command list for the failed product. If the recovery attempt is successful, the timer
command that issues the recovery-failure message is purged.

The recovery portion of the advanced automation sample set uses passive
monitoring. Messages received by the automation table that indicate either an
abnormal failure or a unsuccessful restart attempt initiate the recovery process.
Increasing recovery function involves:
v Adding an automation table statement for the messages you want to automate,

to indicate that a restart is required
v Adding recovery command lists, as required

Shutdown: The advanced automation sample set demonstrates how to shut down
automated products on a system. The automatic shutdown of a system or a
specific product follows the same process that an operator attempting to shut
down a system or product follows. To shut down a specific product, the shutdown
command is issued. Shutdown is complete once the message indicating the
product has completed shutdown successfully is received. To shut down all

IF MSGID = 'DSI039I' & TOKEN(9) = 'AUTOJES' THEN
EXEC(CMD('EXCMD AUTOMGR,AOPMCHEK AUTOJES ACKNOWLEDGEMENT')
ROUTE (ONE AUTOJES)) SYSLOG(N) NETLOG(N) DISPLAY(N);

Figure 212. Proactive Monitoring for Message DSI039I

EXCMD AUTOMGR,AOPMCHEK AUTOJES ACKNOWLEDGEMENT

Figure 213. Automation Table EXCMD Command in Response to DSI039I Message

Appendix I. The Sample Set for Automation 591

automated products, the shutdown must be ordered so that certain products are
not shut down until products that are dependent upon them have completed their
shutdown processes.

The main command list to shut down all automated products is AOPSMAIN
(CNME6412). AOPSMAIN shuts down products in an orderly manner by stopping
them in the reverse of the order in which they were initialized. AOPSMAIN also
ensures that no product shuts down before any dependent products have
completed their shutdowns. When AOPSMAIN determines that nothing that
depends on a product remains active, the stop command list for the product is
invoked. The stop command list issues the stop command for that product and
waits for the message indicating the shutdown is complete. To shut down a
specific product, process the stop command list for that product.

The shutdown portion of the advanced automation sample set uses passive
monitoring. Messages received indicating a product has completed its shutdown
process are trapped by the automation table and routed to the shutdown autotask
for that product.

Enhancing the Operator Interface: Command list AOPUSTAT (CNME6438)
demonstrates how to use VIEW panels to display automation information for
automated products. The central panel, CNMS64P0, can be used for keeping
personnel up to date on any status changes, as automation makes or discovers
them. A change in the status of an automated product results in CNMS64P0 being
dynamically refreshed. A description of the operator interfaces contained in the
advanced automation sample set is included in “Operator-Interface Command List
and Panels” on page 600.

Command Lists Used in the Advanced Automation Sample Set
The following sections describe how command lists and the automation table are
used in the advanced automation sample set to initialize, recover, actively monitor
and shut down a system.

Note: If you want to manually start or stop a product while automation is in
effect, you should use the appropriate initialization or shutdown command
list. This ensures that automation keeps accurate information concerning the
desired status of the product and the time the status last changed.

Advanced Automation Sample Set Functions
This section lists the command lists and samples that perform the various
functions included in the advanced automation sample set.
v Command lists exist to set initial automation global-variable settings for each

automated product. The automation global variables contain information such as
a product’s current status and the MVS command used to start it.
Related command lists: AOPIVARS, AOPIGUPD.

v Automation table entries exist to suppress unnecessary messages, reply to
messages, route messages to the correct operators, and process command lists in
response to messages.
Related sample: DSITBL11 (CNMS6405).

v One controlling autotask activates an autotask for each automated product. Each
product’s dedicated autotask is responsible for doing the automation tasks
related to that product.
Related command lists: AOPIMGIC, AOPIGNIC, AOPIVARS.

592 Automation Guide

Related samples: CNMS6408, CNMS6409, CNMS6410 (DSIOPF and automated
operator profiles).

v Initialization routines issue MVS commands to start up automated products,
respond to messages required for initialization, and ensure the products become
active within a time limit.
– Command lists exist that initialize products and ensure that they become

active within a reasonable time limit. The command lists set the desired status
of the products to active and set the time the current status of the products
changed.
Related command lists: AOPIJES3, AOPIJES2, AOPIVTAM, AOPITSO,
AOPIIMS, AOPICICS.

– Command lists exist that are processed from the automation table for product
initialization.
Related command list: $HASP426.

v Shutdown routines issue MVS commands to shut down automated products,
respond to messages required for shutdown, and ensure the products become
inactive within a time limit.
– Command lists exist to shut down products and ensure that they become

inactive within a reasonable time limit. The command lists set the desired
status to inactive and set the time the current status of the products changed.
Related command lists: AOPSMAIN, AOPSJES3, AOPSJES2, AOPSVTAM,
AOPSTSO, AOPSTSO2, AOPSIMS, AOPSIMS2, AOPSCICS, AOPSPURG.

– Command lists are processed using timer commands for product shutdown.
Related command list: VTAMTMRZ.

– Command lists are processed from the automation table for product
shutdown.
Related command lists: AOPTJRC3, DFS996I, DFS000IB.

v Recovery routines trap messages that indicate an undesirable status of a product
and attempt to re-initialize the product.
– Command lists are processed from the automation table for product recovery.

Related command lists: IAT3714, IAT3708, $HASP095, $HASP098, $HASP085,
DFS629I, DFH0606, IKT002I.

– Command lists are processed using timer commands for product recovery.
Related command lists: JESTMRA, IMSTMR, CICSTMRA.

v Active-monitoring routines check the status of automation at intervals and
monitor the status of products and the automated operators.
– An active-monitoring command list exists that checks periodically to ensure

that the current status of the automated products and the desired status
match. It is started by the AUTOMGR autotask initial command list
(AOPIMGIC).
Related command list: AOPMACT.

– An autotask-monitor command list exists that makes use of the automation
table to periodically monitor the advanced automation sample set autotasks
to ensure that they remain active. It is started by the initial command list for
autotask AUTOMGR (AOPIMGIC) and by the initial command list for the
other advanced automation sample set autotasks (AOPIGNIC).
Related command list: AOPMCHEK.

v Operator-started command lists and associated display panels exist that present
the current status of all automated products and specific information regarding
each automated product.

Appendix I. The Sample Set for Automation 593

Related command list: AOPUSTAT.
Related panels: CNMS64P0 - CNMS64P5.

The advanced automation sample set provides the following standard message
notifications:
v Messages are sent to the system operator in case of automation failure or

undesirable conditions that automation cannot resolve.
v A message is sent to the network log on entry to any command list. If you do

not want this message in the network log, you can remove the statement that
sends it.

Naming Conventions for Advanced Automation Sample Set
Command Lists
The command lists in the advanced automation sample set are named according to
the following general rules:
v Command lists that perform specific operator tasks and are not triggered by

messages have AOP as their first three letters. The fourth letter represents the
type of action taken by the command list:
AOPI... Initialization
AOPM... Proactive monitoring
AOPS... Shutdown
AOPU... Utility

v Command lists called from the automation table have names identical, where
possible, to the messages that trigger them in the automation table. For example,
$HASP426 is a command list that is called to handle JES2 message $HASP426.

v Command lists called by using a NetView timer from one of the advanced
automation sample set command lists generally have the characters TMR
contained in the command list name.

Initialization and Active-Monitoring Command Lists
The initialization and active-monitoring command lists are:
AOPIVARS Main initialization command list
DSITBL11 Activates automation table
AOPIGUPD Sets common global variable (called many times)
AUTOMGR Activates AUTOMGR autotask
AOPIMGIC AUTOMGR initial command list
AUTOJES Activate JES autotask
AOPIGNIC Generic initial command list
AOPIJES2 Starts JES2 and ensures that it has started
$HASP426 Specifies options to JES2
AOPIJES3 Starts JES3 and ensures that it has started
AOPMCHEK Periodically checks AUTOJES autotask
AUTOVTAM Activates VTAM autotask
AOPIGNIC Generic initial command list
AOPIVTAM Starts VTAM and ensures that it has started
AOPMCHEK Periodically checks AUTOVTAM autotask
AUTOTSO Activates TSO autotask
AOPIGNIC Generic initial command list
AOPITSO Starts TSO and ensures that it has started
AOPMCHEK Periodically checks AUTOTSO autotask
AUTOIMS Activates IMS autotask
AOPIGNIC Generic initial command list
AOPIIMS Starts IMS and ensures that it has started
AOPMCHEK Periodically checks AUTOIMS autotask
AUTOCICS Activates CICS autotask

594 Automation Guide

AOPIGNIC Generic initial command list
AOPICICS Starts CICS and ensures that it has started
AOPMCHEK Periodically checks AUTOCICS autotask
AOPMACT Actively monitors to ensure products remain active
AOPMCHEK Periodically checks AUTOMGR autotask

The CNMSTYLE member must be customized to run AOPIVARS. Information
about the CNMSTYLE member can be found in IBM Tivoli NetView for
z/OS Installation: Getting Started.

AOPIVARS:
1. Activates the automation table
2. Sets the global variables used in the advanced automation sample set, such as

the start, shutdown, and display commands for each product that is automated
3. Logs on the AUTOMGR automation task ID

AOPIMGIC is the initial command list for AUTOMGR when it is logged on.
1. AOPIMGIC starts an autotask for each automated product. The name of each

autotask is built by concatenating the letters AUTO with the name of the
product, as set in AOPIVARS. The product name set in AOPIVARS must be
four or fewer letters. Shipped with the advanced automation sample set are
definitions for autotasks AUTOJES, AUTOVTAM, AUTOTSO, AUTOIMS, and
AUTOCICS. Each uses AOPIGNIC as its initial command list.

2. AOPIMGIC then issues a timer command to call the active-monitor command
list AOPMACT at a given interval.

3. AOPIMGIC also issues a timer command to periodically invoke command list
AOPMCHEK to ensure that AUTOMGR stays active.

AOPIGNIC is a generic initial command list that starts an automated product by
calling the start-up command list of the product for which it is called (AOPIJES2,
AOPIJES3, AOPIVTAM, AOPITSO, AOPIIMS, or AOPICICS). AOPIGNIC also
issues a timer command to periodically call command list AOPMCHEK to ensure
that the autotask stays active. Some products require another product to be active
before they can be activated. AOPIGNIC has special logic to wait for a predecessor
product (if any) to activate before attempting to activate the product at hand.

AOPIJES2 is called by AOPIGNIC if you are operating in a JES2 environment.
AOPIJES2 checks the status of JES2:
v If JES2 is already active, AOPIJES2 sets the desired status to ACTIVE and exits.
v If JES2 is not active, AOPIJES2 issues the JES2 start command and waits a

specified period of time for JES2 to activate. If JES2 does not become active
within that time period, a warning message is issued to the system operator,
indicating that JES2 has not yet initialized.
Starting JES2 causes message $HASP426 (specify options) to be generated, which
triggers a command list with the same name. The $HASP426 command list
responds to the outstanding request with the user-specified reply set in
AOPIVARS at initialization time.

AOPIJES3 is called by AOPIGNIC if you are operating in a JES3 environment.
AOPIJES3 checks the status of JES3:
v If JES3 is already active, AOPIJES3 sets the desired status to ACTIVE and exits.
v If JES3 is not active, AOPIJES3 issues the JES3 start command and waits a

specified period of time for JES3 to activate. If JES3 does not become active

Appendix I. The Sample Set for Automation 595

|

|

within that time period, a warning message is issued to the system operator,
indicating that JES3 has not yet initialized.

AOPIVTAM is called by AOPIGNIC. AOPIVTAM checks the status of VTAM:
v If VTAM is already active, AOPIVTAM sets the desired status to ACTIVE and

exits.
v If VTAM is not active, AOPIVTAM issues the VTAM start command and waits a

specified period of time for VTAM to activate. If VTAM does not become active
within that time period, a warning message is issued to the system operator,
indicating that VTAM has not yet initialized.

AOPITSO is called by AOPIGNIC. AOPITSO checks the status of TSO:
v If TSO is already active, AOPITSO sets the desired status to ACTIVE and exits.
v If TSO is not active, AOPITSO issues the TSO start command and waits a

specified period of time for TSO to activate. If TSO does not become active
within that time period, a warning message is issued to the system operator,
indicating that TSO has not yet initialized.

AOPIIMS is called by AOPIGNIC. AOPIIMS checks the status of IMS:
v If IMS is already active, AOPIIMS sets the desired status to ACTIVE and exits.
v If IMS is not active, AOPIIMS issues the IMS start command and waits a

specified period of time for IMS to activate. If IMS does not become active
within that time period, a warning message is issued to the system operator,
indicating that IMS has not yet initialized.

AOPIIMS can start data communications by answering a WTOR for IMS. It can
also start IMS regions, if appropriate lines in the command list are uncommented.

AOPICICS is called by AOPIGNIC. AOPICICS checks the status of CICS:
v If CICS is already active, AOPICICS sets the desired status to ACTIVE and exits.
v If CICS is not active, AOPICICS issues the CICS start command and waits a

specified period of time for CICS to activate. If CICS does not become active
within that time period, a warning message is issued to the system operator,
indicating that CICS has not yet initialized.

AOPMCHEK is called by AOPIMGIC and AOPIGNIC through a timer command
to periodically check the advanced automation sample set autotasks to ensure that
they remain logged on and active. AOPMCHEK sends a message to an autotask
using the NetView MSG command. The message is intercepted by the automation
table, which processes a command to the autotask to call AOPMCHEK again with
an acknowledgment that it is still active. If an autotask becomes unresponsive,
AOPMCHEK sends a message to the system operator.

AOPMACT is called by AOPMGNIC to monitor the automated products to ensure
that they remain active. If a product becomes inactive, a message is sent to the
system operator.

Recovery Command Lists
The command lists for recovery are:

JES2:
$HASP095 Stores the JES2 abend code
$HASP098 Replies to message based on JES2 abend code
$HASP085 Restarts JES2
JESTMRA Resets JES2 abend counter

596 Automation Guide

JES3:
IAT3714 Issues reply to JES3 dump request and restarts JES3
IAT3708 Resets JES3 status to ACTIVE and purges JES3 recovery check

timer
AOPTJRC3 Resets JES3 abend counter

IMS:
DFS629I Restarts IMS if it ends abnormally
IMSTMR Updates IMS timer to blank after 15 minutes

CICS:
DFH0606 Restarts CICS if it ends abnormally
CICSTMRA Updates CICS timer to blank after 5 minutes

JES2 recovery is triggered by message $HASP095.
1. When message $HASP095 is received by the automation table, command list

$HASP095 is called. Command list $HASP095 saves the abend code contained
in the message and increments the abend counter.

2. Command list $HASP098 is next called from the automation table in response
to message $HASP098; it replies to message $HASP098 based on the abend
code saved by command list $HASP095.
v If the abend code is $PJ2, the operator issued the abend command and the

status of JES2 is set to STOPPING.
v Otherwise, a timer command schedules command list JESTMRA to be called

after five minutes, and the status of JES2 is changed to ABEND. When
JESTMRA is called, it resets the abend counter for JES2 to 0. The desired
replies to message $HASP098 are set in AOPIVARS as message- response
variables.

3. Command list $HASP085 is called by the automation table and restarts JES2.

JES3 recovery is triggered by message IAT3714. When message IAT3714 is received
by the automation table, command list IAT3714 is called. IAT3714 updates the JES3
status to ABEND.
v If this is the first time JES3 has ended abnormally, a reply to the message is sent,

the abend count is set to indicate that a JES3 abend has occurred, and a timer
command is issued to display the message JES3 RECOVERY FAILED after five
minutes.

v If JES3 has ended abnormally a second time or the JES3 reply was not valid, a
message is sent to the operator to indicate the need for a manual recovery
process, and command list AOPTJRC3 is called to reset the abend count.

When message IAT3708 is intercepted by the automation table, indicating that JES3
activation is complete, command list IAT3708 is started to reset the JES3 status to
ACTIVE and purge the JES3 message timer, and AOPTJRC3 is called to reset the
IAT3714 reply counter to 0.

CICS recovery is triggered by message DFH0606. When the message is received by
the automation table, command list DFH0606 is called. DFH0606 updates the CICS
status to ABEND.
v If CICS has ended abnormally in the last five minutes, a message is sent to the

operator, indicating so.
v Otherwise, a timer command to drive command list CICSTMRA after five

minutes is issued and the CICS start command is issued. CICSTMRA sets the
indicator that an abend occurred in the last five minutes to off.

Appendix I. The Sample Set for Automation 597

IMS recovery is triggered by message DFS629I. When the message is received by
the automation table, command list DFS629I is called. DFS629I updates the IMS
status to ABEND.
v If IMS has ended abnormally in the last 15 minutes, a message is sent to the

operator, indicating so.
v Otherwise, a timer command to call command list IMSTMR after 15 minutes is

issued and the IMS start command is issued. IMSTMR sets the indicator that an
abend occurred in the last 15 minutes to off.

Shutdown Command Lists
The command lists for shutdown are:
AOPSMAIN Command list to order shutdown of all automated products
AOPSCICS Initiates CICS shutdown
AOPSIMS Initiates IMS shutdown by issuing a message to users to log off

and by setting a timer to call AOPSIMS2.
v DFS000IB - Stores IMS region numbers for shutdown
v AOPSIMS2 - Completes shutdown of IMS
v DFS996I - Captures and stores the WTOR for later use

AOPSTSO Initiates TSO shutdown by issuing a message to users to log off
and by setting a timer to call AOPSTSO2.
v AOPSTSO2 - Completes TSO shutdown

AOPSVTAM Initiates VTAM shutdown and sets timer to call VTAMTMRZ if
required.
v VTAMTMRZ - Issues the cancel command to shutdown VTAM if

necessary
AOPSJES2 Initiates JES2 shutdown by calling AOPSPURG and issuing

command to shutdown JES2.
v AOPSPURG - Drains all units (printers, punches, initiators, etc.)

You must customize this command list for your environment.
AOPSJES3 Initiates JES3 shutdown.

v AOPTJRC3 - Resets the reply count for message IAT3714 to zero
(0)

AOPSMAIN shuts down all products that have values set in AOPIVARS. If a
product is dependent on another product to shut down before it can shut down,
AOPSMAIN periodically checks if the required prior product shutdown is
complete before starting the subsequent shutdown procedure. The products are
shut down in the reverse of the order in which they are listed in AOPIVARS.
AOPSMAIN calls these command lists:
v AOPSCICS to stop CICS
v AOPSIMS to stop IMS
v AOPSTSO to stop TSO
v AOPSVTAM to stop VTAM
v AOPSJES2 to stop JES2
v AOPSJES3 to stop JES3

AOPSCICS checks the status of CICS:
v If CICS is already down, AOPSCICS sets the desired status to DOWN and exits.
v If CICS is not down, the command to stop CICS is issued. A message is issued

to the system operator if the shutdown does not complete within a set time
limit.

598 Automation Guide

AOPSIMS is called and broadcasts a message to users to log off because IMS is
shutting down in two minutes and issues a timer command to call command list
AOPSIMS2 after two minutes:
v AOPSIMS updates the desired status of IMS to DOWN. It also checks the

current-status variable and exits if it is already set to DOWN or sets the variable
to STOPPING.

v AOPSIMS broadcasts a message warning users to log off within two minutes.
v AOPSIMS displays active regions, and command list DFS000IB, which is issued

from the automation table, stores the IMS region numbers.
v AOPSIMS then issues a timer command to call AOPSIMS2 after two minutes.

AOPSIMS2 issues commands to stop the IMS regions, data communications, and
IMS.
– If a message indicating successful shutdown is received within a set time

period, AOPSIMS2 updates the current-status variable to DOWN, and
command list DSF996I, which is issued from the automation table, captures
the IMS WTOR for later use.

– If the message is not received within the set time period, AOPSIMS2 issues a
message to the system operator to indicate a problem.

AOPSTSO issues a message to users telling them that TSO is to be shut down.
AOPSTSO then issues a timer command to call command list AOPSTSO2.
AOPIVARS specifies how long AOPSTSI waits before calling AOPSTSO2.
AOPSTSO2 starts after the time elapses and checks the status of TSO:
v If TSO is down, AOPSTSO2 sets the desired status to DOWN and exits.
v If TSO is not already down, it issues the command to stop TSO. A message is

issued to the system operator if the shutdown does not complete within a set
time limit.

AOPSVTAM checks the status of VTAM:
v If VTAM is down, AOPSVTAM sets the desired status to DOWN and exits.
v If VTAM is not down, AOPSVTAM issues a timer command to call command

list VTAMTMRZ after three minutes and issues the command to stop VTAM. If
VTAM shuts down correctly, the timer calling VTAMTMRZ is purged.
VTAMTMRZ checks the status of VTAM and exits if it is down. If VTAM is not
down, VTAMTMRZ issues a cancel to VTAM. A message is issued to the system
operator if the shutdown does not complete within a set time limit.

AOPSJES2 checks the status of JES2:
v If JES2 is already down, AOPSJES2 sets the desired status to DOWN, and exits.
v If JES2 is not down, it issues command list AOPSPURG. AOPSPURG drains all

of the devices to JES2.
After all devices are drained, the command to stop JES2 is entered. A message is
issued to the system operator if the shutdown does not complete within a set
time limit.

AOPSJES3 checks the status of JES3:
v If JES3 is already down, AOPSJES3 sets the desired status to DOWN, and exits.
v If JES3 is not DOWN, AOPSJES3 issues the command to shut JES3 down. A

message is issued to the system operator if the shutdown does not complete
within a set time limit.

Appendix I. The Sample Set for Automation 599

Operator-Interface Command List and Panels
The advanced automation sample set includes a utility command list that can be
used along with VIEW panels to help operate and monitor an automated system.
The operator-interface command list and panels display only those products
defined in AOPIVARS.

Note: If the number of automated products grows to more than nine, command
list AOPUSTAT and panel CNMS64P0 must be changed.

Automation Display Command List: AOPUSTAT displays a panel that shows
the current status and time last updated for the automated products.
v From the panel displayed (CNMS64P0), choosing a specific product displays

complete information regarding the status of the product, including the
commands and command lists used to start and stop the product.

v From the specific product-information panel (CNMS64P1), you can display the
message-response variables for that product as set in AOPIVARS. Each of the
panels has an associated help panel that explains the function provided by its
associated panel.

Automation Display Panels: All the automation display panels are called from
command list AOPUSTAT, which can be called using a synonym of AOSTAT.

CNMS64P0 is the main display panel. CNMS64P0 displays all the automated
products along with the current status, the status the product should be based on
the history of start or stop attempts (DESIRED STATE), the time the status was last
checked by proactive monitoring, and the time the status last changed for each
product. CNMS64P0 also allows you to enter the number associated with a specific
product and view more complete information concerning it with panel CNMS64P1.
CNMS64P3 is the help panel for CNMS64P0. Figure 214 shows an example of
panel CNMS64P0.

Note: Panel CNMS64P0 is automatically updated for any changes by automation
to the current status, desired status, or time-status-changed variables,
thereby ensuring that CNMS64P0 displays current status information.

CNMS64P1 is a generic panel that is called when a product is selected, on panel
CNMS64P0, for which specific information is required. CNMS64P1 displays
information contained in panel CNMS64P0, the variable values of the commands
used to initialize, shut down, and display the status of the product, and the
command lists used to initialize and shut down the product. Specifying R on this
panel indicates that you want to see the message-response-variable values
associated with the product in question. The information is located in panel

CNMS64P0 OPER2 12/21/98 15:53
PRODUCT / CURRENT DESIRED CHECKED STATUS
SUBSYSTEM STATUS STATE AT CHANGED AT

============ ========= ========== =========== ===========
1 JES ACTIVE ACTIVE 15:51 15:28
2 VTAM ACTIVE ACTIVE 15:51 15:29
3 TSO ACTIVE ACTIVE 15:51 15:30
4 CICS ACTIVE ACTIVE 15:51 15:32
5 IMS ACTIVE ACTIVE 15:51 15:32

Select a number and press ENTER for product specific information
OR press ENTER to refresh this panel.

Action===>
PF1= Help PF2= End PF3= Return
PF6= Roll

Figure 214. Sample CNMS64P0 Display

600 Automation Guide

CNMS64P2. CNMS64P4 is the help panel for CNMS64P1. Figure 215 shows how
panel CNMS64P1 looks when TSO has just started. Once TSO becomes active, the
STATUS field would be changed to ACTIVE from STARTING, and the time the
product became active would be filled in.

CNMS64P2 displays the message-response-variable values for the product
currently being examined on panel CNMS64P1. The message-response variables
are in command list AOPIVARS. CNMS64P5 is the help panel for CNMS64P2. Note
that CNMS64P2 only displays information; you cannot change a number on the
panel to change the value of a variable.

Miscellaneous Samples
Besides the six VIEW panels previously discussed, the following 10 samples are
provided in the advanced automation sample set:

CNMS6401 Command definition statements for MVS command verbs so they
can be issued at NetView operator stations. They are not required
for the advanced automation sample set to function correctly.

CNMS6402 Command definition statements for JES2 command verbs so they
can be issued at NetView operator stations. They are not required
for the advanced automation sample set to function correctly.

CNMS6403 Command definition statements for JES3 command verbs so they
can be issued at NetView operator stations. They are not required
for the advanced automation sample set to function correctly.

CNMS6404 Command definition statements for the advanced automation
sample set command lists. They must be added to your existing
CNMCMD.

CNMS6405 Automation-table entries for the advanced automation sample set.
Add them to your existing automation table before activating the
samples. Command list AOPIVARS (CNME6400) activates them in
table DSITBL11. If you place them in a table with a different name,
modify AOPIVARS to reflect the name you use.

CNMS6406 TSO command list to make a copy of a command list written in
the NetView command list language, without comments.
CNMS6406 removes lines that conform to the format used by most
Tivoli samples to indicate comments. That is, the EXEC removes
lines that contain an asterisk in column one followed by a space in
column two or that consist of 20 asterisks in a row. Before running

CNMS64P1 OPER2 12/21/98 15:30
TSO

BECAME ACTIVE AT: WENT INACTIVE AT:
TSO AUTOMATION VALUES

CURRENT STATUS = STARTING
DESIRED STATUS = ACTIVE
START = S TSO
STOP = P TSO
DISPLAY = D J,TSO
START COMMAND LIST - AOPITSO
STOP COMMAND LIST - AOPSTSO

Press R and ENTER to display message responses for TSO
OR press ENTER to refresh this panel.
Action===>

PF1= Help PF2= End PF3= Return
PF6= Roll

Figure 215. Sample CNMS64P1 Display

Appendix I. The Sample Set for Automation 601

CNMS6406, check the file you wish to copy to ensure it conforms
to this format. Ensure that no lines other than comments meet the
criteria for removal.

CNMS6408 Automated-operator definitions required for the advanced
automation sample set. They must be added to your existing
DSIOPF definitions.

CNMS6409 Autotask profile for the advanced automation sample set autotask
AUTOMGR.

CNMS6410 Generic autotask profile for all advanced automation sample set
autotasks except AUTOMGR.

Preparing to Use the Advanced Automation Sample Set
If you are already doing automation without the advanced automation sample set,
you can incorporate pieces of the advanced automation sample set into your
existing automation. To make full use of the automation capabilities provided by
the advanced automation sample set, however, you should start with the advanced
automation sample set and make any required modifications to the sample set. You
need to change your NetView definitions as discussed in the following sections
before bringing up NetView with the advanced automation sample set.

Preparing for NetView Initialization
NetView can be started before other subsystems and applications in the system,
including JES and VTAM. The advanced automation sample set assumes that
NetView is to be initialized by the operating system and that all other applications
and subsystems are thereafter initialized by NetView. This, however, is not a
requirement for automation.

Starting NetView before JES: JES can be started at the same time as NetView or
delayed until NetView automation is active. The advantage of the second approach
is that JES messages that occur during initialization can be captured with the
automation table, allowing you to detect what was running on the system at the
time of failure during JES start-up. Such information can help you decide if the
initialization process should continue normally or if some recovery is required; it
might become a vital part of your recovery during the initialization process.

If you decide to start NetView before JES, special setup is required. The setup
includes:
v The NetView procedure must be started with the START command using the

SUB=MSTR operand.
For example, if you are using the sample procedures supplied with NetView, the
following statement should be added as the last statement of the COMMNDxx
member of SYS1.PARMLIB:
S CNMPSSI,SUB=MSTR
S CNMPROC,SUB=MSTR

The first statement starts the NetView subsystem address space. The second
statement starts the NetView application. It does not matter which statement
you put first.

v The NetView procedure must be stored in the SYS1.PROCLIB, not in a user
library supported by JES.

v The NetView procedure must contain only a single job step.

Note: You can circumvent the single-job-step restriction if you:

602 Automation Guide

– Write a user-written driver that invokes the programs from each step
via the MVS LINK macro interface.

– Combine the DD statements from each step into a single group.
– Specify your program on the EXEC statement for the job.

v All data sets must be referenced by VOL=SER or be cataloged in the master
catalog.

v No SYSIN, SYSOUT or VIO data set can be referenced.
v The NOSTART parameter must be coded on the JES statement in the IEFSSNxx

member of SYS1.PARMLIB to delay the start of JES until NetView is active.
v The JES statement must be coded before the NETVIEW statement in the

IEFSSNxx member of SYS1.PARMLIB.
v If you start your NetView program with SUB=MSTR, the JES job log is allocated by

default when the DSIRQJOB task requests a job ID for the NetView job. If you
do not want the JES job log, you can change the JES job log constant in
DSICTMOD.

v After DSIRQJOB receives a job ID from JES, if JES ends abnormally or terminates
without notifying DSIRQJOB to release the job ID, DSIRQJOB and NetView
cannot be terminated before JES becomes active again. If JES ends abnormally or
is terminated by a user from the command line, the user can use the NetView
MVS Command Revision to circumvent this. Refer to the IBM Tivoli NetView for
z/OS Installation: Getting Started in the section entitled ″Starting NetView before
JES″ for additional information about how to implement this circumvention.

Starting NetView before VTAM: Use NetView to start VTAM or any other
subtask based on specific criteria being met. For example, the order in which
VTAM resources are started and the number of resources started might depend on
the time at which the IPL of the system occurs. NetView can be used to drive
different command lists (based on the time of the IPL) to activate the specified
resources in the order requested for that time of day.

If you bring up NetView before VTAM is active, define those NetView tasks that
require VTAM to be initially inactive. (VTAM-dependent tasks are identified in the
VTAM sample A01APPLS (CNMS0013) used to define the NetView applications.)
This is done by coding INIT=N on the TASK statement in the CNMSTYLE member.
This prevents unnecessary messages from being produced by the tasks while they
wait to connect to VTAM. The tasks can then be started by a command list in
NetView that is driven when the IST020I (VTAM initialization complete) message
is intercepted by the automation table.

Starting NetView before a System Authorization Facility Product: There are
unique issues when using a system authorization facility (SAF) product, such as
RACF (Resource Access Control Facility), in conjunction with the NetView product.
Using a SAF product for any type of security requires the SAF product to be
started before NetView, so you should start the SAF product and required SAF
classes prior to starting NetView.

Modifying the Advanced Automation Sample Set
AOPIVARS (CNME6400) must be run for the advanced automation sample set to
work. It loads an automation table, sets initial values for the global variables to be
used in the advanced automation sample set, and activates autotask AUTOMGR.
AOPIVARS needs to be customized for your operating environment in the
following ways:

Appendix I. The Sample Set for Automation 603

|
|

|

v All value updates of global variables for products that you are not automating
should be removed. For example, AOPIVARS contains definitions for both JES2
and JES3, and at least one of them should be removed.

v All variable values assigned for the commands to be used to start, stop, and
display the status of products should be set to match the commands and names
that your operators use at your installation.

v The time periods set in AOPIVARS for different automation processes can be
changed to their optimal values for your operating environment. For example,
variables set in AOPIVARS tell automation how often to monitor the status of
the automation autotasks.

If you are automating JES2, the AOPSPURG command list requires customization
to drain all JES2 units and devices.

Defining Autotasks
The advanced automation sample set uses autotasks to run command lists in its
automated environment. Supplied with the advanced automation sample set are
operator definitions (CNMS6408) that should be added to your existing operator
profile definitions located in DSIOPF. There are operator definition entries for each
autotask used in the advanced automation sample set: AUTOMGR, AUTOJES,
AUTOVTAM, AUTOTSO, AUTOIMS, and AUTOCICS. If your installation is not
going to automate one or more of the products supported by the advanced
automation sample set, the operator definition does not need to be added to
DSIOPF.

Each DSIOPF entry can designate the autotask’s operator profile, stored in DSIPRF,
which in turn can designate an initial command list for the autotask. Two initial
command lists for the autotasks are shipped with the advanced automation sample
set:
v AOPIMGIC (CNME6402) is the initial command list for autotask AUTOMGR.
v AOPIGNIC (CNME6403) is the generic initial command list used for the other

autotasks.

AUTOMGR is an autotask that is defined and shipped as a sample with the
advanced automation sample set. You can use the definitions supplied for
AUTOMGR as a model when defining your autotasks. Figure 216 shows the
DSIOPF entry for the AUTOMGR that is in the advanced automation sample set
sample CNMS6408.

* (C) COPYRIGHT IBM CORP. 1989 *
* LAST CHANGE: 07/12/89 *
* DESCRIPTION: NETVIEW OPERATOR DEFINITIONS/PASSWORDS *
* FOR AUTOMATED OPERATORS *
* CNMS6408 CHANGED ACTIVITY: *
* CHANGE CODE DATE DESCRIPTION *
* ----------- -------- ------------------------------------*

* THESE OPERATOR DEFINITIONS SHOULD BE ADDED TO YOUR EXISTING *
* DSIOPF OPERATOR DEFINITIONS. *
***...
AUTOMGR OPERATOR PASSWORD=AUTOMGR

PROFILEN DSIPROFM...

Figure 216. CNMS6408 Excerpt (AUTOMGR Operator Definition)

604 Automation Guide

Figure 217 shows the operator profile for the AUTOMGR autotask that is part of
the advanced automation sample set.

As long as AUTOMGR is defined in DSIOPF, it is a valid NetView operator ID.
When AUTOMGR starts, the AOPIMGIC command list runs, because it is the
initial command list defined on the operator profile associated with AUTOMGR.

Defining Command Definition Statements
CNMCMD is the place where you can define command synonyms for your
command lists.

The advanced automation sample set includes entries that must be added to your
existing CNMCMD for the advanced automation sample set to work. The entries
are contained in CNMS6404 of the advanced automation sample set. There is an
entry for each advanced automation sample set command list. Because the
synonyms defined in those entries are used throughout the advanced automation
sample set, the command lists will not work until you have included the entries in
your CNMCMD member.

Note: If a command synonym conflicts with any command synonym already
defined in your system, one solution is to change the synonym supplied in
the advanced automation sample set and in all of the command lists in the
advanced automation sample set where it is referenced.

In addition to the required entries described above, three additional sets of
command synonyms are provided with the advanced automation sample set:
v CNMS6401 contains command definition samples for MVS command verbs.
v CNMS6402 contains command definition samples for JES2 command verbs.
v CNMS6403 contains command definition samples for JES3 command verbs.

The commands are supplied for your convenience but are not required in order to
use the advanced automation sample set.

Modifying the Automation Table
The advanced automation sample set includes automation table entries required
for using the advanced automation sample set. You must ensure that the

* (C) COPYRIGHT IBM CORP. 1989, 1990 *
* ALL RIGHTS RESERVED. *
* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION *
* OR DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT *
* WITH IBM CORPORATION. *
* IEBCOPY SELECT MEMBER=((CNMS6409,DSIPROFM,R)) *
* LAST CHANGE: 07/12/89 *
* DESCRIPTION: AUTOMATED OPERATOR (AUTOMGR) PROFILE DEFINITION *
* CNMS6409 CHANGED ACTIVITY: *
* CHANGE CODE DATE DESCRIPTION *
* ----------- -------- --*

* MINIMAL AUTOMATED OPERATOR PROFILE STATEMENTS FOR AUTOMGR *
* STARTED WITH AUTOTASK COMMAND TO RUN AS AN UNATTENDED OPERATOR. *
* AUTOMGR IS THE AUTOMATED OPERATOR THAT MANAGES THE OTHER *
* AUTOMATED OPERATORS USED IN THE CONSOLE AUTOMATION SAMPLE SET. *

DSIPROFM PROFILE IC=AOPIMGIC

AUTH MSGRECVR=NO,CTL=GLOBAL
END

Figure 217. CNMS6409 Excerpt (DSIPROFM Operator Profile)

Appendix I. The Sample Set for Automation 605

automation table entries that pertain to the areas you want to automate are
included in your production automation table along with automation table entries
that are shipped with the product. You can do this as follows:
v If you do not currently have an automation table that you are using in your

production environment, you can copy the supplied table entries from DSITBL11
(CNMS6405) into the automation table sample (DSITBL01) that is supplied with
NetView, or you can include DSITBL11 in DSITBL01 with a %INCLUDE
statement.

v If you are currently using a production automation table, you can copy
DSITBL11 (CNMS6405) into it or use a %INCLUDE to include DSITBL11. If this
results in message numbers being duplicated in the table, the NetView
automation table entries for those messages should be combined into one
statement. If they are not, only the first of the duplicate statements is triggered
when the message is processed, unless you use a CONTINUE action on the
statement.

v If the automation table you are to use for automation has a name other than
DSITBL11, then update command list AOPIVARS (CNME6400) load the new
table name instead of DSITBL11.

v If you are not automating a given product (for example, TSO), make sure you do
not copy the DSITBL11 (CNMS6405) entries for the product into your production
automation table. If you do, operators who try to start the task manually will
not receive the messages associated with the command at their terminals.

v If you change the automation table while NetView is running, you must recycle
the table by using the AUTOTBL MEMBER=automem command, where automem is the
name of the member containing the automation table.

Several automation tables can be defined. You might want to have separate
automation tables for when you are running the advanced automation sample set
and when you are not. The name of the automation table loaded in command list
AOPIVARS must match the name of the table with the advanced automation
sample set entries.

Customizing the Advanced Automation Sample Set
If you are using the advanced automation sample set to help you develop
automation, the advanced automation sample set makes it easy to customize the
samples for your operating environment. You can add functions to support an
additional product, operating system, command list, or automation table statement.
Once you understand the basic way the advanced automation sample set is
designed, you can make any changes required by your site. The following sections
suggest ways you can add to the advanced automation sample set.

Customizing with Global Variables
Any additional functions you add to the sample set should use the same
global-variable conventions that the sample set uses. Information concerning each
product being automated is shared between command lists using task and
common global variables. Each product has variables associated with it and
containing information required to automate it, such as the command that starts
the product and the command that stops the product. The variables are initialized
during automation initialization (command list AOPIVARS), and command lists
performing any function (initialization, recovery, monitoring, utility, shutdown) can
then access the variables needed for a specific product.

This section describes how complex global variables are built from common global
variables and provides an example of using a complex global variable.

606 Automation Guide

Building and Naming Complex Global Variables: Some of the global variables
used are built from a composite of several other values. For example, a common
global variable containing the command to start a product requires a resource
common prefix (RCP) to identify to the system the command is intended to
automate, a value to signify the variable type (START), and an indication of the
product the variable refers to. To make customizing easier, a pattern is followed
when building complex global variables.

The system being automated is saved in a resource common prefix (RCP) global
variable. RCP (REXX) or &RCP (NetView command list language) is the variable
that identifies the system that NetView is running on. The value of the RCP or
&RCP variable can be up to 5 characters long and is automatically set in
AOPIVARS to the domain ID of the system on which AOPIVARS is running.

The function for which the variable provides information is indicated using 3
characters. For example, CST means the variable provides START information for
the product. The function types used in the advanced automation sample set are:
CST START command for product
CSP STOP command for product
CSA Current® STATUS of product
CDS Desired STATE of product
CDP Command to DISPLAY status of product
CT1 Last time product went active
CT2 Last time product went inactive
STC START command list
SPC STOP command list
PDD Product dependency
WTI Number of seconds to wait for complete initialization
WTS Number of seconds to wait for complete shutdown
CTI Last time status checked by active monitor
CNA Name of the product
COn Message response (n can be any number)

The product identifier is a 3-character variable and is also used when building
complex global variables. The product identifiers used in the advanced automation
sample set are listed in Table 38.

Table 38. Product Identifiers in the Advanced Automation Sample Set

Product REXX Variable NetView Command
List Language
Variable

Value

JES2 or JES3 JES &JES JES

VTAM VTAM &VTAM VTM

TSO TSO &TSO TSO

CICS CICS &CICS CCS

IMS IMS &IMS IMS

The main automation initialization command list is AOPIVARS. AOPIVARS builds
the global variables that contain the information for each product. AOPIVARS
builds its common global variables by invoking command list AOPIGUPD, whose
purpose is to build a global variable and set the value of it based on the input to
the command list. In AOPIVARS, the resource common prefix for the automated
system and the product identifiers for all automated products are set up in
common global variables.

Appendix I. The Sample Set for Automation 607

Example of Using a Complex Global Variable: This section is a complete
step-by-step example of how a complex global variable is built and used in
automation. The example uses NetView command list language variables, but the
building process is the same in REXX. The variable that stores the command to
start TSO is used. Assume a system identifier (&RCP) of CNM01. The system
identifier for your system can be different. Because you are building a start
variable, the function identifier is CST. The product variable, a 3-character product
identification, is &TSO, which has a value of TSO.

You might use the information in Figure 218 to define &RCP and &TSO.

Now, you can build the start TSO variable and set the value, as shown in
Figure 219.

The NetView command list language &CONCAT function concatenates the values
&RCP and CST&TSO The value of variable &TSO is substituted and combined
with CST. In the example, &START is given the value CNM01CSTTSO, a value
derived in the following way:

&START = Resource Common Prefix + Function + Product
&START = &RCP + CST + &TSO
&START = CNM01 + CST + TSO
&START = CNM01CSTTSO

When the command list runs, the value of variable &START is CNM01CSTTSO.
&START can now be defined as a common global variable with the statement
shown in Figure 220.

Defining &START as a common global actually causes a substitution on the
&START variable to be performed before the variable is defined as a common
global, because the &CGLOBAL function requires no ampersand on the variable
being defined. In the statement to define RCP as a common global variable, no
ampersand precedes the RCP. &CGLOBAL RCP defines the variable &RCP as a
common global. So, in the above example, CNM01CSTTSO is substituted for
&START in the &CGLOBAL statement, so that CNM01CSTTSO is defined as a
common global variable.

You can now give a value to the variable by directly updating the value, as in
&CNM01CSTTSO = ’S TSO’, but doing so is inconvenient, because each system
identifier, function, and product must be remembered for each variable. Instead,
you can update the variable indirectly. &START is already defined as
CNM01CSTTSO. Use it to change the value of the variable, as shown in Figure 221
on page 609

&CGLOBAL RCP TSO
&RCP = CNM01
&TSO = TSO

Figure 218. Defining Variables for the Start TSO Variable

&START = &CONCAT &RCP CST&TSO

Figure 219. Building a Start TSO Variable

&CGLOBAL &START

Figure 220. Statement Defining &START as a Common Global Variable

608 Automation Guide

on page 611.

The value of &START is to be substituted into the statement when the command
list is processed, forming the actual assignment shown in Figure 222.

AOPIGUPD is called to build the common global variables for the advanced
automation sample set. The process that AOPIGUPD goes through is similar to the
method just described.

Using that method of sharing common variable values provides an easy way to
share information between automation command lists. If you want to add a new
system identifier, function, or product to the advanced automation sample set, use
the same global variable convention to add the new item.

Fine-Tuning the Advanced Automation Sample Set
If you decide to use the advanced automation sample set as a guide for your
automation, you might be able to make changes that eliminate unnecessary
overhead in your production environment. Messages that cannot be issued in your
system environment should be removed from the automation table. If a product
that is supported by the advanced automation sample set is not available at your
site, then the production copies of any affected command lists and samples can be
changed to no longer handle that product. Copies should be kept of any command
lists, samples, and panels that are to be changed so they can be referred to later if
needed. Any command lists and panels that are now unused because of removed
automation table entries or changes to advanced automation sample set command
lists can be removed from the production automation system to conserve DASD
and minimize confusion. Again, be sure to keep a copy of any deleted command
lists as backup in case they are needed in the future.

Adding a Product: Before adding a new product to be handled by automation,
the scope of what needs to be handled must first be identified. Do you want
automation to handle only initialization of the new product, or do you want
automation to handle the new product as completely as possible (initialization,
proactive monitoring, recovery, shutdown)?

Once the scope is identified, the actual messages that are to be handled need to be
identified.
v Try to keep the number of messages small.

For example, if a product has a number of failure messages but each is always
followed by the same message indicating that the product cannot continue, then
automate only that message.

v Each message being added might require a change to the automation table.
v If the message is a system message, ensure that the message gets passed to the

NetView program through the operating system message processing facility.
v If a command list needs to be driven for status changes of the new item, then

the command list must be written, or perhaps an existing command list can be
changed to act correctly on receipt of the message.

&&START = 'S TSO'

Figure 221. Updating a Common Global Variable Indirectly

&CNM01CSTTSO = 'S TSO'

Figure 222. Substituting a Common Global Variable in an Assignment

Appendix I. The Sample Set for Automation 609

Once the scope is identified, changes to existing samples are required and new
command lists might have to be created.
v Adding an automated product requires changes to the automation table and

additional changes to command lists, depending on the scope of what you want
automation to handle.

v In all cases, the additions should follow the same pattern used by the advanced
automation sample set, making the additions easy to define.

Below is an outline of possible command lists and samples that need to be
updated to add full automation capabilities for an additional product:

AOPIVARS Set global variables for the new product

DSIOPF Add new automated operator for the product

DSITBL11 Add automation table entries

AOPInew Create new initialization command list for the product

AOPSnew Create new shutdown command list for the product

new clists If required, add other new command lists, called through the
automation table

MPF Ensure that system messages are forwarded to NetView

The generic operator profile DSIPROFG (CNMS6410), generic autotask initial
command list AOPIGNIC (CNME6403), main shutdown command list AOPSMAIN
(CNME6412), and automation-status-display command list AOPUSTAT
(CNME6438) with associated panels can all be used for additional automated
products. New command lists might need to be written to handle the start-up and
shutdown of the new item. New command lists might also need to be created to
handle recovery of the new item when a message or messages drive the
automation table.

Handling a New Message with Automation: Handling a new message with
automation requires first that you understand exactly what you wish automation
to do upon receipt of the new message. If you want to suppress the message,
suppress it with the operating system’s message processing facility. If you want to
route the message with automation or to start a command list, then a change to the
automation table is necessary. In addition, the operating system’s message
processing facility might have to be updated to forward system messages to
NetView. If an automation table statement for another message already
accomplishes what you want the statement for your new message to accomplish,
then consider simply adding your new message to the existing automation-table
statement. If you do need a new automation-table statement, place the statement in
an appropriate place in your table for efficient processing. For example, if you are
using BEGIN-END sections, place the new statement in an appropriate section.

Changing Timer-Command Intervals: Throughout the advanced automation
sample set, timer commands call command lists or issue commands according to
certain time intervals. By editing AOPIVARS, you can change the time intervals to
suit your own environment. For example, the autotask monitor checks each
autotask every two minutes to ensure that it is active. You might not need to check
the autotasks that often, or might want to check them more often. The
active-monitor command list checks the status of all automated products every
three minutes. You might want the active monitor to check more or less often
depending on your operating environment.

610 Automation Guide

Preloading Command Lists: The LOADCL and DROPCL commands can be used
to load commonly processed command lists into main storage and drop them.
Loading command lists into storage greatly reduces their processing time by
eliminating the need to load the command list each time it runs. The advanced
automation sample set command list AOPIGUPD is preloaded by default in
command list AOPIVARS because of the number of times AOPIVARS invokes it.

Testing Added or Changed Automation
When making any changes to the advanced automation sample set, remember that,
because actions are taken in an automated environment, it is best to test in a
controlled test environment before using as production automation. You can test
the automation manually by tracing processing of a manually called command list.
For example, use &CONTROL ALL if you are running the NetView command list
language portions of the command lists, or TRACE if you are using REXX. The
processing tracing can be removed once the command list is tested. Messages to
the network log or to an operator console can be added in command lists and then
removed once proven correct. Automation capabilities can be tested by starting
command lists directly as if they had been called from the automation table.

Cross-Reference Listing of Command Lists and Samples
Following is a list of the samples and command lists that are shipped as part of
the sample set for automation. Where no sample name is given in the table, the
renaming JCL (CNMS62J1) does not provide a new name for that sample, and the
shipped name continues to be used.

Basic Automation Sample Set

Samples
Table 39. Samples in the Basic Automation Sample Set

Shipped Name Sample Name Description

CNMS6205 ACOTABLE Automation-table entries

CNMS6206 CNMCMD CNMCMD CMDDEF entries

CNMS6211 CLRLOG Clears SYS1.LOGREC for future recording

CNMS6212 CLRSMF Clears SYS1.MANX or SYS1.MANY for future
recording

CNMS6213 LGPRNT Prints SYS1.LOGREC

CNMS6214 DSIPRT Prints the primary or secondary network logs or both

CNMS6221 $CLRSMF Input to the CLRSMF procedure

CNMS6222 $SOFT Input to the LGPRNT procedure, step name SOFT

CNMS6223 $SYSEXN Input to the LGPRNT procedure, step name
SYSSEXN

CNMS6224 $SYSUM Input to the LGPRNT procedure, step name SYSUM

Command Lists
Table 40. Command Lists in the Basic Automation Sample Set

Shipped Name
Command
Synonym Name Description

CNME6201 AUTO1IC Initial command list for AUTO1 autotask. Starts
$DSPOOL command list every 24 hours

Appendix I. The Sample Set for Automation 611

Table 40. Command Lists in the Basic Automation Sample Set (continued)

Shipped Name
Command
Synonym Name Description

CNME6202 $DSPOOL Resets global parameters Z$DSPOOL and
Z$DSPLHRS to normal

CNME6203 $DSPOOL2 Sets global parameters Z$DSPOOL and Z$DSPLHRS
to drain more spool space if necessary

CNME6204 $HASP646 Control calling $DSPOOL2 based on utilized spool
space

CNME6205 IEE362A Control calling CLRSMF procedure to print SMF file
after it is closed

Advanced Automation Sample Set

Samples
Table 41. Samples in the Advanced Automation Sample Set

Shipped Name Sample Name Description

CNMS64P0 Panel to display automation status of all products

CNMS64P1 Panel to display automation information for a specific
product

CNMS64P2 Panel to display message response variable values

CNMS64P3 Help panel for panel CNMS64P0

CNMS64P4 Help panel for panel CNMS64P1

CNMS64P5 Help panel for panel CNMS64P2

CNMS6401 CNMCMD CMDDEF statements for MVS commands

CNMS6402 CNMCMD CMDDEF statements for JES2 commands

CNMS6403 CNMCMD CMDDEF statements for JES3 commands

CNMS6404 CNMCMD CMDDEF statements for advanced automation
sample set command lists

CNMS6405 DSITBL11 NetView automation table entries required by the
advanced automation sample set

CNMS6406 AOPUMCMT TSO command list to copy command lists written in
the NetView command list language without
comments

CNMS6408 DSIOPF Automated operator definitions

CNMS6409 DSIPROFM AUTOMGR autotask operator profile

CNMS6410 DSIPROFG Generic autotask operator profile

Command Lists Sorted by Shipped Name
Table 42. Command Lists in the Advanced Automation Sample Set by Shipped Name

Shipped Name
Command
Synonym Name Description

CNME6400 AOPIVARS Automation initialization main command list

CNME6401 AOPIGUPD Sets value of a common global variable

CNME6402 AOPIMGIC AUTOMGR initial command list

612 Automation Guide

Table 42. Command Lists in the Advanced Automation Sample Set by Shipped
Name (continued)

Shipped Name
Command
Synonym Name Description

CNME6403 AOPIGNIC Generic initial command list for autotasks

CNME6404 AOPIJES3 Starts JES3

CNME6405 AOPIJES2 Starts JES2

CNME6406 AOPIVTAM Starts VTAM

CNME6407 AOPIIMS Starts IMS

CNME6408 AOPICICS Starts CICS

CNME6409 AOPITSO Starts TSO

CNME6410 $HASP426 Responds to $HASP426 SPECIFY OPTIONS

CNME6412 AOPSMAIN Main shut down command list

CNME6413 AOPSJES3 Shuts down JES3

CNME6414 AOPSJES2 Shuts down JES2

CNME6415 AOPSVTAM Stops VTAM

CNME6416 AOPSIMS Begins IMS shutdown

CNME6417 AOPSIMS2 Stops IMS components

CNME6418 AOPSCICS Stops CICS

CNME6419 AOPSTSO Begins TSO shutdown

CNME6420 AOPSTSO2 Stops TSO

CNME6421 AOPTJRC3 Resets reply count for IAT3714

CNME6422 $HASP098 Replies to message $HASP098

CNME6423 $HASP095 Stores JES2 abend code

CNME6424 AOPSPURG Drains all units

CNME6425 VTAMTMRZ Shuts down VTAM with cancel

CNME6426 DFS996I Stores IMS WTOR

CNME6428 DFS000IB Stores IMS region numbers for shutdown

CNME6429 IAT3714 Issues reply for JES3 start type

CNME6430 IAT3708 Updates JES3 status to active

CNME6431 $HASP085 Attempts to restart JES2 if it ended abnormally

CNME6432 JESTMRA Resets JES2 abend counter

CNME6433 DFS629I Restarts IMS

CNME6434 IMSTMR Updates IMS timer to blank

CNME6435 DFH0606 Restarts CICS

CNME6436 CICSTMRA Updates CICS timer to blank

CNME6437 IKT002I Updates status of TSO to abend

CNME6438 AOPUSTAT Displays panels containing automation status
information

CNME6439 AOPMACT Actively monitors automated products

CNME6440 AOPMCHEK Monitors advanced automation sample set autotasks

Appendix I. The Sample Set for Automation 613

Command Lists Sorted by Command Synonym Name
Table 43. Command Lists in the Advanced Automation Sample Set by Synonym

Shipped Name
Command
Synonym Name Description

CNME6431 $HASP085 Attempts to restart JES2 if it abended abnormally

CNME6423 $HASP095 Stores JES2 abend code

CNME6422 $HASP098 Replies to message $HASP098

CNME6410 $HASP426 Responds to $HASP426 SPECIFY OPTIONS

CNME6408 AOPICICS Starts CICS

CNME6403 AOPIGNIC Generic initial command list for autotasks

CNME6401 AOPIGUPD Sets value of a common global variable

CNME6407 AOPIIMS Starts IMS

CNME6405 AOPIJES2 Starts JES2

CNME6404 AOPIJES3 Starts JES3

CNME6402 AOPIMGIC AUTOMGR initial command list

CNME6409 AOPITSO Starts TSO

CNME6400 AOPIVARS Automation initialization main command list

CNME6406 AOPIVTAM Starts VTAM

CNME6439 AOPMACT Actively monitors automated products

CNME6440 AOPMCHEK Monitors advanced automation sample set autotasks

CNME6418 AOPSCICS Stops CICS

CNME6416 AOPSIMS Begins IMS shutdown

CNME6417 AOPSIMS2 Stops IMS components

CNME6414 AOPSJES2 Shuts down JES2

CNME6413 AOPSJES3 Shuts down JES3

CNME6412 AOPSMAIN Main shut down command list

CNME6424 AOPSPURG Drains all units

CNME6419 AOPSTSO Begins TSO shutdown

CNME6420 AOPSTSO2 Stops TSO

CNME6415 AOPSVTAM Stops VTAM

CNME6421 AOPTJRC3 Resets reply count for IAT3714

CNME6438 AOPUSTAT Displays panels containing automation status
information

CNME6436 CICSTMRA Updates CICS timer to blank

CNME6435 DFH0606 Restarts CICS

CNME6428 DFS000IB Stores IMS region numbers for shutdown

CNME6433 DFS629I Restarts IMS

CNME6426 DFS996I Stores IMS WTOR

CNME6430 IAT3708 Updates JES3 status to active

CNME6429 IAT3714 Issues reply for JES3 start type

CNME6437 IKT002I Updates status of TSO to abend

CNME6434 IMSTMR Updates IMS timer to blank

614 Automation Guide

Table 43. Command Lists in the Advanced Automation Sample Set by Synonym (continued)

Shipped Name
Command
Synonym Name Description

CNME6432 JESTMRA Resets JES2 abend counter

CNME6425 VTAMTMRZ Shuts down VTAM with cancel

Message Suppression Samples
Table 44. Message Suppression Samples

Shipped Name Sample Name Description

CNMS6201 MPFLSTAC Conservative MVS MPF message suppression

CNMS6202 MPFLSTAA Aggressive MVS MPF message suppression

Log Analysis Samples
Table 45. Log Analysis Samples

Shipped Name Sample Name Description

CNMS6207 JES2 and JES3 log analysis program

CNMS62J2 Runs log analysis program

Setup Samples
Table 46. Setup Samples

Shipped Name Sample Name Description

CNMS62J1 Renaming JCL

Appendix I. The Sample Set for Automation 615

616 Automation Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2009 617

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Programming Interfaces
This publication primarily documents intended Programming Interfaces that allow
the customer to write programs to obtain the services of Tivoli NetView for z/OS.
This publication also documents information that is NOT intended to be used as
Programming Interfaces of Tivoli NetView for z/OS. This information is identified
where it occurs, either by an introductory statement to a chapter or section or by
the following marking:
NOT Programming Interface information
End of NOT Programming Interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at ″Copyright and trademark information″ at http://www.ibm.com/legal/
copytrade.shtml .

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

618 Automation Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Other company, product, and service names may be trademarks or service marks
of others.

Notices 619

620 Automation Guide

Index

Special characters
;

in % INCLUDE statement 231
none in synonym

variables 232
none in synonym names 232

%
none in synonym

names 232
% (default command prefix character) 529
%INCLUDE statement

definition 149
including members and files (%INCLUDE) 235

%INCLUDE statement.
maintenance 372
syntax 230

Numerics
3480 cartridge 36
9370 processor, initializing remotely 17
9370 systems 17

A
accessibility xxix
ACQUIRE, IF-THEN statement 162
action messages 320
ACTIONDL, IF-THEN statement 162
ACTIONMG, IF-THEN statement 163
actions

automation table 211
activating

automation tables 150, 250
autotasks 300
basic automation sample set 585

defining command list symptoms 585
command revision tables 138
message revision tables 130
MVS command exit 571
sample automation table 586

activating automation tables
security applications 603
testing 253, 335

active automation tables
identifying 336

active monitoring 11
active-monitoring

command lists
advanced automation sample set 594

adding CMDDEF statements to allow system commands from
NetView 300

address spaces 296, 528
advanced automation 359

enhancing the operator interface
sample set 592

miscellaneous
sample set 601

passive monitoring 588
proactive monitoring 589

advanced automation (continued)
recovery

sample set 591
sample set 587

automation display panels 600
command lists 594
command lists used in 592
enhancing the operator interface 592
functions 592
functions performed by 587
initialization 588
naming conventions for command lists 594
operator-interface command list and panels 600
passive monitoring 588
preparing for NetView initialization 602
preparing to use 602
proactive monitoring 589
recovery 591, 601
recovery command lists 596
shutdown 591
shutdown command lists 598
starting NetView before JES 602
starting NetView before VTAM 603

shutdown
sample set 591

advanced automation sample set 612
Advanced Peer-to-Peer Networking resources

monitoring 450
Advanced Peer-to-Peer Networking sphere-of-control 59
AFTER command 23, 119
aggregate values 348
AIFR 158
AIFRs, recording 474
AIP 366
alarms 24
alert

See also MSU (management services unit)
blocking 8
creating 365, 461
displaying information with 12
displaying, hardware monitor 364
displaying, NMC 366
exception notification 364, 366
filtering 8, 301
forwarding, focal point 302, 392
forwarding, Tivoli Enterprise Console 302
tuning considerations 470

alert adapter 406
alert major vector 326
alert major vectors 332
alert rates 4
ALERT-NETOP 103
ALERTPCT 299
ALERTPCT attribute 70
alerts 406
ALL keyword, EXEC action, IF-THEN or ALWAYS

statement 217
all occurrences of a field

searching for 331
allEvents mode 346
ALLOCATE command 118, 491

© Copyright IBM Corp. 1997, 2009 621

Always statement
definition 149

ALWAYS statement
types of 150

ALWAYS statement, automation table
actions, table 211

ALWAYS statement, automation-table
design guidelines 237, 238
syntax 229

AMRF (action message retention facility) 526
analyzing logs 45
AND operator

conditions linked with
Logical-AND operator 156, 157

AON control file 443
AON TIMER command 23
AON, function 443
AON/SNA

NCP recovery definitions 449
NetStat 449
SNAMAP 449
VTAM commands, issuing 449
VTAM options, managing 449
X.25 switched virtual circuits 449

AON/SNA automation
overview 447

AON/SNA Help Desk 448
AON/SNA options 448
AON/SNA Tutorials 448
AON/SNA X.25 monitoring support 450
AON/TCP 451

MIB polling and thresholdiing TCP/IP for z/OS0
only 454

threshold values 453
AON/TCP interface

choosing for receiving updates 454
APC (Automated Power Control) for 9370s 17
API (application program interface) 25
application address space 296, 528
application program interface (API) 25
AREAID, IF-THEN statement 163
AREC

filter 302
keyword, SRF action, IF-THEN or ALWAYS statement 224

ASID 162
assembler language 21
assembling teams, departments 42
ASSIGN command

for dropping unsolicited messages 92
for routing messages to autotasks 92
for routing solicited messages 92
for routing unsolicited messages 90
using for dynamic operator control 93
using to route messages 90
using to verify routing to destination 93
versus automation table routing 93

ASSIGN COPY processing 99
ASSIGN PRI/SEC

routing flow for messages 97
assigning a value to a variable

basic automation sample set 583
assigning messages to operators 90
assigning operators to groups 90
ASSISCMD command 412, 416
assist mode 412
AT command 23, 120
ATF (automation-table function) 165

ATF (automation-table function) (continued)
automation-table function (ATF)

DSITGLOB 165
description 164
DSICGLOB 165

ATTENDED, IF-THEN statement 166
attributes

ALERTPCT 70
QLIMIT 70
state correlation 345
thresholdCount 346
timeInterval 346
timeIntervalMode 346
triggerMode 346

auditable automation 53
authorized receiver

routing flow for messages 97
unsolicited messages 88
unsolicited messages from a DST 89
unsolicited messages from MVS 89

AUTOCNT command 25, 240, 473
AUTOMAN

activating automation tables 250
using for actions to automation tables 150
using to view INCLUDE structure 149

AUTOMAN command
activating automation tables 336

AUTOMATED
IF-THEN or ALWAYS statement

describing 212
automated console operations 8
automated handling

messages and MSUs 319
automated operations

assembling teams, departments 42
benefits 3
business goals 43
choosing an approach 42
classes 4
close, source 54
command-procedure capabilities 22
commitments 49
coordinated 10
defining 41
definition for NetView 3
designing 51
EMCS consoles, using MVS 65
facilities 21
implementing 61
introduction 3
message and MSU responses 10
migrating to new capabilities 513
multiple-system

definition 6
stages 6

MVS systems 27
network 6
outline of events (scenario) with RODM 83
products 21, 35
putting into production 61
RODM

advantages and implications 82
automation 82
capabilities 83
consolidating automation 11
introduction 25

samples 11

622 Automation Guide

automated operations (continued)
single-system

definition 6
designing, propagation 52
propagating 14
stages 7

stages
example 18
overview 7

sysplex, in MVS 31, 77
system 5
table 24
task 23
usage reports 25
value, estimating 523

automated operators
understanding 444

Automated Power Control (APC) for 9370s 17
AUTOMATED, IF-THEN statement 167
Automatic Cartridge Loader for 3480 36
automating

Action 320
enhancing the operator interface

sample set, advanced automation 592
initialization 588

passive monitoring 588
proactive monitoring 589

miscellaneous samples
advanced automation 601

preparing for NetView initialization
advanced automation sample set 602

preparing to use
advanced automation sample set 602

recovery
sample set, advanced automation 591

shutdown
sample set, advanced automation 591

starting NetView before JES
advanced automation sample set 602

starting NetView before VTAM
advanced automation sample set 603

automating messages
using tokens 321

automation
coordinating

advanced 357
facilities 113
JES3 493
logging 489
NetView program closing 238
non-SNA 405
platform 409, 413
propagating

synchronizing 371
sample set 579
SNMP trap 499
statistics 240
TAF (terminal access facility) 431
testing 473
tuning 465
types 4

automation and recovery, understanding 443
automation display panels

operator interface
advanced automation sample set 600

automation enhancements
NetView for OS/390 V1R4 513

automation enhancements (continued)
NetView for z/OS V5R4 513

automation failure logic 445
automation internal function request 158
automation log 445
automation logic

using to verify routing to destination 93
automation notification logging

in the hardware monitor 445
automation of command responses, limiting 238
automation setup 293

defining NetView to MVS as subsystem 297
forwarding system messages from MVS to NetView 297
NetView and MVS operating system 293

defining and activating autotasks 300
NetView and operating system 293

automation statements
enabling 335
verifying 335

automation support
VTAM resources, SNA subarea 450

automation table 443
%INCLUDE statement 230

loading series 235
actions 211
activating 335
ALWAYS statement 229
coding 151
DBCS strings 152
describing 149
design guidelines 232
IF-THEN statement 154
in basic automation sample set 582

assigning a value to a variable 583
invoking command lists and command processors 584
issuing commands 583

listing
debugging 485

streamlining 233
SYN statement 231
system symbolic substitution 152
testing 473
tracing

debugging 486
tuning 470
verifying 481

automation table routing
vs. ASSIGN command 93

Automation Table Statements 320
automation tables

block 251
disabled statements 251
enabling and disabling 250
end label 251
group 251
label 251
managing 250
sequence number 250

automation tables, active
identifying 336

automation tracking
automation log 445
understanding 445

automation-table
ASSIGN COPY processing 99
comments 152
discard or display messages 100

Index 623

automation-table (continued)
listing

describing 237
example 240
examples 243

main member, examples 239, 242
messages

DSIEX16 99
processing 150
processing messages 98
routing messages 98
searches 150
setting message attributes 99
usage reports 240

Automation-table
processing 103

automation-table function (ATF) 165
DSICGLOB 165

automation-table statement
syntax

BEGIN-END section 152
automation-table statements

elements of
%INCLUDE statement 149
Always statement 149
BEGIN-END section 149
IF-THEN statement 149
SYN statement 149

grouping example 234
storing statements in member DSIPARM 150

autotask
activating 123
associating multiple console support consoles 124
associating multiple-support-console console 311
automating 125
deactivating 124
defining 123
describing 123
multiple 469
overview 23
passwords 123
timer commands 121

AUTOTASK command 124, 586
AUTOTASK, IF-THEN statement 167
autotasks

defining and activating 300
using ASSIGN command to route messages to 92

AUTOTBL
activating automation tables 250, 335
using for actions to automation tables 150

AUTOTBL command
security applications 603

AUTOTBLE 335
AUTOTEST command 473
AUTOTOKE, IF-THEN statement 168
availability

benefits 3
designing for 54
financial value 47

B
backup focal point 58
basic assembler language 21
basic automation

sample set
functions performed by 581

basic automation sample set 581, 611
activating 585

defining command list symptoms 585
automation table used in sample set 582
testing 587

basic automation table
sample set

assigning a value to a variable 583
invoking command lists and command processors 584
issuing commands 583

BEEP 329
IF-THEN or ALWAYS statement 212

BEGIN keyword, IF-THEN or ALWAYS statement
ALWAYS statement 230

BEGIN-END section
definition 149
design guidelines 233
syntax

automation-table statements 152
type 151

BEGIN, IF-THEN or ALWAYS statement
describing 153
IF-THEN statement 156

benefits of automating
analyzing 47
overview 3

BIT
ATF condition item, IF-THEN statement 164

bit notation
MSU actions 330

bit string compare item
IF-THEN statement 330

bit string compare item, IF-THEN statement 206
blank lines

at the beginning of an MLWTO message 157
BLI keyword, XHILITE action, IF-THEN or ALWAYS

statement 226
block

automation tables 251
BLOCK keyword, SRF action, IF-THEN or ALWAYS

statement 224
blocking alerts 8
BLU

COLOR action
IF-THEN or ALWAYS statement 213

BNJ146I message 334
books

see publications xxv
BOTH keyword, SRF action, IF-THEN or ALWAYS

statement 224
both-type automation-table statement 150
business goals and automation 43
bypassing filters 306

C
C language 21
calendar APIs 273
CART, IF-THEN statement 168
CBE 213
centralized operations 7, 15, 375
change management 56
changing focal points 399
channel-to-channel (CTC) 493
character

literal 207, 330
variable 208

624 Automation Guide

character notation
MSU actions 330

checking
by message ID 320

checking field contents 327
checking for

Alert Major Vectors in an MDS-MU 332, 333
all occurrences of a field 331
encapsulated RECMSs 328
Field Existence 326
multiple occurrences of a field in an MSU 331
RECMSs and RECFMSs 328
RECMSs with a Recording Mode of X'82' 329
subvectors 326

checking subfields 327
choosing

AON/TCP interface
for receiving updates 454

task 121
choosing approach, automation team 42
CHRON command 23, 120

verifying 482
classes, automation 4
cloning rules 352
CLOSE command 31
closing

NetView program, automation 238
CMC (communication management configuration) system as a

focal point 57
CMD keyword, EXEC action, IF-THEN or ALWAYS

statement 216
CMDDEF statement

adding to enable system commands from NetView 300
command processor 313

CNMAUTO service routine 480
CNMCMD

setting up CMDDEF statement in 300
CNMCRMSG 338
CNME7023 398
CNMI (communication network-management interface)

unsolicited network management data 459
CNMPROC procedure

CNMSJ009 299
CNMPSSI procedure

CNMSJ010 299
CNMS6207 sample 580
CNMSCRT1 sample 145
CNMSMSG service routine

routing commands 105
CNMSRVMC sample 143
CNMSTYLE 264
coding a command revision table 138
coding a message revision table 130
coding the automation table 151
collector rules 348
color

full-screen displays 13
messages 24, 31
MSUs 24

COLOR 329
IF-THEN or ALWAYS statement 213

command
processors 81

command flow, NetView and z/OS 30
command label prefix 106
command list

describing 113

command list (continued)
REXX 113

command list and panels
automation display panels

advanced automation sample set 600
operator interface

advanced automation sample set 600
command list language 21
command lists

in advanced automation sample set 592
initialization

advanced automation sample set 594
recovery

advanced automation sample set 596
shutdown

advanced automation sample set 598
command procedure

consolidating commands 313
describing 113
documenting 315
sample 317

command processing
MVS

starting 572
command processor

consolidating commands 313
describing 113

command revision table
coding 138
coding statements

END 142
ISSUE.IEE295I 139
NETVONLY 143
OTHERWISE 142
REVISE 142
SELECT 141
TRACKING.ECHO 139
UPON 140
WHEN 141
WTO 143

comments 138
processing 138
searches 138
testing 147
using 137

command revision table statements
elements of

END statement 137
EXIT statement 137
INCLUDE statement 138
NETVONLY statement 137
OTHERWISE statement 137
REVISE statement 137
SELECT statement 137
UPON statement 137
WHEN statement 137

commands
AFTER 23, 119
ALLOCATE 118, 491
AON TIMER 23
AT 23, 120
AUTOCNT 240
AUTOMAN

activating automation tables 250, 336
AUTOTASK 124, 586
AUTOTBL

activating automation tables 250, 335

Index 625

commands (continued)
AUTOTBL (continued)

security applications 603
AUTOTEST 473
CHRON 23, 120

verifying 482
compatibility with tasks 105
DBCS strings 216
DEFAULTS

logging 491
message attributes 228

DELAY 119
DFILTER 305
DOM 117
DROPCL 118, 611
EVERY 23, 120
facility, displaying information 12
FOCALPT 399
forwarding 392
FREE 491
GENALERT 13

multiple NetView programs 461
sending alerts 365

GETCONID 67, 298
HELP 14
LINKPD 406
LINKTEST 406
list language 21
LIST TIMER 23, 122
lists 21
LOADCL 118, 611
MAPCL 118
network 6
OVERRIDE

logging 491
message attributes 228

priority for queued 106
procedures

automating 22
consolidating commands 9
overview 21

processors 21
PURGE TIMER 23, 122
RELCONID 299
RESTORE 121
revising 137
RMTCMD

forwarding commands 392
ROUTE 394
routing facilities 105

CNMSMSG service routine 105
DSIMQS Macro 105
ROUTE keyword in automation-table 105

routing to a task
EXCMD command 106
RMTCMD command 106

RUNCMD 406
scheduling commands 10
SETCONID 67, 299
SRFILTER 8, 303
SUBMIT 118
SVFILTER 305
system 5

MVS 529
timer

describing 119
saving and restoring 121

commands (continued)
timer (continued)

verifying 482
TIMER 120
timer commands

overview 23
using MVS processor to issue

from NetView 300
VIEW 14
WTO 117, 525
WTOR 117, 525

comments
automation table 152
command revision table 138
message revision table 130

Common Base Events
automation with 437
creating 437
introducing 437

common global variable 115
communication

between NetView and MVS operating system 297
between NetView and operating system 293
ensuring system messages forwarded from MVS 297

using EMCS consoles 297
using the subsystem interface 297

communication management configuration (CMC) system as a
focal point 57

communication network management 530
interface 530

communication network management-interface (CNMI)
unsolicited network management data 459

communication, improvements
by using extended multiple console support consoles 71

compare item
definition 164

compare item, IF-THEN statement
bit strings 206
parse templates 207

comparing text by using parse templates 323
compatibility

commands with tasks 105
conceptual view

CP-MSU (control point management services unit) 324
NMVT 325

condition item
definition 164
for messages and MSUs 158
for MSUs 158

condition item, IF-THEN statement
multiple linking 156
occurrence-detection example 234
syntax 154

conditions
linked with Logical-AND operator

in IF-THEN statement 156, 157
logical-OR and logical-AND operator

in IF-THEN statement 157
order of grouping

in IF-THEN statement 157
configuring central operations 397
confirmed alert adapter 406
consistent operating procedures 4
ConsMaskk, using 67
console

command facility 65
consolidating 8

626 Automation Guide

console (continued)
MVS 32, 65
NetView 8

console consolidation 307
console masking, using 67
consoles, EMCS

dynamically defining 298
consolidating

automation with RODM 11
commands 9
consoles 8

constraints, growth 4
CONTINUE

action 237
IF-THEN or ALWAYS statement 214

design guidelines 237
CONTINUE (Y) 150
control file

AON 443
control line for an MLWTO message 157
control point management services unit (CP-MSU)

conceptual view 324
conventions

typeface xxx
coordinated automation 10, 359
copying automation routines

designing for 52
single-system automation 14

COREVENT 338
CORRELATED, IF-THEN statement 168
correlation

automation table entry 337
CNMCRMSG 338
COREVENT 338
event 338
event mapping 339
message 338
message processing 337
MSU 338
MSU processing 337
overview 336
storage considerations 337

correlation, state
See state correlation 341

CORRFAIL, IF-THEN statement 168
cost analysis 47
CP-MSU (control point management services unit)

conceptual view 324
creating alerts 365
creating Common Base Events 437
cross-system coupling facility (XCF) for sysplex 77
CRT (command revision table)

using 137
CTC 493
CURRDATE, IF-THEN statement 161, 168
CURRTIME, IF-THEN statement 161, 169
CURSYS, IF-THEN statement 161, 169

D
DASD management 36
Data Facility Storage Management Subsystem (DFSMS)

products 36
data model for RODM 81
data-processing

additional plans for automation 46
requirements for automation 43

DB2 435
DBCS strings

automation table 152
commands 216

deactivating
MVS command exit 573

debugging aids 484
Deciding Which Messages and MSUs to Automate 319
default command prefix character, percent sign (%) 529
default logical operator

logging 491
messages 228
MSU 229
setting, ALWAYS and CONTINUE 238

DEFAULTS command
logging 483, 491
message attributes 228

defining
autotasks 300
NetView to MVS as subsystem 297

defining (dynamically)
EMCS consoles 298

defining an automation project 41, 516
defining time schedules

for resources in NMC views
based on NMCSTATUS policy definitions 263

definition
automation table 149
command revision table 137
compare item 164
condition item 164
literal, compare item 207
message revision table 129

definitions
%INCLUDE statement 149
Always statement 149
BEGIN-END section 149
DoForeignFrom statement 129
END statement 129, 137
EXIT statement 129, 137
IF-THEN statement 149
NetView automation 3
NETVONLY statement 129, 137
OTHERWISE statement 129, 130, 137
REVISE statement 129, 137
SELECT statement 130, 137
SYN statement 149
UPON statement 130, 137
WHEN statement 130, 137
WTO statement 137

DELAY command 119
delete operator messages (DOM) command 33
deleting the CNMCAUaa PARMLIB member

to stop MVS command management 572
delimiters for synonym value

quotation marks 232
DELMSG 215
department, automation

assembling 42
educating 55
roles 56

DESC, IF-THEN statement 169
descriptor code 3 messages 321
design guidelines

anticipating changing staff roles 56
automating close to the source 54
choosing focal points 57

Index 627

design guidelines (continued)
choosing, multiple NetView programs 54
designing, auditability 53
designing, availability 54
designing, expansion and propagation 52
designing, security 53
educating your staff 55
overview 52
providing operator interfaces 55
providing testing 56
providing, problem management, change management 56
using focal point, backup 58

design tasks for automation projects 51
establish standards 51
identify procedures and functions to automate 51
prioritize procedures and functions 51
schedule stages for implementation 51

designator character 32
designing automation 51, 518
designing automation tables 232
DEVLAN3

resource hierarchy 333
DFILTER command 305
DFSMS (Data Facility Storage Management Subsystem)

products 36
DIALCDRM command list 398
direct access storage device (DASD) management 36
directory names, notation xxxi
disable statements 157
disabled statements

automation tables 251
disabling

automation tables 250
discard or display

messages 100
dispatching priority 464
DISPLAY

IF-THEN or ALWAYS statement 214
display command

MVS command management setting 572
displaying

NCP recovery definitions 449
displaying information 13, 363
DISTAUTO, IF-THEN statement 161, 169
distributed system, definition 16
documenting command procedures 315
DoForeignFrom statement

coding message revision table 131
definition 129

DOM command 33, 117
DOMACTION

IF-THEN or ALWAYS statement 214
domain ID

searching by 321
DOMAIN, IF-THEN statement 161, 170
DOMAINID keyword, IF-THEN statement

example 334
DOMAINID, IF-THEN statement

summary 161
usage 170

DROPCL command 118, 611
dropping

unsolicited messages 92
DSI6DST 384
DSIAUTO macro 480

DSICGLOB
automation table function

task global variables 115
DSICGLOB automation-table function 165
DSIEX02A installation exit 26, 287
DSIEX02A processing

routing flow for messages 97
DSIEX16 99
DSIEX16 installation exit 287
DSIEX16B installation exit 287
DSIEX16B installation exit MSUs. 26
DSIEX16b processing 104
DSIEX17 26, 288

routing flow for messages 96
DSIMQS Macro

routing commands 105
DSINOR 410, 418
DSIOPF member 53
DSIPARM member

storing automation-table statements in 150
DSIQTSK task 409
DSIQTSKI member 410
DSITGLOB automation-table function 165
DSIWLS 492
DUIFECMV command processor 463
duplicate automation of messages, eliminating 95
duplicates rules 345
dynamic operator control 93
dynamically defining EMCS consoles 298
dynamically defining extended MCS consoles

commands
GETCONID 298
RELCONID 299
SETCONID 299

E
e-mail 367
E/AS 34
EDIT

IF-THEN or ALWAYS statement 215
education 55

see Tivoli technical training xxix
EKGSPPI

change method 410, 423
constants 425
initialize 426
local variables 423
querying fields 427
querying objects 428
subfield changes 427
triggering object-independent methods 429

elements of automation-table statements 149
elements of command revision table statements 137
elements of message revision table statements 129
EMCS (extended multiple console support) console

issuing NetView commands and command lists as
MODIFY commands 532

issuing NetView commands and command lists as
subsystem commands 531

EMCS consoles
dynamically defining 298
planning to use

message loss 70
message queue limits 70

using with NetView 65

628 Automation Guide

EMCS, MVS
sending messages to 29

enable statements 157
enabling

automation statements 335
automation tables 250

encapsulated
RECMS (record maintenance statistic) 328, 329

encapsulated RECMSs
selecting 328

end label
automation tables 251

END statement
coding command revision table 142
coding message revision table 131
definition 129, 137

ENDLABEL 154
enhancements for automation

NetView for OS/390 V1R4 513
NetView for z/OS V5R4 513

enhancing the operator interface
advanced automation

sample set 592
ensuring that MVS forwards system messages to

NetView 297
using EMCS consoles 297
using the subsystem interface 297

entry point, sphere-of-control 59
environment variables, notation xxxi
ES/9000, initialization of rack-mounted 17
ESREC

filter 302
keyword, SRF action, IF-THEN or ALWAYS

statements 224
establishing communication between NetView and the MVS

operating system 293
establishing communication between NetView and the

operating system 293
event

Tivoli Enterprise Console 407
Event/Automation Service 34

See also MSU (management services unit)
forwarding, focal point 406

events
child 342
orphan 342
summary 342
trigger 344

EVERY command 23, 120
example

IF-THEN statement, conditions linked with
logical-OR and logical-AND operator 157

example of automation-table function
OPERID 165

exceeded queue limit 70
exception

forwarding 15, 375
notification 11
notifying operators 363

exclusion list, MVS
changing 574
starting 574

EXCMD
label 106
routing to a task 106

EXEC action, IF-THEN or ALWAYS statements 216

Exit 16 receives control for messages, and exit 16B receives
control for 26

EXIT statement
coding message revision table 132
definition 129, 137

exits 25
expandable automation 52
extended consoles

dynamically defining 298
extended MCS consoles

dynamically defining
GETCONID 298
RELCONID 299
SETCONID 299

extended multiple console support consoles
advantages 65
comparing, MVS subsystem interface 71
implications 65
introducing 65
migrating

AUTO attribute 74
CNMCSSIR task names 73
console names 73
cross-domain communication 74
MVS VARY command 74
NetView programs 74
subsystem interface 73

MSGIFAC values 72
MVSPARM data set 72
planning to use

acquiring consoles 67
attribute values 68
CNMCSSIR task names 67
console naming conventions 66
default values 68
directing messages with MPF 68
directing messages with the MRT 68
enabling consoles 66
grouping consoles 68
message loss 70
message queue limits 71
message storage 70, 71
route codes 69
security access 70

subsystem address space procedure 72
extended multiple console support consoles, MVS

sending messages 29
sending messages to 29

EZLEQAPI 282
EZLEQCAL 285
EZLETAPI 273

F
facilities

routing for commands 105
CNMSMSG service routine 105
ROUTE keyword in automation-table 105

routing to a task
EXCMD command 106
RMTCMD command 106

field contents
selecting 327

Field Existence
checking for 326

field occurs more than once
in an MSU 331

Index 629

files
tecsce.dtd 342

filtering alerts 8
filtering events

state correlation 341
filters 530

bypassing 306
describing 301
recording 302
viewing 305

financial analysis 47
financial-benefit worksheet 48
firstEvent mode 346
flash message 319
flow

message routing 95
ASSIGN PRI/SEC processing 97
authorized receiver processing 97
DSIEX02A processing 97
DSIEX17 Processing 96
PIPE CORRWAIT 96

flows
message

MVS 525
VTAM 535

FLSCN (full-screen) TAF sessions 395, 431
focal point

backup 58
centralized operations 15
changing, dropping, and listing 399
choosing 57
forwarding exceptions to 15
intermediate 394
overview 375
using more than one 399

FOCALPT command 399
forwardEvents mode 346
forwarding

alert 302, 392, 406
between two NetView programs 463
choosing methods 395
commands 392
exceptions 375
messages

Event/Automation Service 406
overview 392

options 396
state information 375
system messages from MVS to NetView 297

using EMCS consoles 297
using the subsystem interface 297

forwarding exceptions 15
FREE command 491
full-screen

centralized operations 395
display panels 366
TAF sessions 395, 431

full-screen displays 13
functions

advanced automation sample set 592
functions performed by advanced automation sample set 587
functions performed by basic automation sample set 581

G
GDS variable

R&TI 332

GENALERT command 13
multiple NetView programs 461
sending alerts 365

GETCONID command 67, 298
GETCONID parameters

ALERTPCT 299
QLIMIT 298
QRESUME 299
STORAGE 298

global variables 357
common 115
task 115

global variables and command procedures 22
GMFHS (Graphic Monitor Facility host subsystem) data

model 81
GMFHSDOM parameter on DUIFECMV 463
goals

automation 47
business 43
data-processing 43
measuring progress toward 47
sample measurements 523

Graphic Monitor Facility host subsystem (GMFHS) data
model 81

Graphic Monitor Facility, NetView 13
GRE

COLOR action
IF-THEN or ALWAYS statement 213

group
automation tables 251

GROUP 155
group of messages

by using placeholders 322
searching for 322
searching for by Logical-AND Logic 322
searching for by Logical-OR logic 322

GROUP option 90
grouping

automation-table statements
with BEGIN-END sections 233

growth constraints 4
guidelines

automation-table design 232

H
H keyword

MSUSEG condition item
IF-THEN statement 197

H keyword, MSUSEG condition item, IF-THEN
statement 331

hardware monitor 12
See also alert
continued processing 104
data record 326
filters 301
initial processing 103
operator interface 364
tuning considerations 470
understanding automation notification logging in 445

hardware-monitor data and MSUs
interfaces 87

HCYLOG keyword
IF-THEN or ALWAYS statement 221
routing commands 220

HDRMTYPE
describing values 559

630 Automation Guide

HDRMTYPE, IF-THEN statement 161, 170
header

checking MDS 332
MDS-MU 331
RECMS 328

HELP command 14
Help Desk

AON/SNA 448
help panels 366
help-desk logs 46
hexadecimal

literal 208, 330
variable name 209

hexadecimal notation
MSU actions 330

HIER keyword
IF-THEN statement 333

HIER, IF-THEN statement 170
high-level language (PL/I and C) 21
high-performance and MS transports

sending alerts 366
HIGHINT 329
HIGHINT keyword, IF-THEN or ALWAYS statement 221
highlighting

messages 24
MSUs 24

HLL (high-level language—PL/I and C) 21
HMASPRID, IF-THEN statement 160, 171
HMBLKACT, IF-THEN statement 160, 172
HMCPLINK, IF-THEN statement 160, 173
HMEVTYPE, IF-THEN statement 160, 175
HMFWDED, IF-THEN statement 160, 176
HMGENCAU, IF-THEN statement 160, 178
HMONMSU, IF-THEN statement 160, 179
HMORIGIN, IF-THEN statement 160, 179
HMSECREC, IF-THEN statement 160, 180
HMSPECAU, IF-THEN statement 161, 181
HMUSRDAT, IF-THEN statement 161, 182
HOLD keyword, IF-THEN or ALWAYS statement 220

I
I/O management 36
id attribute 345
IF-THEN statement

actions, table 211
compare item

definition 164
condition item

definition 164
for messages 158
for messages and MSUs 158
for MSUs 158

conditions linked with
logical-AND operator 156, 157
logical-OR and logical-AND operator, example 157

definition 149
order of grouping

conditions 157
syntax 154
types of 150

IF, IF-THEN statement 153, 154
IFRAUI3X, IF-THEN statement 161
IFRAUIN3, IF-THEN statement 161, 183
IFRAUIND, IF-THEN statement 161, 183
IFRAUSB2, IF-THEN statement 161, 184
IFRAUSC2, IF-THEN statement 161, 184

IFRAUSDR, IF-THEN statement 161, 184
IFRAUSRB, IF-THEN statement 161, 184
IFRAUSRC, IF-THEN statement 161, 185
IFRAUTA1, IF-THEN statement 161, 185
IFRAUWF1, IF-THEN statement 186
IHSAACDS 407
IHSABCDS 407
IHSALCDS 407
IHSAMFMT 407
IHSAMFNT 407
implementation phase 61, 518
IMS (Information Management System) 435
in % INCLUDE statement

no ; at end 231
INCLUDE statement

in the command revision table 138
in the message revision table 130

INCLUDE structure 149
including members (%INCLUDE)

maintenance 372
including members and files (%INCLUDE) 230
inclusion list, MVS

changing 574
starting 574

indicator, status monitor important message 222
indicators, progress 523
information

extracting messages and MSUs 323
Information Management System (IMS) 435
initialization

advanced automation 588
command lists

advanced automation sample set 594
initialization of distributed systems 16
initialization parameters

for selecting subsystem interface or EMCS console 71
initializing 360
input/output management 36
installation exit

DSIEX02A 287
DSIEX16 99, 287
DSIEX16B 287
DSIEX17 288
overview 287
XITCI 287

installation exits 25
interface 458

CNM
unsolicited network management data 459

communication network management 530
for receiving updates about network exception

conditions 454
LU 6.2 transports 366
MVS subsystem 460
operator 363
program-to-program

sending alerts 365
service point 405
TAF 431

interfaces 530
using 461

Interfaces
NetView 85

Operating System 86, 100
POI (program operator interface) 87

to other NetView programs 87

Index 631

Interfaces, NetView
automation-table

ASSIGN COPY processing 99
discard or display messages 100
DSIEX16 99
processing messages 98
routing messages 98
setting message attributes 99

hardware-monitor data and MSUs 87
message routing facilities 89

routing to EMCS consoles 94
routing with the ASSIGN command 90
routing with the MSGROUTE command 94

unsolicited messages from MVS 89
wait processing 97

interfaces, operators 11
intermediate focal point 394
INTERVAL, IF-THEN statement 161, 186
introduction to automation 3
invoking command lists and command processors

basic automation sample set 584
IP network 34
ISSUE.IEE295I statement

coding command revision table 139
issuing commands

basic automation sample set 583

J
JES, starting after NetView 602
JES3 automation 493
JOBNAME, IF-THEN statement 187

K
KEY, IF-THEN statement 188
keywords

%INCLUDE 230
ACQUIRE, IF-THEN statement 162
ACTIONDL, IF-THEN statement 162
ACTIONMG, IF-THEN statement 163
ALL, EXEC action, IF-THEN or ALWAYS statement 217
ALWAYS 153
ALWAYS, ALWAYS statement 230
AREAID, IF-THEN statement 163
AREC, SRF action, IF-THEN or ALWAYS statement 224
ATF, IF-THEN statement 164
ATTENDED, IF-THEN statement 161, 166
AUTOMAN 250, 336
AUTOMATED

IF-THEN or ALWAYS statement 212
IF-THEN statement 167

AUTOMATED, IF-THEN statement 161
AUTOTASK

IF-THEN statement 167
AUTOTASK, IF-THEN statement 161
AUTOTBL 250, 335
AUTOTOKE, IF-THEN statement 168
BEEP

IF-THEN or ALWAYS statement 212
BEGIN, IF-THEN or ALWAYS statement 153, 156, 230
BIT

ATF condition item, IF-THEN statement 164
BLI, XHILITE action, IF-THEN or ALWAYS statement 226
BLOCK, SRF action, IF-THEN or ALWAYS statement 224

keywords (continued)
BLU

COLOR action, IF-THEN or ALWAYS statement 213
BOTH, SRF action, IF-THEN or ALWAYS statement 224
CART, IF-THEN statement 168
CBE 213
CMD, EXEC action, IF-THEN or ALWAYS statement 216
COLOR

IF-THEN or ALWAYS statement 213
CONTINUE

IF-THEN or ALWAYS statement 214
CORRELATED

IF-THEN statement 168
CORRFAIL

IF-THEN statement 168
CURRDATE, IF-THEN statement 161, 168
CURRTIME, IF-THEN statement 161, 169
CURSYS, IF-THEN statement 161, 169
DESC, IF-THEN statement 169
DISPLAY

IF-THEN or ALWAYS statement 214
DISTAUTO, IF-THEN statement 161, 169
DOMACTION

IF-THEN or ALWAYS statement 214
DOMAIN, IF-THEN statement 161, 170
DOMAINID, IF-THEN statement 161, 170
EDIT

IF-THEN or ALWAYS statement 215
END statement 153
ESREC, SRF action, IF-THEN or ALWAYS statement 224
EXEC, IF-THEN or ALWAYS statement 216
GRE

COLOR action, IF-THEN or ALWAYS statement 213
H, MSUSEG condition item

IF-THEN statement 197
H, MSUSEG condition item, IF-THEN statement 331
HCYLOG, IF-THEN or ALWAYS statement 221
HDRMTYPE, IF-THEN statement 161, 170
HIER, IF-THEN statement 170
HIGHINT, IF-THEN or ALWAYS statement 221
HMASPRID, IF-THEN statement 160, 171
HMBLKACT, IF-THEN statement 160, 172
HMCPLINK, IF-THEN statement 160, 173
HMEVTYPE, IF-THEN statement 160, 175
HMFWDED, IF-THEN statement 160, 176
HMGENCAU, IF-THEN statement 160, 178
HMONMSU, IF-THEN statement 160, 179
HMORIGIN, IF-THEN statement 160, 179
HMSECREC, IF-THEN statement 160, 180
HMSPECAU, IF-THEN statement 161, 181
HMUSRDAT, IF-THEN statement 161, 182
HOLD, IF-THEN or ALWAYS statement 221
IF, IF-THEN statement 153, 154
IFRAUI3X, IF-THEN statement 161
IFRAUIN3, IF-THEN statement 161, 183
IFRAUIND, IF-THEN statement 161, 183
IFRAUSB2, IF-THEN statement 161, 184
IFRAUSC2, IF-THEN statement 161, 184
IFRAUSDR, IF-THEN statement 161, 184
IFRAUSRB, IF-THEN statement 161, 184
IFRAUSRC, IF-THEN statement 161, 185
IFRAUTA1, IF-THEN statement 161, 185
IFRAUWF1, IF-THEN statement 186
INTERVAL, IF-THEN statement 161, 186
JOBNAME, IF-THEN statement 187
KEY, IF-THEN statement 188
LINEPRES, IF-THEN statement 188

632 Automation Guide

keywords (continued)
LINETFLG, IF-THEN statement 189
LISTING example

AUTOTBL 240
MCSFLAG, IF-THEN statement 190
MSGAUTH, IF-THEN statement 191
MSGCATTR, IF-THEN statement 191
MSGCMISC, IF-THEN statement 192
MSGCMLVL, IF-THEN statement 192
MSGCMSGT, IF-THEN statement 193
MSGCOJBN, IF-THEN statement 193
MSGCPROD, IF-THEN statement 193
MSGDOMFL, IF-THEN statement 194
MSGGBGPA, IF-THEN statement 194
MSGGDATE, IF-THEN statement 195
MSGGFGPA, IF-THEN statement 195
MSGGMFLG, IF-THEN statement 195
MSGGMID, IF-THEN statement 196
MSGGTIME, IF-THEN statement 196
MSGID, IF-THEN statement 196
MSGSRCNM, IF-THEN statement 196
MSUSEG, IF-THEN statement 197
MVSLEVEL, IF-THEN statement 198
NETID, IF-THEN statement 198
NETLOG, IF-THEN or ALWAYS statement 222
NETVIEW, IF-THEN statement 162, 199
NONE, XHILITE action, IF-THEN or ALWAYS

statement 226
null (’’), IF-THEN statement 207, 210
NUMERIC, IF-THEN statement 199
NVCLOSE 162, 199
ONE, EXEC action, IF-THEN or ALWAYS statement 217
OPER, SRF action, IF-THEN or ALWAYS statement 224
OPID

IF-THEN statement 162
OPID, IF-THEN statement 200
OPSYSTEM, IF-THEN statement 162, 200
PASS, SRF action, IF-THEN or ALWAYS statement 224
PIN

COLOR action, IF-THEN or ALWAYS statement 214
PPT

EXEC action, IF-THEN or ALWAYS statement 217
PRI, SRF action, IF-THEN or ALWAYS statement 224
RED

COLOR action, IF-THEN or ALWAYS statement 214
REV, XHILITE action, IF-THEN or ALWAYS statement 226
ROUTCDE, IF-THEN statement 200
ROUTE

EXEC action, IF-THEN or ALWAYS statement 216
SRF action, IF-THEN or ALWAYS statement 224

SEC, SRF action, IF-THEN or ALWAYS statement 224
SESSID, IF-THEN statement 201
SRF, IF-THEN or ALWAYS statement 223
SYN, SYN statement 231
SYSCONID, IF-THEN statement 201
SYSID, IF-THEN statement 201
SYSLOG, IF-THEN or ALWAYS statement 225
TASK, IF-THEN statement 162, 202
TECROUTE

SRF action, IF-THEN or ALWAYS statement 224
TEXT, IF-THEN statement 202
THEN, IF-THEN statement 153, 156
THRESHOLD, IF-THEN statement 162, 202
TOKEN, IF-THEN statement 204
TRACE, IF-THEN or ALWAYS statement 226
TRAPROUT

SRF action, IF-THEN or ALWAYS statement 224

keywords (continued)
TUR

COLOR action, IF-THEN or ALWAYS statement 214
UND, XHILITE action, IF-THEN or ALWAYS

statement 226
VALUE, IF-THEN statement 162, 205
VTAM, IF-THEN statement 162, 205
VTCOMPID, IF-THEN statement 205
WEEKDAYN, IF-THEN statement 206
WHI, COLOR action, IF-THEN or ALWAYS statement 214
XHILITE, IF-THEN or ALWAYS statement 226
XLO, IF-THEN or ALWAYS statement 226, 306
YEL

COLOR action, IF-THEN or ALWAYS statement 214

L
label

automation tables 251
LABEL 154
label, command prefix 106
LAN (local area network) 405
language choices 113
languages

assembler 21
C 21
choosing 22
CLIST (command list) 21
PL/I 21
REXX 21

LANMGR
resource hierarchy 333

lastEvent mode 346
leased lines 397
limiting

number of system messages processed by NetView 233
limiting automation of command responses 238
LINEPRES, IF-THEN statement 188
lines, leased and switched 397
LINETFLG, IF-THEN statement 189
LINKPD command 406
LINKTEST command 406
list of AON/SNA resources

NetStat 449
LIST TIMER command 23, 122
listing of an automation table

AUTOTBL command 237
debugging 485
example 240

literal, compare item
IF-THEN statement

characters 207
description 207
hexadecimal 208

IF-THEN statement, character notation 330
IF-THEN statement, hexadecimal notation 330

LOADCL command 118, 611
loading command lists, storage 118, 611
local area network (LAN) 405
locating the sample set for automation 580
log

debugging 484
MVS system 490, 492
network

describing 490
log browse 461
MVS system log 492

Index 633

log (continued)
user-provided 491

log analysis program
filtering 467
output 466
sample set 581, 615
tuning 465

LOG destination, messages 491
logging

NETLOG keyword, IF-THEN or ALWAYS statement 222
overview 489
SYSLOG keyword, IF-THEN or ALWAYS statement 225

logs
analyzing, program 45
designing automation 53
help-desk 46
obtaining information from 45
using, automation table 24

LookAt message retrieval tool xxviii
LU 6.2 sessions, migrating to 74
LU 6.2 transports 13

sending alerts 366
LUC sessions

alert forwarding 392

M
major vector

alert 228, 326
See alert

automatable 332
management services 324, 325
routing and targeting instruction GDS variable 332
X'1044' 328
X'1045' 328

major vectors
resolution 332

management reporting 37
management services (MS) and high-performance transports

sending alerts 366
management services capabilities

(MS-Caps) application 59
management services major vector 325
management services transport 13
management services unit (MSU)

actions 329
defaults 229
filtering 8
handling close, source 54
highlighting 24
MSU-type automation-table statement 150
MVS system 32
network 6
processing, automation table 24
responding, automatically 10
simulating 480
system 5
writing automated table statements to automate 324

managing
automation tables 250

manuals
see publications xxv, xxviii

MAPCL command 118
matching rules 345
MCS consoles, extended

dynamically defining
GETCONID 298

MCS consoles, extended (continued)
dynamically defining (continued)

RELCONID 299
SETCONID 299

MCSFLAG
comparing programming languages 190

MCSFLAG, IF-THEN statement 190
MDB (message data block) 71
MDS-MU (multiple domain support message unit)

automating 324
MDS-MUs, automating 331
measurements, progress 523
measuring progress 47, 523
message

automating 320
automating responses 27
automation table 24
BNJ146I 305, 334
consolidating 9
correlation 337
defaults 228
exception notification 363
flash 319
flow

MVS 525
VTAM 535

forwarding
overview 392

handling close, source 54
highlighting 24
logging 491
loss of extended multiple console support consoles 70
message type (HDRMTYPE) 559
message-type automation-table statement 150
MPF table 68
multiline 157
MVS system 27, 71
network 6
presenting information 12
responding, automatically 10
sending, MVS operator console 117
simulating 479
summary reports 249
suppressing

MVS messages 301
sample set 581
VTAM messages 536

suppressing or revising 8
system 5
types 5

message attributes
setting 99

message automation 31
message data block (MDB) 71
message flooding prevention tables 535
message flow with NetView

MVS
extended multiple console support consoles 29

message flow, NetView
MVS

subsystem interface 28
message IDs

searching by 320
message processing facility (MPF)

extended multiple console support consoles 68
setting options, message processing 31

message rates 4

634 Automation Guide

message retrieval tool, LookAt xxviii
message revision table

coding 130
coding statements

DoForeignFrom 131
END 131
EXIT 132
NETVONLY 132
OTHERWISE 132
REVISE 132
SELECT 133
UPON 133
WHEN 134

comments 130
identifying messages, automation 27
overview 25
processing 130
searches 130
testing 135
using 129

message revision table statements
elements of

DoForeignFrom statement 129
END statement 129
EXIT statement 129
INCLUDE statement 130
NETVONLY statement 129
OTHERWISE statement 129, 130
REVISE statement 129
SELECT statement 130
UPON statement 130
WHEN statement 130

message routing 87
ASSIGN command for messages to autotasks 92
ASSIGN command for solicited messages 92
ASSIGN command for unsolicited messages 90
ASSIGN command to drop unsolicited messages 92
solicited messages 88
unsolicited messages 88

authorized receiver 88
unsolicited messages from a DST 89
unsolicited messages from MVS 89
verifying assigned destination

using ASSIGN command with automation logic 93
message routing facilities 89
message suppression sample sets

sample sets 581, 615
message table 24
message-type automation-table statement 150
messages

action messages 320
assigning to operators 90
condition item in IF-THEN statement 158
correlating 336
discard or display 100
forwarding 407
revising 129
routing flow 95

ASSIGN PRI/SEC processing 97
authorized receiver processing 97
DSIEX02A processing 97
DSIEX17 Processing 96
PIPE CORRWAIT 96

routing to EMCS consoles 94
routing with the ASSIGN command 90
routing with the MSGROUTE command 94
searching by position 321

messages (continued)
searching for by domain IDs 321
using tokens to specify for automation 321

messages and MSUs
automated handling 319
condition item in IF-THEN statement 158

methods, for RODM 25, 81
MIB polling and thresholdiing TCP/IP for z/OS only 454
migrating, new automation capabilities

NetView for OS/390 V1R4 513
NetView for z/OS V5R4 513

miscellaneous
advanced automation

sample set 601
MLWTO

blank lines at the beginning 157
modifying command procedures 314
monitoring

combining active and passive 361
components

graphic 13
hardware 12
status 13

passive 360
advanced automation 588

passive, for Tivoli NetView (AIX) 452
proactive 360

advanced automation 589
proactive, for Tivoli NetView (AIX) 453
recovery, for Tivoli NetView (AIX) 453
resource states 10
types

active 11
passive 11

monitoring Advanced Peer-to-Peer Networking resources 450
monitoring X.25 switched virtual circuits 449
MPF (message processing facility) 525

extended multiple console support consoles 68
setting options, message processing 31

MPF exit for MVS command management 563
MRT (message revision table)

overview 25
using 129

MS (management services) and high-performance transports
sending alerts 366

MS transport 13
MS-Caps application 59
MS-CAPS applications 378
MSG detail reports 246
MSGAUTH, IF-THEN statement 191
MSGCATTR, IF-THEN statement 191
MSGCMISC, IF-THEN statement 192
MSGCMLVL, IF-THEN statement 192
MSGCMSGT, IF-THEN statement 193
MSGCOJBN, IF-THEN statement 193
MSGCPROD, IF-THEN statement 193
MSGDOMFL, IF-THEN statement 194
MSGGBGPA, IF-THEN statement 194
MSGGDATE, IF-THEN statement 195
MSGGFGPA, IF-THEN statement 195
MSGGMFLG, IF-THEN statement 195
MSGGMID, IF-THEN statement 196
MSGGTIME, IF-THEN statement 196
MSGID keyword, IF-THEN statement 320
MSGID, IF-THEN statement 196
MSGIFAC values (initialization parameters)

acceptable values and effects of combinations 72

Index 635

MSGIFAC values (initialization parameters) (continued)
changes, migration 73, 74
coordination, values 72
selection, subsystem interface or extended multiple console

support consoles 71
MSGROUTE command

using to route messages 94
MSGSRCNM, IF-THEN statement 196
MSU

correlation 337
selecting 326

MSU (management services unit)
actions 329
alert

actions 329
automating non-MSU problem records 334

automating 324
defaults 229
management services unit (MSU)

detailed reports 247
summary reports 249

MSU-type automation-table statement 150
simulating 480

MSU actions
BEEP 329
bit notation 330
character notation 330
COLOR 329
hexadecimal notation 330
HIGHINT 329
SRF 329
XHILITE 329
XLO 330

MSU routing 100
MSU subvector

selecting field contents 327
MSUs

automated handling 319
condition item in IF-THEN statement 158
correlating 336

MSUSEG
examples 326

MSUSEG, IF-THEN statement 197, 199
multiline messages

using a parse template 324
multiple

autotasks, NetView 469
NetView system 469
NetView, system 457

multiple console support
associating, autotask 311
differences, NetView console 307
issuing NetView commands and command lists as

MODIFY commands 532
issuing NetView commands and command lists as

subsystem commands 531
multiple console support consoles

associating, autotask 124
multiple domain support message unit (MDS-MU)

NMVT (network management vector transport) 324
multiple occurrences of a field

searching for in an MSU 331
multiple resources

resource hierarchy 333
Multiple Virtual Storage operating system

role in automation 27
multiple-NetView-program design 54

multiplexer 405
multisite configuration, example 58
multisystem automation

definition 6
design guidelines 54

MVS
command flow 527
command prefix character 529
command processor 300
defining NetView as subsystem 297
ensuring system messages forwarded from MVS 297

using EMCS consoles 297
using the subsystem interface 297

exclusion or inclusion list
changing 574
starting 574

message flow 525
message ID 320
operator console 117
preparing for system automation 293
system log 490, 492

MVS command exit
activating 571
deactivating 573
stopping from being invoked 572, 573

MVS command management 563
stopping

by deleting the CNMCAUaa PARMLIB member 572
MVS command management setting

display command 572
MVS Command Management, stopping 572
MVS Command Management, testing 573
MVS command processing

starting 572
MVS commands 33

stopping from being sent to NetView 572
MVS commands, automating 33
MVS EMCS consoles

planning to use
message loss 70
message storage 70

MVS extended EMCS consoles
sending messages 29
sending messages to 29

MVS extended multiple console support consoles
advantages 65
comparing, MVS subsystem interface 71
implications 65
introducing 65
migrating

AUTO attribute 74
CNMCSSIR task names 73
console names 73
cross-domain communication 74
MVS VARY command 74
NetView programs 74
subsystem interface 73

MSGIFAC values 72
MVSPARM data set 72
planning to use

acquiring consoles 67
attribute values 68
CNMCSSIR task names 67
console naming conventions 66
default values 68
directing messages with MPF 68
directing messages with the MRT 68

636 Automation Guide

MVS extended multiple console support consoles (continued)
planning to use (continued)

enabling consoles 66
grouping consoles 68
message loss 70
message queue limits 70, 71
message storage 71
route codes 69
security access 70

subsystem address space procedure 72
MVS message

issued by unauthorized program 158
MVS samples location 580
MVS sysplex

advantages, automation 77
cross-system coupling facility (XCF) 77
introducing 77
planning automation

centralized NetView automation 79
message routing 31, 78
MPF actions 78

MVSCmdRevision statement 143
MVSLEVEL, IF-THEN statement 198

N
naming conventions

command lists
advanced automation sample set 594

NCP recovery definitions
displaying 449

NETID, IF-THEN statement 198
NETLOG keyword, IF-THEN or ALWAYS statement 222
NetStat 449
NetView

adding CMDDEF statements to enable system commands
from 300

alerts 364, 366
application address space 296, 528
automation facilities 21, 113
automation table

using 149
automation, definition 3
command list language 21
command procedures 81
command revision table

using 137
defining to MVS as subsystem 297
dynamically defining extended MCS consoles

GETCONID 298
RELCONID 299
SETCONID 299

dynamically defining multiple console support
consoles 298

ensuring system messages forwarded from MVS 297
using EMCS consoles 297
using the subsystem interface 297

Graphic Monitor Facility 13
installation exit 287
message revision table

using 129
message type 559
MVS command management 564
propagating automation 371
recovery 464
running multiple NetView programs, system 457
start-up procedures 299

NetView (continued)
subsystem address space 296, 528

NetView (UNIX) Service Point program 33
NetView and MVS

setting up communication between 581
NetView Command

routing 104
NetView Interfaces 85

automation-table
ASSIGN COPY processing 99
discard or display messages 100
DSIEX16 99
processing messages 98
routing messages 98
setting message attributes 99

message routing facilities 89, 94
routing with the ASSIGN command 90
routing with the MSGROUTE command 94

Operating System 86, 100
other NetView programs 87

hardware-monitor data and MSUs 87
POI (program operator interface) 87
unsolicited messages from MVS 89

wait processing 97
NetView management console 364
NetView message routing 87

authorized receiver 88
unsolicited messages from a DST 89

solicited messages 88
unsolicited messages 88

NetView Performance Monitor (NPM) program 35
NetView Service Point program (UNIX) 34
NETVIEW, IF-THEN statement 162, 199
NETVONLY statement

coding command revision table 143
coding message revision table 132
definition 129, 137

network
automation 6
availability

benefits 3
designing for 54
financial value 48

commands 6
logs 45
management vector transport (NMVT) 32
messages 6
MSUs 6
performance management 35

network log 461, 490
Network management console views

defining time schedules
based on NMCSTATUS policy definitions 263

network messages, suppressing 301
NMC

See also alert
defining time schedules

based on NMCSTATUS policy definitions 263
operator interface 366

NMC views
applications that use 263

NMCSTATUS policy definitions
defining time schedules

for resources in NMC views 263
NMVT

conceptual view 325
structure 324

Index 637

NMVT (network management vector transport) 32
NODELMSG 215
non-IBM networks 35
non-NetView systems

automating 18
interfaces to 35

NONE keyword, XHILITE action, IF-THEN or ALWAYS
statement 226

nonpersistent sessions 398
notation

environment variables xxxi
path names xxxi
typeface xxxi

Notes for ACTIONDL 163
Notes for ACTIONMG 163
Notes for ATF 164
notifications

understanding 444
notifying operators of problems 11
NPM (NetView Performance Monitor) program 35
null ('')

bit-string IF-THEN compare item 207
parse-template

IF-THEN compare item 210
NUMERIC

MSUSEG, IF-THEN statement 199
NVCLOSE, IF-THEN statement 162, 199
NVDELID, IF-THEN statement 200

O
objectives

automation 47
business 43
data-processing 43
measuring progress toward 47
sample measurements 523

obtaining environment information 23
occurrence number

MSUSEG-returned value 197
using to check MSUSEG 331

OEM systems and devices
automating 18
interfaces to 35

OIV 366
ONE keyword, EXEC action, IF-THEN or ALWAYS

statement 217
online help panels 366
online publications

accessing xxviii
OPC/ESA (Operations Planning and Control/ESA) program

workload management using 35
OPCTL (operator-control) TAF sessions 431
OPER

filter 302
keyword, SRF action, IF-THEN or ALWAYS statement 224

operating procedures
centralizing operations 15
consistency 4

operating system
establishing communication with NetView 293
MVS

establishing communication with NetView 293, 300
Operating System

NetView Interfaces 86
operating-system automation facilities

message types 5

operating-system automation facilities (continued)
overview 27
using to automate close to the source 54

operations groups and automation teams 42
operator

definition file (DSIOPF) 53
definitions 604
interfaces 363

designing 55
options 11

productivity 4
profile 605
roles 56

operator awareness 454
operator control

dynamic 93
operator interface

automation display panels
sample set 600

command list and panels
sample set 600

enhancing
sample set, advanced automation 592

operator-control TAF 431
OPERID

example of automation-table function 165
OPI, IF-THEN statement 200
OPID, IF-THEN statement 162
OPSYSTEM, IF-THEN statement 162, 200
ORCNTL command 411
ORCONV

command 413
order of grouping

conditions
in IF-THEN statement 157

ordering publications xxix
OST definition statements

in NetView DSIOPF (for autotasks) 300
OST-NNT session 394
OTHERWISE statement

coding command revision table 142
coding message revision table 132
definition 129, 130, 137

OVERRIDE command
logging 483, 491
message attributes 228

overview
timer commands 119

Overview 431

P
pages 367
panel, full-screen or help 366
panels and command list

automation display panels
advanced automation sample set 600

operator interface
advanced automation sample set 600

parameters and command procedures 22
parse template compare item, IF-THEN statement 207
parse templates

using placeholders in 323
using variables in 323
using with multiline messages 324

PASS keyword, SRF action, IF-THEN or ALWAYS
statement 224

638 Automation Guide

passive monitoring 11, 360, 588
for Tivoli NetView (AIX) 452

passthru rule 349
path names, notation xxxi
PBX (private branch exchange) 405
performance management for networks 35
persistent sessions 398
personnel

assembling 42
educating 55
roles 56

PIN
COLOR action

IF-THEN or ALWAYS statement 214
PIPE CORRWAIT

routing flow for messages 96
PL/I (Programming Language/I) 21
placeholder

period (placeholder) 322
parse template compare item, IF-THEN statement 210

placeholders
in a parse template 323

plan for the project
creating 43
definition 515
phases, project

definition phase 516
design phase 518
implementation phase 518
overview 515
production phase 519

planning charts
design 521
implementation 522
production 522
project definition 520

sample 515
planning and project-definition phase 41
plus sign

for MVS message 158
POI 458
POI (program operator interface) 87, 458
policy definition

adding 272
deleting 272
modifying 271
querying 270
querying a group 270

policy files
loading 269
syntax testing 269
that are loaded 269

Policy repository 264
Policy Services 263

defining 264
management 266
syntax 264
Using 263

portable automation table 372
position

using to search for messages 321
PPT

EXEC action, IF-THEN or ALWAYS statement 217
timer command option 121

pre-loading command lists 118
prefix, command label 106
preloading command lists 611

preparing for NetView initialization
advanced automation

sample set 602
preparing the sample automation table 586
preparing to use

advanced automation
sample set 602

preventing
MVS command exit

from being invoked 572, 573
PRI

keyword, SRF action, IF-THEN or ALWAYS statement 224
printer management 36
priority

dispatching 464
queued commands 106
tasks 469

proactive monitoring 589
advanced automation sample set 589
Advanced Peer-to-Peer Networking resources 450
basic automation sample set 585
describing 360
for Tivoli NetView (AIX) 453

problem
forwarding 15
management 56
notification 12
reports 45

procedure books 45
processing

automation tables 150
command revision tables 138
message revision tables 130

production phase 61, 519
productivity, operator 4
products, automation 21
program operator interface (POI) 87
program-to-program interface

MVS system 32
sending alerts 365

Programming Language/I (PL/I) 21
programs, automation 21
project-definition phase 41, 516
project, production 61
propagating

designing for 52
single-system automation 14

propagating automation 371
publications xxv

accessing online xxviii
ordering xxix

PURGE TIMER command 23, 122

Q
QLIMIT 298
QLIMIT attribute 70
QRESUME 299
queued commands

priority 106
quotation marks 152

as delimiter for synonym value 232

Index 639

R
R&TI GDS variable 332
rack-mounted ES/9000, initializing 17
rate of information 4
reasons to automate 3
receiving updates

choosing AON/TCP interface 454
RECFMS (record formatted maintenance statistic) 328
RECMS (record maintenance statistic) 328

encapsulated 328, 329
RECMSs

selecting 329
RECMSs 82 328
RECMSs and RECFMSs

selecting 328
recording AIFRs 474
recording filters 302
recording-filter attributes, setting 329
recovery

advanced automation
sample set 591

command lists
advanced automation sample set 596

NetView 464
overview 361

recovery monitoring
for Tivoli NetView (AIX) 453

RED
COLOR action

IF-THEN or ALWAYS statement 214
REFRESH command

using for dynamic operator control 93
related products, automation 35
RELCONID command 299
remote

establishing 16
initialization 16
operations 7, 375

Remote Operator Facility (ROF) for 9370s 17
renaming the sample set for automation 580
Report Management and Distribution System (RMDS)

program 36
requirements

automation 47
business 43
data-processing 43
measuring progress toward 47
sample measurements 523
system oriented 44
user oriented 44

reset on match rule 351
resolution major vectors 332
resource hierarchy 333

DEVLAN3 333
LANMGR 333
testing 333

resource list
NetStat 449

Resource Object Data Manager (RODM)
advantages 82, 83
automation with 81
consolidating automation 11
data model for 81
events, automation 83
interactions 81, 82
introducing 25, 81
method procedures (methods) 25, 81

Resource Object Data Manager (RODM) (continued)
planning automation 82, 83

resource recovery 445
resources

monitoring Advanced Peer-to-Peer Networking 450
resources NMC views

defining time schedules
based on NMCSTATUS policy definitions 263

responding, messages and MSUs 10
RESTORE command 121
restructured extended executor (REXX) language 21
REV keyword, XHILITE action, IF-THEN or ALWAYS

statement 226
reviewing the NetView start-up procedures 299
REVISE statement

coding command revision table 142
coding message revision table 132
definition 129, 137

revising commands
using CRT 137

revising messages 8
overview 25
using MRT 129

REXX
command lists, procedures 113
consolidating commands 313

REXX (restructured extended executor) language 21
REXX API 273
RMDS (Report Management and Distribution System)

program 36
RMTCMD

label 106
routing to a task 106

RMTCMD command
forwarding commands 392

RMTCMD command, migrating to 74
RODM 409
ROF (Remote Operator Facility) for 9370s 17
roles

of automation products 21
of operators 56

ROUTCDE, IF-THEN statement 200
ROUTE

command 394
filter 302, 305
keyword, EXEC action, IF-THEN or ALWAYS

statement 216
SRF action, IF-THEN or ALWAYS statement 224

route codes
using to route messages to EMCS consoles 94

route codes, extended multiple console support consoles 69
route codes, specifying 94
ROUTE keyword

in automation-table
for routing commands 105

routing
commands

CNMSMSG service routine 105
DSIMQS Macro 105
ROUTE keyword in automation-table 105

messages to autotasks with ASSIGN 92
NetView Commands 104
solicited messages 92
to a task

EXCMD command 106
RMTCMD command 106

640 Automation Guide

routing (continued)
unsolicited messages

using ASSIGN command 90
verifying assigned destination 93

routing and targeting instruction GDS variable 332
routing facilities

commands 105
for messages 89

routing flow
messages 95

ASSIGN PRI/SEC processing 97
authorized receiver processing 97
DSIEX02A processing 97
DSIEX17 Processing 96
PIPE CORRWAIT 96

routing messages 98
routing messages using logical-OR logic, example

using logical-OR logic 322
routing messages using placeholders, example

using placeholders 322
RTNDEF.BASE.AGENT statement 79
rules

state correlation
cloning 352
collector 348
described 344
duplicates 345
matching 345
threshold 346

RUNCMD command 406

S
sample automation table

activating 586
preparing 586
testing syntax of 586

sample set
activating basic automation

activating 585
advanced automation 587

automation display panels 600
command lists used in 592
enhancing the operator interface 592
functions 592
functions performed by 587
initialization 588
initialization and active-monitoring command lists 594
naming conventions for command lists 594
operator-interface command list and panels 600
passive monitoring 588
proactive monitoring 589
recovery 591, 596
shutdown 591, 598

automation table
assigning a value to a variable 583
invoking command lists and command processors 584
issuing commands 583
used in basic automation sample set 582

basic automation 581
activating 585
functions performed by 581

for automation 579
log analysis program 581
message suppression 581
miscellaneous

advanced automation 601

sample set (continued)
MVS samples location 580
preparing for NetView initialization

advanced automation 602
preparing to use

advanced automation 602
processes automated 588
starting NetView before JES

advanced automation 602
starting NetView before VTAM

advanced automation 603
sample set for automation

using 579
sample set, automation

advanced command lists 612, 614
advanced samples 612
basic command lists 611
basic samples 611
log analysis samples 615
message suppression samples 615
product IDs 607
setup samples 615

samples
automation 11
IHSAACDS 407
IHSABCDS 407
IHSALCDS 407
IHSAMFMT 407
IHSANFMT 407
progress measurements 523
project plan 515

SAVECMD command 412
saving

information 114
timer commands 121

scenario (outline of events), RODM automation 83
scheduled commands, verifying 482
scheduling

automation stage 10
command execution

using timer commands (overview) 23
projects 51

searching
automation tables 150
command revision tables 138
message revision tables 130

searching for
all occurrences of a field 331
multiple occurrences of a field in an MSU 331

searching for a group of messages
by using placeholders 322

Searching for a group of messages 322
by Logical-AND Logic 322
by Logical-OR logic 322

searching for a message
by Domain ID 321
by Message ID 320
by position 321
by token 321

Searching for a message
by placeholder 322

SEC keyword, SRF action, IF-THEN or ALWAYS
statement 224

security 603
designing for 53
extended multiple console support consoles 70

Index 641

SELECT statement
coding command revision table 141
coding message revision table 133
definition 130, 137

selecting
Alert Major Vectors in an MDS-MU 332
encapsulated RECMSs 328
Field Existence 326
message IDs 320
RECMSs and RECFMSs 328
RECMSs with a Recording Mode of X'82' 329
subvectors 326

selecting and MSU
example 326

selecting field contents 327
selecting subfields 327
semicolon

none in synonym
names 232
variables 232

sender token 424
sending

messages, MVS operator console 117
sequence number

automation tables 250
sequence, automation stages

example 18
overview 7

Service Level Reporter (SLR) program 37
service point 34, 405
service-level agreements

identifying requirements 44
understanding environment 46

SESSID, IF-THEN statement 201
sessions

full-screen TAF 431
LU 6.2, sending alerts 366
LUC, alert forwarding 392
nonpersistent 398
OST-NNT 394
persistent 398
PPI and TCP/IP, alert and message forwarding 406

SETCONID command 67, 299
sets of automation tables

processing 150
setting message attributes 99
setting up communication between NetView and MVS 581
shutdown 361

advanced automation
sample set 591

command lists
advanced automation sample set 598

simulating
messages 479
MSUs 480

single-system automation
definition 6
designing, propagation 52
propagating 14
stages 7

SLR (Service Level Reporter) program 37
SMS (Storage Management Subsystem) 36
SMSGID 163
SNA subarea VTAM resource automation support 450
SNAMAP 449
SNMP

trap automations 499

SOC-MGR 59, 380
solicited messages

ASSIGN command for routing 92
message routing 88

source LU (SRCLU) 432
sphere-of-control

environments 383
example of 58, 59
functions 381
manager 59
MS-CAPS management 381
operator management 381
overview 59
SOC-MGR 380
states 382
types 381

SRCLU (source LU) 432
SRF 329

keyword, IF-THEN or ALWAYS statement 223, 303
SRFILTER command 8, 303
SSNT (subsystem names table) 526
standards, establishing 51
start-up procedures

NetView 299
starting

MVS command processing 572
starting NetView before JES

advanced automation
sample set 602

starting NetView before SAF product
advanced automation

sample set 603
starting NetView before VTAM

advanced automation
sample set 603

state correlation
aggregate values 348
allEvents mode 346
attributes, common 345
cloning 352
collector rules 348
duplicates rules 345
firstEvent mode 346
forwardEvents mode 346
id attribute 345
lastEvent mode 346
matching rules 345
overview 341
passthru rules 349
reset on match rules 351
rules 344
sample xml file 342
state machines 344
threshold rules 346
thresholdCount attribute 346
timeInterval attribute 346
timeIntervalMode attribute 346
transitions 346, 347, 348
triggerMode attribute 346
XML 342

state information, forwarding 375
state machines

definition 344
state variable 357
statement, automation table

BEGIN-END section 152
IF-THEN 154

642 Automation Guide

statement, automation-table
%INCLUDE 230
ALWAYS 229
SYN 231

statement, command revision table
END 142
ISSUE.IEE295I 139
NETVONLY 143
OTHERWISE 142
REVISE 142
SELECT 141
TRACKING.ECHO 139
UPON 140
WHEN 141
WTO 143

statement, message revision table
END 131
EXIT 132
NETVONLY 132
OTHERWISE 132
REVISE 132
SELECT 133
UPON 133
WHEN 134

states, monitoring 10
status changes

automating 335
status information

displaying 363
status monitor 13, 364, 461
stopping

MVS command exit
from being invoked 572, 573

MVS commands
from being sent to NetView 572

STORAGE 298
storage management 36
Storage Management Subsystem (SMS) 36
storing

automation-table statements 150
streamlining

automation tables 233
subfields

selecting 327
SUBMIT command 118
subsystem

address space 296, 528
interface 460
names table (SSNT) 526

subsystem interface
migrating 73
selecting to use 71
sending messages through 28

subvectors
selecting 326

summary actions 344
suppressing messages 8, 301, 581
SVFILTER command 305
switched lines 397
SYN

synonym
statements, example 238

SYN statement 231
definition 149
design guidelines 236

synchronizing automation across systems 371

synonym
names

no % 232
no percentage symbols 232

variables
no ; 232

syntax
automation-table statements

BEGIN-END section 152
SYSCONID, IF-THEN statement 201
SYSID, IF-THEN statement 201
SYSLOG

MVS system 490
SYSLOG keyword, IF-THEN or ALWAYS statement 225
SYSOP destination for messages 229, 491
sysplex 372
sysplex, MVS

advantages, automation 77
cross-system coupling facility (XCF) 77
introducing 77
planning automation

centralized NetView automation 79
message routing 31, 78
MPF actions 78

system
automation 5
availability

benefits 3
designing for 54
financial value 48

commands 5
logs 45, 490
messages 5
MSUs 5

system commands
using MVS processor to issue

from NetView 300
system messages

ensuring forwarding from MVS to NetView 297
using EMCS consoles 297
using the subsystem interface 297

limiting the number processed by NetView 233
system messages, suppressing 301
system symbolic substitution 152
system-oriented requirements 44

T
T1 multiplexer 405
TAF (terminal access facility)

centralized operations 395
describing 431
options 432
VTAM interface 530

TAF sessions 431
tape management 36
target system

definition 16
Target System Control Facility (TSCF) 16
task

See also autotask
for timer command 121
priority 469

task global variable 115
TASK, IF-THEN statement 162, 202
tasks

compatibility with commands 105

Index 643

TCB 163
TCP/IP

Automation 451
MIB polling and thresholdiing TCP/IP for z/OS only 454
threshold values 453

team
assembling 42
educating 55
roles 56

TECROUTE
filter 302, 305
SRF action, IF-THEN or ALWAYS statement 224

tecsce.dtd file 342
terminal access facility (TAF)

centralized operations 395
describing 431
options 432
VTAM interface 530

testing 56
automation statements 335
basic automation sample set 587
resource hierarchy 333

testing automation 473
testing command revision 147
testing message revision 135
testing syntax of

sample automation table 586
text comparisons

using parse templates 323
text position

searching by 321
TEXT, IF-THEN statement 202
THEN, IF-THEN statement 153, 156
THRESHOLD

valid specifications, table 203
threshold rules 346
threshold values

for AON/TCP with Tivoli NetView (AIX) 453
THRESHOLD, IF-THEN statement 162, 202
thresholdCount attribute 346
thresholding and MIB polling

TCP/IP for z/OS only 454
thresholds 445
timeInterval attribute 346
timeIntervalMode attribute 346
timer APIs 273
TIMER command 120
timer commands

overview 23, 119
saving and restoring 121
scheduling commands with 10
verifying 482

timers
state correlation 345, 346, 348

Tivoli distributed networks 34
Tivoli Enterprise Console event 407
Tivoli NetView (AIX)

passive monitoring
in AON 452

proactive monitoring
in AON 453

recovery monitoring
in AON 453

Tivoli NetView for UNIX service point 405
Tivoli Software Information Center xxviii
Tivoli technical training xxix
TOKEN keyword, IF-THEN statement 321

TOKEN, IF-THEN statement 204
tokens

using to search for messages 321
TRACE keyword, IF-THEN or ALWAYS statement 226
tracing

TRACE keyword, IF-THEN or ALWAYS statement 226
tracing, automation table 486
TRACKING.ECHO statement

coding command revision table 139
training, Tivoli technical xxix
transitions 344, 346, 347, 348
transports, MS and high-performance

sending alerts 366
TRAPROUT

filter 302, 305
keyword, SRF action, IF-THEN or ALWAYS statement 224

trigger events 344
triggerMode attribute 346
tuning recommendations 465
TUR

COLOR action
IF-THEN or ALWAYS statement 214

tutorials
AON/SNA 448

two-NetView-program design 54
typeface conventions xxx
types

ALWAYS statement 150
automation-table statements 149
command revision table statements 137
IF-THEN statement 150
message revision table statements 129

types, automation 4

U
unattended

operations 375
unauthorized program 158
unautomated messages and MSUs, evaluating 485
UND keyword, XHILITE action, IF-THEN or ALWAYS

statement 226
understanding

AON automated operators 444
AON automation and recovery 443
AON/SNA options 448
automation notification logging

in the hardware monitor 445
automation tracking 445
notifications 444

unsolicited messages
ASSIGN command for dropping 92
ASSIGN command for routing 90
authorized receiver 88
message routing 88

unsolicited messages from a DST 89
unsolicited messages from MVS 89
updates

choosing AON/TCP interface for receiving 454
UPON statement

coding command revision table 140
coding message revision table 133
definition 130, 137

usage reports
automation-table 240

usage reports, automation table 25
user group on Yahoo, NetView xxx

644 Automation Guide

user input 46
user-defined MS focal-point categories 391
user-oriented requirements 44
user-provided logs 491

V
valid specifications table

THRESHOLD 203
VALUE, IF-THEN statement 162, 205
variable

compare item, IF-THEN statement
character 208
hexadecimal 209

extracting information from messages and MSUs 323
global 114
in %INCLUDE statement 231
state 357

variable name
compare item, IF-THEN statement

description 208
variable value

compare item, IF-THEN statement
describing 209

variables
checking R&TI GDS 332
in a parse template 323

variables, notation for xxxi
verifying

automation table 335
syntax for automation statements 335

VIEW command 14
viewing filter 305
VTAM

issuing commands 449
managing options 449
message and command processing 535
message flooding prevention table 535
message suppression 536
resource automation support, SNA subarea 450

VTAM block 158
VTAM, IF-THEN statement 162, 205
VTAM, starting after NetView 603
VTCOMPID, IF-THEN statement 205

W
wait processing 97, 116
WEEKDAYN, IF-THEN statement 206
WHEN statement

coding command revision table 141
coding message revision table 134
definition 130, 137

WHI keyword, COLOR action, IF-THEN or ALWAYS
statement 214

workload management 35
write-to-operator and write-to-operator-with-reply

messages 27
Writing Automation Table Statements (to Automate

Messages) 320
WTO command 117, 525
WTO statement

coding command revision table 143
definition 137

WTOR command 117, 525
WTOs and WTORs 27

X
X.25 switched virtual circuits

monitoring 449
X'1044' major vector 328
X'1045'major vector 328
XCF (cross-system coupling facility), sysplex 77
XHILITE 329
XHILITE keyword, IF-THEN or ALWAYS statement 226
XITCI installation exit 26, 287
XITCI processing 103
XLO 330
XLO keyword, IF-THEN or ALWAYS statement 226, 306
XML files 342

Y
Yahoo user group, NetView xxx
YEL

COLOR action
IF-THEN or ALWAYS statement 214

Index 645

646 Automation Guide

����

Program Number: 5697-ENV

Printed in USA

SC31-8853-05

	Contents
	Figures
	About this publication
	Intended audience
	Publications
	IBM Tivoli NetView for z/OS library
	Related publications
	Accessing terminology online
	Using NetView for z/OS online help
	Using LookAt to look up message explanations
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Downloads
	Support for problem solving
	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths
	Syntax diagrams

	Part 1. Introducing Automation
	Chapter 1. Introducing NetView Automation
	What Does NetView Automation Mean?
	Benefits of Automation
	Improving System and Network Availability
	Removing Constraints to Growth
	Increasing Operator Productivity
	Ensuring Consistent Operating Procedures

	Classes of Automation
	System and Network Automation
	System Automation
	Network Automation

	Single-System or Multiple-System Automation
	Single-System Automation
	Multiple-System Automation

	Stages of Automation
	Single-System Automation Stages
	Suppressing or Revising Messages and Blocking Alerts
	Consolidating Consoles
	Reducing Consoles
	Consolidating Consoles through Message Collection
	Dedicating a NetView Console

	Consolidating Commands
	Scheduling Commands
	Responding Automatically to Messages and MSUs
	Establishing Coordinated Automation
	Consolidating Automation with RODM

	Improving Operator Interfaces
	Presenting Information in Messages
	Presenting Information in Hardware Monitor Alerts
	Deciding How to Use the Hardware Monitor
	Generating Alerts

	Presenting Information in Beeper/E-mail Actions
	Presenting Status Information
	Displaying Information on Full-Screen Panels
	Propagating Single-System Automation
	Centralizing Operations
	Use of Focal Points in Centralized Operations
	Establishing Remote Operation

	Automating Non-NetView Systems and Non-SNA Devices
	Example of a Staged Approach
	Stage 1: Suppress Messages and Filter Alerts
	Stage 2: Consolidate Consoles
	Stage 3: Consolidate Commands
	Stage 4: Schedule Commands
	Stage 5: Create Automated Responses to Messages and MSUs
	Stage 6: Coordinate Monitoring and Reactivating
	Stage 7: Improve Operator Interfaces
	Stage 8: Implement Multiple-System Automation
	Stage 9: Centralize Operations
	Stage 10: Extend Automation to Additional Machines and Devices

	Chapter 2. Overview of Automation Products
	NetView Automation Facilities
	Command Lists and Command Processors
	Choosing a Language
	Automating with Command Procedures
	Obtaining Message and Management Services Unit (MSU) Information
	Using Global Variables
	Accepting Parameters
	Obtaining Environment Information
	Interacting with the System and Network
	Waiting

	Timer Commands
	Autotasks
	Automation Table
	Message Revision Table
	Resource Object Data Manager
	Installation Exits
	Using DSIEX02A
	Using DSIEX16 or DSIEX16B
	Using DSIEX17
	Using XITCI

	MVS Command Revision
	Automated Operations Network (AON)
	Status Monitor

	Operating-System Automation Facilities and Interactions with NetView
	Automation on MVS Systems
	Automating Responses to Messages
	Setting Options for Automating with either the Message Processing Facility (MPF) or the Message Revision Table (MRT)
	Automating a Sysplex
	Automating Responses to MSUs
	Issuing NetView Commands from Multiple Support Consoles
	Issuing NetView Commands with the MVS MODIFY Command
	Issuing NetView Commands with the Designator Character

	Issuing MVS Commands from NetView
	Automating MVS Commands
	Issuing MVS System Messages and Delete Operator Messages (DOMs)

	System Automation/390 Programs
	Examples of Using NetView Interfaces
	NetView Service Points
	Tivoli Networks
	IP Networks Using SNMP
	Non-IBM Networks

	Automation-Related Functions and Services
	Managing Workload
	Managing Network Performance
	Managing Input/Output
	Managing Storage
	Management Reporting

	Part 2. Achieving an Automated Environment
	Chapter 3. Defining an Automation Project
	Project Definition Tasks
	Assembling an Automation Team
	Choosing an Approach®
	Involving Operation Groups

	Creating a Project Plan
	Identifying the Goals of Your Organization
	Identifying Business Goals
	Identifying Data-Processing Requirements

	Understanding Your Operating Environment
	MVS System and Network Logs
	Operation Procedure Books
	Problem-Management Reports
	Help-Desk Logs
	Service-Level Agreements
	Users
	Other Data-Processing Plans
	Interpreting the Information

	Developing Goals and Objectives for Automation
	Developing Goals for Automation
	Developing Measurable Objectives
	Quantifying Costs and Benefits

	Securing Commitment

	Chapter 4. Designing an Automation Project
	Project Design Tasks
	Identify Procedures and Functions to Automate
	Prioritize Procedures and Functions
	Schedule Stages for Implementation
	Establish Standards

	Design Guidelines
	Designing for Expansion and Propagation
	Designing for Auditability
	Designing Automation Security
	Designing for Availability
	Automating Close to the Source
	Using Multiple NetView Programs on a Single System
	Providing Operator Interfaces
	Educating Your Staff
	Anticipating Changing Staff Roles
	Providing for Testing
	Providing for Problem and Change Management
	Choosing Focal Points
	Using a Backup Focal Point
	Defining Operator Sphere-of-Control

	Chapter 5. Implementing an Automation Project
	Implementation Tasks
	Production Tasks

	Part 3. Planning for Automation in Selected Environments
	Chapter 6. Automation Using MVS Extended Multiple Console Support Consoles
	Using EMCS Consoles with NetView
	Advantages of Using EMCS Consoles with NetView
	Planning for Extended Multiple Console Support Consoles
	Enabling Extended Multiple Console Support Consoles
	Developing Console Naming Conventions
	Acquiring Extended Multiple Console Support Consoles
	Defining Task Names for CNMCSSIR Tasks
	Defining Consoles in Groups
	Using the MRT or the MPF Table to Direct Messages to NetView Automation
	Using Attribute Values for Extended Multiple Console Support Consoles
	Defaults for a Console Obtained by the CNMCSSIR Task
	Defaults for a Console Obtained by an Operator

	Using Route Codes
	Case 1
	Case 2
	Understanding Effects of Attributes

	Implementing Security Access
	Avoiding Message Loss because of a Full MVS Message Data Space
	Avoiding Message Loss because of an Exceeded Queue Limit
	Balancing MVS Message Storage and Message Queue Limit

	Comparing Extended Multiple Console Support Consoles with Subsystem Allocatable Consoles
	Migrating from the Subsystem Interface to Extended Multiple Console Support Consoles
	Establish Unique Names
	Migrate to a Later Release NetView Program at Each Host
	Continue Using the Subsystem Interface If Needed
	Use the RMTCMD Command and LU 6.2 Sessions for Cross-Domain Communication
	Restrict Operator Access to the MVS VARY Command
	Restrict AUTO Attribute of EMCS Consoles
	Define Each NetView Program to Use Extended Multiple Console Support Consoles

	Chapter 7. Automation in an MVS Sysplex
	MVS Sysplex
	Using NetView Automation in a Sysplex
	Planning for Automation in a Sysplex
	Stage 1. Become Familiar with EMCS Consoles and How Their Attributes Affect Message Routing in a Sysplex
	Stage 2. Coordinate MPF Actions with the Definitions of EMCS Consoles
	Stage 3. Decide Whether to Centralize Your NetView Automation on One System of the Sysplex

	How Foreign Messages are Processed

	Chapter 8. Automation with the Resource Object Data Manager
	Introducing the Resource Object Data Manager
	Interactions with RODM
	Using RODM in Automation

	Advantages of Using RODM
	Planning for Using RODM in Automation
	Determining the Types of Events to Produce Automated Responses from RODM
	Understanding RODM Automation Capabilities

	Chapter 9. NetView Information Routing for Automation
	NetView Interfaces
	Interfaces to the Operating System
	Interfaces to Other NetView Programs
	Other Message and Command Facilities
	Interfaces for Hardware-Monitor Data and MSUs

	NetView Message Routing
	Solicited Messages
	Unsolicited Messages
	The Authorized Receiver
	Unsolicited Messages from a DST
	Unsolicited Messages from MVS

	Message Routing Facilities
	Routing Messages with the ASSIGN Command
	Assigning Messages to Operators
	Assigning Operators to Groups
	Using ASSIGN to Route Unsolicited Messages
	Using ASSIGN to Drop Unsolicited Messages
	Using ASSIGN to Route Solicited Messages
	Using ASSIGN to Route Messages to Autotasks
	Using ASSIGN with Automation Logic
	Using the REFRESH and ASSIGN Commands for Dynamic Operator Control
	ASSIGN Command Versus Automation Table Routing

	Routing Messages with the MSGROUTE Command
	Routing Messages to EMCS Consoles Based on Route Codes
	Specifying the Route Codes
	Eliminating Duplicate Automation of Messages

	Message Routing Flow
	DSIEX17 Processing
	PIPE CORRWAIT
	ASSIGN PRI/SEC Processing
	Authorized Receiver Processing
	DSIEX02A Processing
	Wait Processing
	Automation-Table Processing
	Routing Messages
	Setting Message Attributes

	DSIEX16 Processing
	ASSIGN COPY Processing
	Discard or Display Processing

	NetView Hardware-Monitor Data and MSU Routing
	ALERT-NETOP Application
	XITCI Processing
	Initial Hardware-Monitor Processing
	Automation-Table Processing
	DSIEX16B Processing
	Continued Hardware Monitor Processing

	NetView Command Routing
	Compatibility of Commands with Tasks
	Command Routing Facilities
	Automation-Table ROUTE Keyword
	CNMSMSG Service Routine and DSIMQS Macro
	EXCMD Command
	RMTCMD Command
	Command Label Prefixes

	Command Priority

	Part 4. NetView Automation Facilities
	Chapter 10. Command Lists and Command Processors
	Available Languages
	Obtaining Messages and MSUs
	Message Functions
	MSU Functions

	Saving Information
	Global Variables
	Task Global Variables
	Common Global Variables
	Choosing a Type of Variable

	MVS Data Sets

	Waiting for a Specific Event
	NetView Command List Language Waiting
	REXX Waiting
	PL/I and C Waiting

	Additional Command-List Capabilities for MVS
	Sending Messages to an MVS Console
	Allocating Disk, Tape, and Print Files

	Loading Command Lists into Storage

	Chapter 11. Timer Commands
	Overview of Timer Commands
	AFTER
	AT
	EVERY
	TIMER
	CHRON

	Choosing a Task
	Saving and Restoring Timer Commands
	LIST TIMER and PURGE TIMER
	LIST TIMER
	PURGE TIMER

	Chapter 12. Autotasks
	Defining Autotasks
	Activating Autotasks
	Using the AUTOTASK Command
	Associating Autotasks with Multiple Console Support Consoles
	Deactivating Autotasks
	Automating with Autotasks
	Managing Subsystems
	Processing Unsolicited Messages
	Processing Commands
	Starting Tasks
	Sending Commands to an Autotask Using the EXCMD Command

	Chapter 13. The Message Revision Table
	What Is the Message Revision Table?
	Elements of Message Revision Table Statements
	Message Revision Table Processing
	Message Revision Table Searches

	Coding a Message Revision Table
	Changing Route Codes and Descriptor Codes
	DoForeignFrom Statement
	END Statement
	EXIT Statement
	NETVONLY Statement
	OTHERWISE Statement
	REVISE Statement
	SELECT Statement
	UPON Statement
	WHEN Statement
	Example of a Message Revision Table
	Usage Reports for Message Revision Tables
	Message Revision Table Testing

	Chapter 14. The Command Revision Table
	What Is the Command Revision Table?
	Elements of Command Revision Table Statements
	Command Revision Table Processing
	Command Revision Table Searches

	Coding a Command Revision Table
	Command Revision Table Statements
	TRACKING.ECHO Statement
	ISSUE.IEE295I Statement
	UPON Statement
	SELECT Statement
	WHEN Statement
	OTHERWISE Statement
	END Statement
	REVISE Statement
	NETVONLY Statement
	WTO Statement
	Edit Orders

	Command Revision Table Example
	Usage Reports for Command Revision Tables
	Command Revision Table Testing

	Chapter 15. The Automation Table
	What Is the Automation Table?
	Elements of Automation-Table Statements
	Automation-Table Processing
	Automation-Table Searches

	Types of Automation-Table Statements
	Determining the Type of Statement
	Statement Types and Processing

	Coding an Automation Table
	BEGIN-END Section
	IF-THEN Statement
	Condition Items
	Bit Strings as Compare Items
	Parse Templates as Compare Items
	Literals
	Variable Names
	Variable Values
	Placeholders
	Nulls

	Actions
	ALWAYS Statement
	%INCLUDE Statement
	SYN Statement
	Design Guidelines for Automation Tables
	Limit System Message Processing
	Streamline the Automation Table
	Group Statements with BEGIN-END Sections
	Isolate Complex Compare Items
	Include Other Automation Tables
	Tailor Automation Tables for Your Operation
	Use Synonyms
	Place Statements Carefully
	Use Automation-Table Listings
	Use the ALWAYS Statement
	Use the CONTINUE Action Carefully
	Set Automation-Table Defaults
	Limit Automation of Command Responses
	Automation as the NetView Program Closes

	Example of an Automation-Table Listing
	Automation-Table Usage Reports
	The AUTOCNT Command
	Example of Usage Reports Output
	Assumptions of Message and MSU Processing for This Example
	Detailed Automation-Table Usage Report
	Summary Automation-Table Usage Report
	General Reminders about Automation-Table Usage Reports

	Managing Multiple Automation Tables
	Getting Started
	Using Automation-Table Management
	Using Commands for Selected Tables
	Inserting an Automation Table
	Using the Display Options Pop-up window

	Using Global Commands
	Using the Global Display Panel
	Enabling and Disabling Automation-Table Statements
	Displaying the Labels/Blocks/Groups Panel

	The Confirmation Panel

	Chapter 16. Policy Services Overview
	Using Policy Services
	Customizing DSITBL01 (optional)
	Defining Your Policy Files

	Required NetView Tasks
	Policy File Syntax
	Policy File Management
	Using the Policy API
	POLICY Syntax
	Determining Which Policy Files are Loaded
	Syntax Testing the Policy Files
	Loading Policy Files
	Querying a Policy Definition
	Querying a Group of Policy Definitions
	Modifying a Policy Definition
	Deleting a Policy Definition
	Adding a Policy Definition
	REXX API Usage

	Timer APIs
	EZLETAPI
	EZLEQAPI
	EZLEDAPI
	EZLEQCAL

	Chapter 17. Installation Exits
	What Are Installation Exits?
	Installation Exit DSIEX02A
	Installation Exit XITCI for BNJDSERV
	Installation Exits DSIEX16 and DSIEX16B
	Installation Exit DSIEX17

	Part 5. Single-System Automation
	Chapter 18. Automation Setup Tasks
	Establishing Communication between NetView and the Operating System
	Preparing MVS for System Automation
	Defining NetView to MVS as a Subsystem
	Ensuring That MVS Forwards System Messages to NetView
	Using the Subsystem Interface
	Using EMCS Consoles

	Dynamically Defining EMCS Consoles
	The GETCONID Command
	The SETCONID Command
	The RELCONID Command

	Reviewing the NetView Start-up Procedures
	Adding CMDDEF Statements to Allow System Commands from NetView

	Defining and Activating Autotasks

	Chapter 19. Suppressing Messages and Filtering Alerts
	Suppressing System Messages
	Suppressing Network Messages
	Filtering Alerts
	Recording Filters
	Statistics, Events, and Alerts
	COLOR and OPER Filters
	Other Recording Filter Information

	Viewing Filters
	Bypassing Filters

	Chapter 20. Consolidating Consoles
	How to Consolidate Consoles
	Differences between NetView and Multiple Console Support Consoles
	Screen Handling and Message Placement
	Message Line Format
	Display Area Capability
	Screen Refresh
	Prefix Command Name
	Message Holding
	Color and Other Highlighting Attributes

	Benefits of NetView Command Facility Screens
	Using Multiple-Support-Console Consoles with Autotasks

	Chapter 21. Consolidating Commands
	Writing Simple Command Procedures
	Anticipating Additional Automation
	Modifying Command Procedures
	Documenting Command Procedures

	Chapter 22. Automating Messages and Management Services Units (MSUs)
	Deciding Which Messages and MSUs to Automate
	Writing Automation Table Statements to Automate Messages
	Checking by Message ID
	Automating Action Messages
	Checking Other Specific Criteria
	Checking Messages by Domain ID
	Checking Messages with Tokens
	Checking Messages by Position
	Checking Messages by a Placeholder

	Checking General Criteria
	Checking Criteria with Logical-AND Logic
	Checking Criteria with Logical-OR Logic
	Checking Criteria Using Placeholders

	Comparing Text with Parse Templates
	Using Placeholders in a Parse Template
	Using Variables in a Parse Template
	Using Parse Templates with Multiline Messages

	Writing Automation Table Statements to Automate MSUs
	Checking for Field Existence
	Checking Subvectors
	Checking Subfields

	Checking Field Contents
	Checking for RECMSs and RECFMSs
	RECMS 82
	Encapsulated RECMS
	Example: Checking for a RECMS with a Recording Mode of X'82'

	MSU Actions
	Hexadecimal, Character, and Bit Notations
	Using Hexadecimal Notation
	Using Character Notation
	Using Bit Notation

	When a Field Occurs More than Once
	Using Header Information
	Using Major Vectors Other than Alerts
	Checking Resolution Major Vectors
	Checking R&TI GDS Variables

	Using the Resource Hierarchy
	Using the Domain ID

	Automating Other Data by Generating Messages
	Automating Hardware Monitor Records
	Automating Status Changes

	Putting Your Automation Statements into Effect
	Correlating Messages and MSUs Using the Correlation Engine
	Correlation Overview
	Storage Considerations
	Correlation Processing
	Creating Correlation Events Using COREVENT and CNMCRMSG
	Message and MSU to Event Mapping

	Filtering with State Correlation
	Creating Rules
	Predicates
	Actions
	Attributes common to all rules
	Matching rules
	Duplicates rules
	Threshold rules
	Collector rules
	Passthru rules
	Reset on match rules

	Cloning state machines
	Writing custom actions
	Event objects
	Action structure
	Working with events

	Chapter 23. Establishing Coordinated Automation
	The State-Variable Technique
	Automating Initialization, Monitoring, Recovery, and Shutdown
	Automating Initialization
	Automating Monitoring
	Passive Monitoring
	Proactive Monitoring
	Combining Active and Passive Monitoring

	Automating Recovery
	Automating Shutdown

	Chapter 24. Enhancing the Operator Interface
	Displaying Messages
	Displaying Status Information
	Tracking Status with the Status Monitor
	Tracking Status with the NetView Management Console Display

	Monitoring Alerts with the Hardware Monitor
	Sending Alerts with the Program-to-Program Interface
	Sending Alerts with the GENALERT Command
	Sending Alerts with the MS Transport

	Monitoring Alerts with the NMC
	Creating Full-Screen Panels
	Sending E-mail or Alphanumeric Pages

	Part 6. MultiSystem Automation
	Chapter 25. Propagating Automation to Other NetView Systems
	Automating Close to the Source
	Distinguishing between Automation Procedures
	Defining Responsibilities
	Defining Autotasks Consistently
	Developing Generic Automation Command Procedures
	Developing a Portable Automation Table
	Including Forwarding
	Installing and Testing Before Distribution
	Logging Intrasystem Automation

	Chapter 26. Centralized Operations
	Data Transports
	LU 6.2 Transports
	LUC
	OST-NNT

	NetView Architected Focal Point Support
	The MS-CAPS Application
	MS-CAPS in the Advanced Peer-to-Peer Networking Environment
	Failure Processing
	Focal Point Nesting

	Sphere-of-Control with Architected Focal Points
	Sphere-of-Control Functions at the Focal Point
	MS-CAPS Management of the Sphere-of-Control
	Operator Management of the Sphere-of-Control

	Sphere-of-Control Types
	Sphere-of-Control States
	Setting Up the Sphere-of-Control Environment
	Updating or Changing the Sphere-of-Control Environment

	Restoring the Sphere-of-Control Environment

	How to Define an Architected Focal Point (DEFFOCPT)
	The ALERT-NETOP Application
	Displaying Alerts Forwarded with LU 6.2
	Specifying Architected Alert Forwarding with LU 6.2
	Forwarding Alerts to a Non-NetView Focal Point
	Non-NetView Focal Points and Architected Alerts
	Non-NetView Focal Points and Unarchitected Alerts

	Forwarding Alerts from User-Defined Applications
	Defining a NetView Intermediate Node Focal Point
	Recording Filters for SNA-MDS/LU 6.2 Forwarded Alerts
	Queueing Alerts When the Focal Point Is Unavailable
	Distributed Database Retrieval for SNA-MDS/LU 6.2 Forwarded Alerts
	Secondary Recording for SNA-MDS/LU 6.2 Forwarded Alerts
	XITCI Exits and SNA-MDS/LU 6.2 Forwarded Alerts
	Services Provided by MS-CAPS and FOCALPT Command

	The LINK-SERVICES-NETOP Application
	The OPS-MGMT-NETOP and EP-OPS-MGMT Applications
	User-Defined Categories and User-Defined Applications

	NetView-Unique Focal Point Support
	Alert Forwarding with LUC
	Command and Message Forwarding
	Forwarding with the RMTCMD Command
	Flexibility in Communication
	Nesting RMTCMD Commands

	Forwarding with OST-NNT Sessions
	Using an Intermediate Focal Point for Message Forwarding

	Message/Alert Forwarding with OST-NNT

	Full-Screen Functions and the Terminal Access Facility
	Using the SDOMAIN Command While Monitoring
	Using a TAF Session to Shift Domains
	Logging on to a Distributed System Directly
	Limitations

	Choosing a Forwarding Method
	Choosing a Configuration
	Leased and Switched Lines
	Persistent and Nonpersistent Sessions
	Using More Than One Focal Point

	Changing, Dropping, and Listing Focal Points

	Part 7. Additional NetView Automation Topics
	Chapter 27. Automating Other Systems, Devices, and Networks
	Tivoli NetView for UNIX Service Point
	Event/Automation Service
	Forwarding Alerts
	Forwarding Messages

	NCP Frame Relay Switching Equipment Support

	Chapter 28. Automation Using the Resource Object Data Manager
	Managing Multiple RODM Data Caches
	Managing RODM Using the DSIQTSK Task
	Defining RODM Using the DSIQTSKI Initialization Member
	Managing RODM Using the ORCNTL Command

	Issuing Commands from RODM Methods
	Verifying Commands Issued from RODM Methods
	Accessing RODM from NetView
	The ORCONV Command
	Accessing RODM from High-Level Language and Assembler Language Programs

	A RODM Automation Scenario
	The Scenario Events
	The Scenario Entities
	Setting Up the Scenario
	Running the Scenario
	Key Sections of Change Method EKGCPPI
	Procedure Statement
	Local Variables
	Constants
	Initialization
	Changing a Subfield
	Querying a Field
	Querying an Object Name
	Triggering an Object-Independent Method

	Chapter 29. Automation Using the Terminal Access Facility
	Overview
	How TAF Works
	Setting Up TAF
	Adding VTAMLST Definitions
	Adding CICS Terminal Definitions
	Adding IMS Terminal Definitions

	NetView Commands Used for TAF
	Automating Applications Using TAF

	Chapter 30. Automation Involving Common Base Events
	Introducing Common Base Events
	Creating Common Base Events
	Creating Common Base Events by Automating Messages and MSUs
	Creating Common Base Events by Setting Hardware Monitor Filters

	Using Common Base Events in Automation
	Correlating Common Base Events

	Chapter 31. Using Automated Operations Network
	Understanding AON Automation and Recovery
	Automation Table
	The Control File

	Understanding Automated Operators
	Understanding Notifications
	Understanding Automation Tracking
	Understanding Automation Notification Logging in the Hardware Monitor
	Resource Recovery and Thresholds
	AON/SNA Automation
	Understanding the AON/SNA Options
	Using the AON/SNA Tutorials
	Using the AON/SNA Help Desk
	Using SNAMAP
	Managing VTAM Options
	Using NetStat
	Issuing VTAM Commands
	Monitoring X.25 Switched Virtual Circuits
	Displaying NCP Recovery Definitions

	AON/SNA Subarea VTAM Resource Automation Support
	Monitoring Advanced Peer-to-Peer Networking Resources
	AON/SNA X.25 Monitoring Support

	AON/TCP Automation
	Passive Monitoring in AON/TCP for Tivoli NetView (AIX)
	Proactive Monitoring
	Recovery Monitoring
	Threshold values for AON/TCP with Tivoli NetView (AIX)
	MIB Polling and Thresholding (TCP/IP for z/OS only)
	Operator Awareness

	Chapter 32. Running Multiple NetView Programs Per System
	Installing Multiple NetView Programs
	NetView Interfaces and Functions
	Program Operator Interface (POI)
	Communications Network Management Interface (CNMI)
	Hardware Monitor Local-Device Interface
	MVS Subsystem Interface
	GENALERT
	Status Monitor and Log Browse

	Using the Interfaces
	Separating Network Functions from System Functions
	Separating Problem Determination Functions from Automation Functions
	Migration
	Communication between Two NetView Programs
	LUC Alert Forwarding
	Command and Message Forwarding
	LU 6.2 Transports
	MVS Subsystem Interface

	Automated Recovery of NetView
	Priorities

	Chapter 33. Automation Tuning
	Log Analysis Program
	Resource Controls, Task Priorities, and Multitasking
	Resource Controls
	CPU Usage
	Storage Usage
	Message Queuing
	Input/Output Usage

	Task Priority
	Multiple Autotasks
	Multiple NetView Programs

	Automation-Table Processing
	Hardware Monitor Alerts

	Chapter 34. Automation Table Testing
	Automation Table Testing
	Starting Parallel Testing
	Testing an Automation Table Using Recorded AIFRs
	Sample Report for the AUTOTEST Command

	Using a Test Environment
	Using Applications
	Using a Simulator
	Message Simulation
	MSU Simulation

	Implementing Automation Incrementally
	Verifying Automation Table Matches
	Verifying Automated Action Parameters
	Verifying Scheduled Commands
	Checking the Effect of Automation
	Ensuring That Autotasks Process Command Procedures Correctly

	Using Debugging Tools
	Using Logs
	Evaluating Unautomated Messages and MSUs
	Using NetView Automation Table Listings
	Using NetView Automation Table Tracing

	Chapter 35. Logging
	Logging Considerations
	MVS System Log (SYSLOG)
	Network Log
	User-Provided Logs
	NetView Logging Capabilities
	MVS System Log and NetView Network Log Records

	Chapter 36. Job Entry Subsystem 3 (JES3) Automation
	Message Flow in a JES3 Complex
	Messages That Originate on the Global Processor
	Messages That Originate on the Local Processor

	Commands in a JES3 Environment
	Issuing JES3 Commands from NetView
	Issuing MVS Commands from NetView in a JES3 Complex
	Issuing NetView Commands from Operating System Consoles in a JES3 Complex

	NetView in a JES3 Environment

	Chapter 37. SNMP Trap Automation
	The SNMP trap automation task
	Configuring an SNMP trap automation task
	SNMP trap automation task configuration file

	SNMP Trap Automation CP-MSU
	Example of SNMP trap automation

	Part 8. Appendixes
	Appendix A. Planning for Migration to New Automation Capabilities in the NetView Program
	NetView for z/OS V5R4 Program
	NetView for OS/390 V1R4 Program

	Appendix B. Sample Project Plan
	Project Definition
	Design
	Implementation
	Production
	Planning Charts

	Appendix C. Sample Progress Measurements
	Appendix D. MVS Message and Command Processing
	Message Flow in MVS
	Message Processing Facility
	Subsystems in Message Processing
	Multiple Console Support

	Command Flow
	Processing Determination
	Commands Issued from a Console

	NetView Interfaces with MVS
	Messages Issued as WTOs to Be Displayed or Processed by NetView
	WTO Processing with the Subsystem Interface
	WTO Processing with EMCS Consoles

	MVS Commands Issued by NetView
	NetView Commands Issued as Subsystem Commands from an MVS Console
	NetView Commands Issued with MODIFY (F) Command from an MVS Console
	Messages and Commands through VTAM Interfaces
	Terminal Access Facility
	Interfaces
	Communication Network Management Interface
	Filters
	Communication Network Management

	Console Operations
	Using MVS Operator Consoles to Issue Commands and Command Lists as Subsystem Commands
	Using MVS Operator Consoles to Issue Commands and Command Lists as MODIFY (F) Commands
	Multiple Console Support Operator Use of Command Lists
	Issuing an MVS Command from a NetView Operator ID
	Using EMCS Consoles

	Appendix E. VTAM Message and Command Processing
	Message and Command Flow in VTAM
	Message Flooding Prevention Table
	VTAM Message Suppression Criteria
	Identifying Events with the Automation Table
	Understanding Suppression Levels
	Identifying Unsuppressable Messages

	Appendix F. Detailed NetView Message and Command Flows
	Flow Diagrams
	Flow Descriptions
	1. NetView Command Entry (VTAM Terminal)
	2. Cross-Domain Commands (OST to NNT)
	3. VTAM (POI) Command Entry
	4. Solicited System Messages
	5. NetView Command Entry (MVS System Console)
	6. Replies to NetView WTOR
	7. Unsolicited VTAM (POI) Messages
	8. Unsolicited MVS System Messages
	9. Cross-Domain Messages and Commands (NNT to OST)
	10. PPT as the MVS, ISCF, or TAF OPCTL Operator
	11. OST or NNT as MVS, ISCF, or TAF OPCTL Operator
	12. Solicited VTAM (POI) Messages
	13. PPT Message Queue Processing
	14. DSIPSS for PPT or NetView Authorized-Receiver Messages
	15. OST or NNT Message Queue Processing
	16. NetView Console Output or SYSOP Message Queue Processing
	17. OST or NNT DSIPSS
	18 Solicited and Unsolicited System MVS Extended Console Messages for an OST, NNT, or Autotask
	19 Solicited and Unsolicited System MVS Extended Console Messages for the PPT

	Appendix G. NetView Message Type (HDRMTYPE) Descriptions
	Appendix H. MVS Command Management (Deprecated)
	Enabling MVS Command Management in the NetView Environment
	Enabling the MVS Command Exit on MVS
	Suppressing additional command echoes and IEE295I messages
	Exclusion or Inclusion Lists
	Logical PARMLIB Member - CNMCAUaa
	Syntax for CNMCAUaa Statements
	Console Exclusion List and Console Inclusion List
	Command Exclusion List and Command Inclusion List
	CMDTEXT Exclusion List and CMDTEXT Inclusion List
	Order of matching
	Starting MVS Command Management
	Activating the MVS Command Exit
	Starting MVS Command Processing

	Displaying the MVS Command Management Setting
	Stopping MVS Command Management
	Stopping MVS Command Management and Keeping the CNMCAUaa Member
	Stopping MVS Command Management and Deleting the CNMCAUaa Member
	Stopping the MVS Command Exit from Being Invoked
	Deactivating the MVS Command Exit

	Testing MVS Command Management
	Starting the Exclusion or Inclusion List
	Changing the Exclusion or Inclusion List
	General Processing of CONSOLE and COMMAND Inclusion and Exclusion Lists
	Commands Excluded by NetView Command Exit
	Restrictions

	MVS Command Management Processing on NetView
	Protecting MVS Command Management Processing

	Appendix I. The Sample Set for Automation
	Using the Sample Set for Automation
	Locating and Renaming the Sample Set for Automation
	Using the Message Suppression Sample Set
	Using the Log Analysis Program
	Setting Up Communication between NetView and MVS
	Using the Basic Automation Sample Set
	Functions Performed by the Basic Automation Sample Set
	Automation Table Used in the Basic Automation Sample Set
	Issuing Commands
	Assigning a Value to a Variable
	Invoking Command Lists and Command Processors

	Activating the Basic Automation Sample Set
	Defining Command List Synonyms
	Preparing and Activating the Sample Automation Table
	Preparing the Sample Automation Table
	Testing the Syntax of the Sample Automation Table
	Activating the Sample Automation Table

	Activating the Autotask AUTO1
	Testing the Basic Automation Sample Set

	Using the Advanced Automation Sample Set
	Functions Performed by the Advanced Automation Sample Set
	Initialization
	Monitoring
	Passive Monitoring
	An Example of Passive Monitoring
	Proactive Monitoring
	An Example of Proactive Monitoring

	Recovery
	Shutdown
	Enhancing the Operator Interface

	Command Lists Used in the Advanced Automation Sample Set
	Advanced Automation Sample Set Functions
	Naming Conventions for Advanced Automation Sample Set Command Lists
	Initialization and Active-Monitoring Command Lists
	Recovery Command Lists
	Shutdown Command Lists
	Operator-Interface Command List and Panels
	Automation Display Command List
	Automation Display Panels

	Miscellaneous Samples

	Preparing to Use the Advanced Automation Sample Set
	Preparing for NetView Initialization
	Starting NetView before JES
	Starting NetView before VTAM
	Starting NetView before a System Authorization Facility Product

	Modifying the Advanced Automation Sample Set
	Defining Autotasks
	Defining Command Definition Statements
	Modifying the Automation Table

	Customizing the Advanced Automation Sample Set
	Customizing with Global Variables
	Building and Naming Complex Global Variables
	Example of Using a Complex Global Variable

	Fine-Tuning the Advanced Automation Sample Set
	Adding a Product
	Handling a New Message with Automation
	Changing Timer-Command Intervals
	Preloading Command Lists

	Testing Added or Changed Automation

	Cross-Reference Listing of Command Lists and Samples
	Basic Automation Sample Set
	Samples
	Command Lists

	Advanced Automation Sample Set
	Samples
	Command Lists Sorted by Shipped Name
	Command Lists Sorted by Command Synonym Name

	Message Suppression Samples
	Log Analysis Samples
	Setup Samples

	Notices
	Programming Interfaces
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

